Natural Sciences
   
   
  

Geography, Biological Sciences and Mathematical Sciences

Natural Sciences is a multidisciplinary degree which allows you to study three subjects in the first year and continue with two subjects in the second and third year. The combination of subjects which you study in the first year allows you to find out what each subject is like at university before you specialise further. You will also have the opportunity to explore specialist areas through optional modules as you progress through the course. Both of the subjects taken beyond the first year will be studied to degree level. This degree aims to provide you with a broad knowledge and understanding of your chosen areas of science, as well as experience of interdisciplinary study.

Year One

You will study 40 credits of each subject from your chosen three-subject pathway.

Geography


30 compulsory credits:

  • Earth and Environmental Dynamics (20 credits, full year)

This module integrates knowledge taken from the hydrosphere, oceans and continents to inform an understanding of global physical systems as they affect people and the environment. The module considers:

  • hydrological cycles
  • principles of Earth and geomorphological systems
  • fluvial geomorphology and biogeomorphology
 
  • Tutorial (10 credits, full year)

Small group tutorials in both the autumn and spring semesters in which emphasis will be placed on discussion, essay writing and seminar presentations which will be based on topics in the qualifying year geography modules and from broader intellectual, cultural and political fields.

 

 

10 credits from the following:

  • Introduction to Geographic Information Systems (10 credits, Autumn semester)

The module provides you with the theoretical background and practical training to undertake basic spatial analysis within a contemporary Geographic Information System (GIS). 

It is built upon a structured set of paired theory lectures and practical sessions, supported by detailed theory topics delivered via Moodle, which contain linkages to associated textbook resources. It aims to ensure competency in the use of a contemporary GIS software package whilst developing transferable ICT skills.

It also encourages you to develop the analytical skills necessary for the creation of workflows that utilise the built-in analytical functionality of a GIS to solve a spatial problem.

 
  • Physical Landscapes of Britain (10 credits, Autumn semester)

This module provides an understanding of the history and origins of the Earth and its life and landforms through consideration of the following topics:

  • Development of life over geological time
  • Environmental changes over geological time
  • Field trip to the Peak District (full costs will be suppliednearer the time of the trip)
 
  • On Earth and Life (10 credits, Spring semester)

On Earth and Life explores the deep historical co-evolution of Earth and Life and emphasises uniqueness of place and historical contingency. The module leads on from and complements Physical Landscapes of Britain in exploring geological, plate tectonic and palaeoenvironmental ideas and research, but at the global scale.

It emphasises the role of life in creating past and present planetary environments, and conversely the role of environment and environmental change in the evolution and geography of life. The module also serves to prepare the ground for and contextualise several second and third year geography modules, especially Environmental Change and Patterns of Life.

 
 

Biological Sciences


40 compulsory credits from your chosen subpathway:

Molecular and Cellular Biology subpathway

Genes, Molecules and Cells (40 credits, full year)
This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.
 


Organismal Biology subpathway

Evolution, Ecology and Behaviour (20 credits, full year)
Starting with Darwin’s theory of evolution, you will learn how natural selection and other evolutionary forces have shaped the ways in which organisms interact with each other and their environment. In addition to lectures, practical classes will give you hands-on experience with a range of ecological and behavioural concepts in the laboratory and the field.
 
Life on Earth (20 credits, full year)
Life on Earth provides an introduction to the fundamental characteristics and properties of the myriad of organisms which inhabit our planet, from viruses, bacteria and Archaea, to plants and animals. In weekly lectures, and regular laboratory practical classes, you will consider how living organisms are classified, how they are related genetically and phylogenetically, and basic aspects of their structure and function.
 
 

Mathematical Sciences


40 compulsory credits:

Analytical and Computational Foundations (20 credits, full year)
This module introduces students to a broad range of core mathematical concepts and techniques. It has three components.
  • Mathematical reasoning (the language of mathematics, the need for rigour, and methods of proof).
  • The computer package MATLAB and its applications.
  • Elementary analysis.
 
Calculus and Linear Algebra (20 credits, full year)

The module consolidates core GCE mathematical topics in the differential and integral calculus of a function of a single variable and used to solving some classes of differential equations. Basic theory is extended to more advanced topics in the calculus of several variables. In addition, the basic concepts of complex numbers, vector and matrix algebra are established and extended to provide an introduction to vector spaces. An emphasis in the module is to develop general skills and confidence in applying the methods of calculus and developing techiniques and ideas that are widely applicable and used in subsequent modules.

Major topics are:

  • differential and integral calculus of a single variable;
  • differential equations;
  • differential calculus of several variables;
  • multiple integrals;
  • complex numbers;
  • matrix algebra;
  • vector algebra and vector spaces.
 
 

 

Year Two

You will continue on a pathway comprising of two of your first year subjects. You will take 60 credits of modules from each subject and greater emphasis will be put on studying outside of formal classes.

Geography


20 compulsory credits:

  • Techniques in Physical Geography (20 credits, full year)

This module presents the opportunity for hands-on experience of laboratory, field and surveying techniques in physical geography appropriate to the domain of interest of the participants. To achieve these aims all students participate in field projects on a residential field course, some of which are completed in the laboratory back in Nottingham, leading to an individual project.

In addition, you choose further laboratory techniques to investigate in the second semester. The ethical, safety and fieldwork limitations of geographical work are also considered.

 


20 credits from your chosen subpathway:

Physical Geography subpathway

  • Environmental Change (20 credits, full year)

This module considers the mechanisms for, and evidence of, global environmental change during the timescale of the Quaternary period. The nature, causes and impacts of change are evaluated in the context of the available evidence within a range of natural and human environments. 

 

Technical Geography subpathway

  • Digital Explorers (20 credits, full year)

This module provides a consideration of the following:

  • Introduction to GI science/systems/studies/services 
  • Spatial data types and sources 
  • Vector processing algorithms 
  • Raster processing algorithms
  • Spatial analysis and decision making 
  • Professional training in ArcGIS 
 


Geoscience subpathway

Mineralogy and Petrology (20 credits, full year)

The aim of this module is to introduce students to the major different rock types and the principal rock-forming minerals from which they are made. The module will consider:

  • economic mineral deposits
  • hydrocarbon resources
  • environmental mineralogy, for example, radioactive waste management, shale gas
  • volcanology and volcanic hazards

Specifically the module will include discussion of:

  • major rock types and rock-forming; bulk materials
  • types of ore deposit, how they form, and the important ore minerals and critical metals
  • types of oil and gas reservoirs, traps, seals, burial diagenesis and hydrocarbon migration
  • environmental mineralogy and geochemistry, covering carbon capture and storage technology and radioactive waste management

The module will cover these issues theoretically and practically.

 

 

A further 20 credits from the options below:

  • Introduction to Desert Geomorphology (20 credits, full year)
Earth Observation (20 credits, full year)

This module provides a general introduction to the subject of earth observation. This involves analysing remotely sensed images, typically acquired from instruments on board satellites or aircraft, to investigate spatial phenomena on the Earth's surface.

Example topics include the use of global image data sets to investigate climate change, analysis of satellite sensor imagery to identify wildlife habitats and conservation concerns, and urban land use mapping from detailed aerial photography. Theoretical lectures cover the concepts underpinning remote sensing, including the physical principles determining image creation, fundamental image characteristics, methods of image analysis and uses or applications of earth observation.

There is also a strong practical component to the module, with regular practical exercises on various forms of digital image analysis.

 
Environmental Change (20 credits, full year)

This module considers the mechanisms for, and evidence of, global environmental change during the timescale of the Quaternary period. The nature, causes and impacts of change are evaluated in the context of the available evidence within a range of natural and human environments. 

 
Patterns of Life (20 credits, full year)

This module focuses on patterns in the distribution of organisms in space and time, and theories proposed to explain those patterns. The main themes are:

  • biodiversity patterns
  • island biogeography
  • biodiversity dynamics
  • speciation and extinction 
  • evolution
 
River Processes and Dynamics (20 credits, full year)

This module:

  • introduces the water and sediment processes that operate in rivers
  • describes the characteristic forms of alluvial channels and the links between river processes and channel dynamics
  • uses laboratory practicals and a field trip to deliver kinaesthetic, student-centred learning and add value to teaching and learning during lectures

Topics covered include:

  • catchments and longitudinal patterns
  • river planforms: braided, meandering and straight
  • timescales of river change and morphological adjustments
  • complex response in the fluvial system
  • flow resistance, sediment transport and bank erosion
  • an introduction to biogeomorphology and aquatic ecology
 
Sedimentology and Palaeontology (20 credits, full year)

The aim of this module is to introduce you to sedimentology/sedimentary geology (the study of sediments such as sand, silt and clay and the processes that result in their deposition) and palaeontology (the study of fossils, both animal and plant, and both macroscopic and microscopic).

You will be given a comprehensive course on these subjects and how they are used scientifically and industrially together with their impact on human society and the natural environment.

 
 

Biological Sciences


40 compulsory credits from your chosen subpathway:

Molecular and Cellular Biology subpathway (option 1)

  • The Genome & Human Disease (20 credits, Autumn semester)

In this module you will learn about the structure and function of the eukaryotic genome, including that of humans, and the approaches that have led to their understanding. You will learn about techniques that are employed to manipulate genes and genomes and how they can be applied to the field of medical genetics. By using specific disease examples, you will learn about the different type of DNA mutation that can lead to disease and how they have been identified. Practical elements will teach you about basic techniques used in medical genetics such as sub-cloning of DNA fragments into expression vectors. Practical classes and problem based learning will be used to explore the methods used for genetic engineering and genome manipulation.

 
  • Animal Behaviour and Physiology (20 credits, Spring semester)
Introduces the study of animal behaviour, from the physiological and genetic bases of behaviour to its development and adaptive significance in the natural environment. You will have a three-hour lecture once per week for this module. 
 


Molecular and Cellular Biology subpathway (option 2)

The Genome & Human Disease (20 credits, Autumn semester)

In this module you will learn about the structure and function of the eukaryotic genome, including that of humans, and the approaches that have led to their understanding. You will learn about techniques that are employed to manipulate genes and genomes and how they can be applied to the field of medical genetics. By using specific disease examples, you will learn about the different type of DNA mutation that can lead to disease and how they have been identified. Practical elements will teach you about basic techniques used in medical genetics such as sub-cloning of DNA fragments into expression vectors. Practical classes and problem based learning will be used to explore the methods used for genetic engineering and genome manipulation.

 
Bacterial Genes and Development (10 credits, Spring semester)
Molecular events that occur during the control of gene expression in bacteria will be explored. You'll learn by considering case studies, which will show you how complex programmes of gene action can occur in response to environmental stimuli. You will also study the regulation of genes in pathogenic bacteria.
 
Microbial Biotechnology (10 credits, Spring semester)

You'll cover the key groups of eukaryotic and prokaryotic microorganisms relevant to microbial biotechnology, principles of GM, and strain improvement in prokaryotes and eukaryotes. The impact of “omics”, systems biology, synthetic biology and effects of stress on industrial microorganisms are explored, alongside the activities of key microorganisms that we exploit for biotechnology.

 


Organismal Biology subpathway

Ecology (20 credits, Autumn semester)

You will learn about the forces determining the distribution and abundance of species and be able to use models to predict the dynamics of populations under a range of conditions. You will recognise how interactions between species can drive co-evolutionary processes leading to an understanding of the organisation of natural systems working systematically from populations through to communities, ecosystems and biogeographical scales.

 
The Green Planet (20 credits, Spring semester)
This module explores the evolution of key plant systems through deep time, and the significance of this process for understanding modern ecology and food security. You will learn about the challenges that plants faced when moving onto land and evolutionary innovations within the early spermatophytes. You will also gain an understanding of the power of natural selection in producing plant diversity over deep time.
 


Optional biology modules

A further 20 credits from the options below:

Signalling & Metabolic Regulation (20 credits, full year)
This module will explain the main signalling mechanisms that take place in eukaryotic cells. You will learn about the main signalling mechanisms and pathways which can control protein levels, activity and intra-cellular site of action. This knowledge will then be placed in the context of the regulation of major metabolic pathways, such that you will understand the factors influencing metabolic control, and dysregulation leading to major modern diseases like type II diabetes and heart disease.
 
Building Brains (20 credits, Autumn semester)

Studying this module, you'll be able to explain how the nervous system develops, is organised, and processes information. This will be achieved through presentation of comparative invertebrate and vertebrate studies, consideration of evolutionary concepts, and a detailed analysis of the development, structure, and function of the mammalian brain. The lecture sessions are complemented by workshops on Drosophila and chick embryo development, on the neuroanatomy of the human spinal cord, and dissection of pig brains subject to the availability of tissue.

 
Infection & Immunity (20 credits, Autumn semester)

In this module you will study basic immunology, learning about the organs, cells and molecules of the immune system and the mechanisms engaged in the generation an of immune response to pathogens. You will learn by studying examples of types of human pathogens (viral, bacterial, fungal, protozoa and helminths), the varied nature of the immune response, depending on the pathogen, its niche(s) in the host and pathogen strategies for invading and surviving in the host. You will learn how immunological methods can be effectively utilized for disease diagnosis and vaccine development, and about the consequences of failure of normal immune function, including autoimmunity and hypersensitivity.

 
Neurones and Glia (20 credits, Autumn semester)

This module will provide you with an understanding of the mechanisms behind electrical conduction in neurones. You will learn about the generation of the membrane potential and its essential role in signaling within the nervous system. You will develop an appreciation of the role of ion channels in the generation of trans-membrane currents and how myelin can accelerate signal conduction. You will also learn about the important supporting roles that astrocytes and glial cells play in the nervous system in order to ensure its efficient functioning.

 
Structure, Function and Analysis of Proteins (20 credits, Autumn semester)

This module considers the structure and function of soluble proteins and how individual proteins can be studied in molecular detail. More specifically you will learn about the problems associated with studying membrane-bound proteins and build an in-depth understanding of enzyme kinetics and catalysis. You will learn about the practical aspects of affinity purification, SDS PAGE, western blotting, enzyme assays, bioinformatics and molecular modelling approaches.

 
Neurobiology of Disease (20 credits, Spring semester)

This module will teach you the underlying neurophysiology and pathology associated with several common CNS disorders and the neuropharmacology of currently available medication. You will learn about the neurotransmitters and pathways involved in normal brain function and how changes in these contribute to abnormal function. You will also decipher the pharmacological mechanisms of drugs used to treat these CNS disorders. You will cover numerous human diseases including those with great significance such as Alzheimer's disease, epilepsy, schizophrenia and autism.

 
Evolutionary Biology of Animals (10 credits, Autumn semester)
Introduces key evolutionary concepts and their application in the animal kingdom. Areas you will study include the history of evolutionary thinking, natural selection versus the neutral theory, sexual selection and human evolution. 
 
Developmental Biology (10 credits, Spring semester)
Examines the basic concepts of vertebrate embryonic development. You will discuss specific topics including germ cells, blood and muscle cell differentiation, left-right asymmetry and miRNAs. The teaching for this module is delivered through lectures. 
 
Molecular Imaging (10 credits, Spring semester)

This module enables you to develop an elementary understanding of modern molecular imaging techniques, in addition to a historical overview of microscopy. You will acquire theoretical and practical knowledge of how to localise and analyse macromolecule behaviours in fixed and living cells.

 
 

Mathematical Sciences


40 compulsory credits:

Modelling with Differential Equations (20 credits, full year)
This course aims to provide students with tools which enable them to develop and analyse linear and nonlinear mathematical models based on ordinary and partial differential equations. Furthermore, it aims to introduce students to the fundamental mathematical concepts required to model the flow of liquids and gases and to apply the resulting theory to model physical situations. This course leads to further study of mathematical models in medicine and biology and fluid mechanics. It also provides a foundation for further study of differential equations.
 
Vector Calculus (10 credits, Autumn semester)
This course aims to give students a sound grounding in the application of both differential and integral calculus to vectors, and to apply vector calculus methods and separation of variables to the solution of partial differential equations. The course is an important pre-requisite for a wide range of other courses in Applied Mathematics.
 
Differential Equations and Fourier Analysis (10 credits, Spring semester)
This course aims to introduce standard methods of solution for linear ordinary and partial differential equations and to introduce the idea and practice of Fourier series and integral transforms. The mathematical methods taught in this module find wide application across a range of courses in applied mathematics.
 

 

20 compulsory credits from your chosen subpathway:

Modelling 1 subpathway

  • Introduction to Scientific Computation (20 credits, full year)
This module introduces basic techniques in numerical methods and numerical analysis which can be used to generate approximate solutions to problems that may not be amenable to analysis. Specific topics include:
  • Implementing algorithms in Matlab;
  • Discussion of errors (including rounding errors);
  • Iterative methods for nonlinear equations (simple iteration, bisection, Newton, convergence);
  • Gaussian elimination, matrix factorisation, and pivoting;
  • Iterative methods for linear systems, matrix norms, convergence, Jacobi, Gauss-Siedel.
  • Interpolation (Lagrange polynomials, orthogonal polynomials, splines)
  • Numerical differentiation & integration (Difference formulae, Richardson extrapolation, simple and composite quadrature rules)
  • Introduction to numerical ODEs (Euler and Runge-Kutta methods, consistency, stability) 
 


Modelling 2 subpathway

  • Introduction to Mathematical Physics (20 credits, full year)
This course develops Newtonian mechanics into the more powerful formulations due to Lagrange and Hamilton and introduces the basic structure of quantum mechanics. The course provides the foundation for a wide range of more advanced courses in mathematical physics.
 
 

 

Year Three

You will continue with the same two subjects studied in the second year, taking 50 credits in each. Alongside subject-specific study, you will undertake a 20-credit synoptic module which aims to tie together the subjects you are studying through an interdisciplinary group project.

Geography


40 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)
  • Environmental Informatics and Modelling (20 credits, full year)

This module will expose you to current practices, technologies and ideas existing at the forefront of environmental modelling. The module offers an opportunity for you to experience the theory and practice associated with key developments that are occurring in major modelling domains and the most recent advances from the research community. 

The module will comprise four parts:

  1. Introduction 
  2. Modelling the impacts of climate change 
  3. Modelling biogeography 
  4. Hydrology and hydroinformatics
 

 

20 compulsory credits from your chosen subpathway:

Physical Geography subpathway

20 credits from the options below:

Global Climate Change (20 credits, full year)

The module covers the following:

  • A review of modern climate systems and forcings
  • Climate modelling, projections of future climate change and their uncertainty
  • Controversies around climate change, the argument between believers and sceptics and the ways in which climate change is communicated to and perceived by the public 
  • The impact of climate change on the world's physical and built environments, water and food resources, and human health
  • Mitigation and adaptation to future climate change including the role played by policy markers and NGOs
 
Quaternary Environments (20 credits, full year)

This module considers the quaternary evolution, environmental and settlement history of the Yucatan peninsula of Mexico, building explicitly on material covered in Environmental Change. The focus of the course will be evolution of the present climate and environment of the lowland tropics and the interaction between the natural environment and human societies.

The module is based on a 10 day residential field trip to the Yucatan and project work associated with this. Full costs of the field trip will be advised nearer the time of the visit. The main elements are:

  • an overview of climate dynamics in the tropics, with particular emphasis on changes in the monsoon, the impact of sea level change and drivers of change from mid-latitudes
  • critical review of methods of environmental reconstruction, dating techniques and sampling methods (waters, soils, sediments)
  • archives of change relevant to the study area, primarily lakes and cave systems
  • quaternary history of the Yucatan
  • mesoamerican archaeology and cultural change in the Yucatan
  • exploration of the possible role of climate in driving societal change
 
  • River Management and Restoration (20 credits, full year)

This module further develops themes of river processes and dynamics introduced in the module River Processes and Dynamics, and considers them within the context of human attempts to manage and restore rivers. It initially centres on changes in the fluvial system that occur in response to river management and engineering and then goes on to examine approaches to restoring the natural functions of rivers that have been heavily degraded by human impacts.

The module includes reviews of past and present river channel restoration and rehabilitation activity in Europe and the USA. It details principles by which restoration practice is guided, and introduces criteria for selection between alternative strategies.

The module includes a residential field trip in semester two where students will have the opportunity to explore a range of river management and restoration issues relevant to rivers in the UK and develop practical skills in field survey and modelling techniques employed in contemporary river management.

 
  • Scale and Diversity in the Canary Islands (20 credits, full year)

The module involves the study of broad-scale patterns of diversity, endemism and evolution in the Canary Islands using secondary data made available and where necessary collected by students. Independent research by student research groups supported by lectures, training sessions, research development seminars, presentation and feedback sessions, and unlimited consultations with lecturers.

 


Technical Geography subpathway

Geospatial Technologies: Mobile, Augmented and Virtual (20 credits, full year)

This module focuses on the uptake of digital geographic information across a wide range of applications in society and the research agenda that is underpinning these developments. We will explore the use of location-aware mobile devices and techniques for geo-visualisation that are visually immersive and interactive. Content is organised as follows:

Part I: Digital Geographic Information in the public domain
Here we consider how a convergence of technologies (positioning, communication and processing) has allowed digital geographic information to make an impact 'beyond the desktop' at both a global scale through the web, and at a personal scale via the mobile device. This includes virtual globes, 'open' and 'linked' geographic information, Volunteered Geographic Information (VGI), location-based services, and mobile geospatial apps.

Part II: Virtual Geographic Environments
Here we look at the role and impact of multi-dimensional geographic visualisation to support decision making, environmental impact assessment, and the communication of spatial context. This includes animation and 3D graphics, advances in data capture, urban and rural landscape visualisation, interaction design and immersion, augmented and virtual realities.

 


Geoscience subpathway

  • Geological Hazards and Resources (20 credits, full year)

A geohazard is a natural process or phenomenon that has the potential to adversely affect humanity by endangering life or property. A geo resource is a substance or commodity that can be extracted from the subsurface for use by humanity. This module will spend one semester focussing on these two important issues for Environment and Society.

 


Optional geography modules

A further 10 credits from the options below:

  • Contaminated Land Site Investigation and Risk Assessment (10 credits, Autumn semester)
  • Introduction to Desert Geomorphology (10 credits, Spring semester)
Digital Explorers (10 credits, Autumn semester)

This module provides a consideration of the following:

  • Introduction to GI science/systems/studies/services 
  • Spatial data types and sources 
  • Vector processing algorithms 
  • Raster processing algorithms
  • Spatial analysis and decision making 
  • Professional training in ArcGIS 
 
Foundations of Environmental Management (10 credits, Autumn semester)

This module provides a foundation for the scientific concepts and issues which underpin environmental management. Topics covered include climate-change impacts and mitigation, river channel processes and management, pure and applied research on biodiversity patterns and conservation.

 
Patterns of Life (10 credits, Spring semester)

This module focuses on patterns in the distribution of organisms in space and time, and theories proposed to explain those patterns. The main themes are:

  • biodiversity patterns
  • island biogeography
  • biodiversity dynamics
  • speciation and extinction 
  • evolution
 
River Dynamics (10 credits, Spring semester)

This module:

  • introduces the water and sediment processes that operate in rivers
  • describes the characteristic forms of alluvial channels and the links between river processes and channel dynamics
  • uses laboratory practicals and a field trip to deliver kinaesthetic, student-centred learning and add value to teaching and learning during lectures

Topics covered include:

  • catchments and longitudinal patterns
  • river planforms: braided, meandering and straight
  • timescales of river change and morphological adjustments
  • complex response in the fluvial system
  • flow resistance, sediment transport and bank erosion
  • an introduction to biogeomorphology and aquatic ecology
 
 

Biological Sciences


30 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)
Molecular Biological Laboratory Studies (10 credits, Spring semester)
This is a mini project based practical module that not only aims to provide underlying principles of key techniques in molecular biology but also enables students to get hands-on experience in a wide range of molecular techniques.In addition, students will learn key skills in bioinformatics and will also be exposed to a few key analytical techniques.
 


30 compulsory credits from your chosen subpathway:

Molecular and Cellular Biology subpathway (option 1)

Advanced Biochemistry (20 credits, full year)
This module is divided into three parts: Firstly the application of genetic engineering to construct vectors that maximize the expression the expression of protein from cloned genes or cDNAs in heterologous systems will be discussed. Modern methods for the purification of recombinant proteins will be described. In the spring the module covers the life history of a protein from birth (synthesis) to death (apoptosis). The other major aspects that are involved include a discussion of protein folding, the cytoskeleton, protein and vesicle trafficking including endocytosis and protein degradation.
 
Gene Regulation (10 credits, Autumn semester)
Examines the mechanisms through which eukaryotic genes are expressed and regulated, with emphasis placed on recent research on transcriptional control in yeast and post-transcriptional control in eukaryotes. Studying this module will include having three hours of lectures per week.
 


Molecular and Cellular Biology subpathway (option 2)

Human Variation (10 credits, Autumn semester)
Examines genetic variation in humans, including variation at the DNA level, and the study of human population history using genetic methods. Around three hours per week will be spent within lectures studying this module.
 
Molecular and Cellular Neuroscience (10 credits, Autumn semester)
Considers ion channels at the molecular level, with topics including the structure and function of different ion channel groups and their modulation by drugs, pesticides and natural toxins. You will also consider the synthesis and transport of neurotransmitters and the formation and release of synaptic vesicles. This module involves one three hour session per week incorporating eight lectures and two practical sessions.
 
Molecular Evolution (10 credits, Spring semester)

During this module you will examine the ways in which DNA and protein sequences are used to investigate evolutionary relationships among organisms. You will study topics including the techniques of sequence comparison and the construction of evolutionary trees. You will spend three hours of lectures per week plus a total of two three-hour practicals in this module.

 


Organismal Biology subpathway

Evolutionary Ecology (10 credits, Autumn semester)
Considers current knowledge of, and research into, the ecological causes and evolutionary processes that govern natural selection, adaptation and microevolution in natural populations. You will examine three approaches to the study of evolutionary ecology: theoretical and optimality models; the comparative method; and direct measurement of natural selection in the wild. You will have two-to three hours of lectures each week in this module.
 
Population Genetics (10 credits, Autumn semester)
You will consider the history and practice of population genetics research, with a focus on a quantitative approach to the subject, with training in problem-solving skills. You will spend around two hours within lectures per week studying this module, plus a two-hour computer practical.
 
Molecular Evolution (10 credits, Spring semester)

During this module you will examine the ways in which DNA and protein sequences are used to investigate evolutionary relationships among organisms. You will study topics including the techniques of sequence comparison and the construction of evolutionary trees. You will spend three hours of lectures per week plus a total of two three-hour practicals in this module.

 


Genetics subpathway

Open to students from Molecular and Cellular Biology and Organismal Biology subpathways.

Human Variation (10 credits, Autumn semester)
Examines genetic variation in humans, including variation at the DNA level, and the study of human population history using genetic methods. Around three hours per week will be spent within lectures studying this module.
 
Population Genetics (10 credits, Autumn semester)
You will consider the history and practice of population genetics research, with a focus on a quantitative approach to the subject, with training in problem-solving skills. You will spend around two hours within lectures per week studying this module, plus a two-hour computer practical.
 
Molecular Evolution (10 credits, Spring semester)

During this module you will examine the ways in which DNA and protein sequences are used to investigate evolutionary relationships among organisms. You will study topics including the techniques of sequence comparison and the construction of evolutionary trees. You will spend three hours of lectures per week plus a total of two three-hour practicals in this module.

 

Additional biology modules

A further 10 credits from the options below:

Advanced Developmental Biology (10 credits, Autumn semester)
You will consider the molecular mechanisms underlying stem cell function during embryogenesis and adulthood. This will involve studies of regeneration and repair of tissues and pluripotency. You will have one two-hour lecture per week in this module. 
 
Aging, Sex and DNA Repair (10 credits, Spring semester)
Examine the molecular causes of the ageing and malignant transformations of somatic cells that are observed during a single lifespan, and gain an understanding of the necessity to maintain the genome intact from one generation to the next. Around three hours per week will be spent within lectures studying this module.
 
Cancer Biology (10 credits, Spring semester)
Examine a selection of acquired and inherited cancers, and develop an understanding of the role of the genes involved and how they can be analysed. To study for this module you will have a two- or three-hour lecture once per week.
 
 

Mathematical Sciences


20 compulsory credits:

  • Natural Sciences Synoptic Module (20 credits, full year)


30 compulsory credits from your chosen subpathway:

Modelling 1 subpathway

  • Mathematical Medicine and Biology (20 credits, Autumn semester)
Mathematics can be usefully applied to a wide range of applications in medicine and biology. Without assuming any prior biological knowledge, this course describes how mathematics helps us understand topics such as population dynamics, biological oscillations, pattern formation and nonlinear growth phenomena. There is considerable emphasis on model building and development.
 
  • Game Theory (10 credits, Spring semester)
Game theory contains many branches of mathematics (and computing); the emphasis here is primarily algorithmic. The module starts with an investigation into normal-form games, including strategic dominance, Nash equilibria, and the Prisoner’s Dilemma. We look at tree-searching, including alpha-beta pruning, the ‘killer’ heuristic and its relatives. It then turns to mathematical theory of games; exploring the connection between numbers and games, including Sprague-Grundy theory and the reduction of impartial games to Nim.
 

 

Modelling 2 subpathway

  • Coding and Cryptography (10 credits, Autumn semester)
This course provides an introduction to coding theory in particular to error-correcting codes and their uses and applications. It also provides an introduction to to cryptography , including classical mono- and polyalphabetic ciphers as well as modern public key cryptography and digital signatures, their uses and applications.
 
  • Differential Equations (20 credits, Autumn semester)
This course introduces various analytical methods for the solution of ordinary and partial differential equations, focussing on asymptotic techniques and dynamical systems theory. Students taking this course will build on their understanding of differential equations covered in MATH2012.
 

 

Optional mathematics modules

A further 20 credits from the options below:

  • Differential Equations (20 credits, Autumn semester)
This course introduces various analytical methods for the solution of ordinary and partial differential equations, focussing on asymptotic techniques and dynamical systems theory. Students taking this course will build on their understanding of differential equations covered in MATH2012.
 
  • Electromagnetism (20 credits, Spring semester)

The course complements others in the Waves Pathway by providing an introduction to electromagnetism and the electrodynamics of charged particles. The aims of this course are:

  • to develop an appropriate mathematical model of electromagnetic phenomena that is informed by observations;
  • to understand electromagnetic configurations of practical importance and to relate predictions made to everyday phenomena;
  • to illustrate the use of solutions of certain canonical partial differential equations for determining electrostatic fields and electromagnetic waves in vacuum and in matter;
  • to illustrate the interplay between experimental input and the development of a mathematical model, and the use of various mathematical techniques for solving relevant problems.
 
  • Fluid Dynamics (20 credits, Spring semester)
This course aims to extend previous knowledge of fluid flow by introducing the concept of viscosity and studying the fundamental governing equations for the motion of liquids and gases. Methods for solution of these equations are introduced, including exact solutions and approximate solutions valid for thin layers. A further aim is to apply the theory to model fluid dynamical problems of physical relevance.
 
  • Topics in Scientific Computation (20 credits, Spring semester)
 

 

Year Four (MSci students only)

You will choose one of your third-year subjects to focus on in the fourth year, spending half your time working on an independent research project aiming to develop the skills needed to pursue a career in research. Alongside the project you take taught modules in your main subject and if you wish to maintain some breadth you can also take options from your other third year subject.

Geography


60 compulsory credits:

  • Natural Sciences Dissertation (60 credits, full year)


Minimum of 20 credits, maximum of 40 credits from the following:

  • Statistical and Computational Problem Solving (20 credits, full year)
  • Geographical Research Methods (20 credits, full year)
This module is split into three major sections:
  • Quantitative methods: This section gives students an introduction to parametric and non-parametric statistics and the use of databases and statistical packages.
  • Social research methods: You receive an introduction to the philosophical and analytical issues that lie behind designing social research methods. A range of social research methods are considered in terms of their approach, design, implementation and analysis.
  • GIS: You receive an introduction to the technologies of GIS. They cover the design and operation of these systems and how they are used as decision support tools. The material also covers the concept of modelling and what issues the user must be aware of in evaluating model outputs.
 


Minimum of 20 credits, maximum of 40 credits from the following:

  • Lakes and Catchments in the Anthropecene (20 credits, full year)
Geospatial Technologies: Mobile, Augmented and Virtual (20 credits, full year)

This module focuses on the uptake of digital geographic information across a wide range of applications in society and the research agenda that is underpinning these developments. We will explore the use of location-aware mobile devices and techniques for geo-visualisation that are visually immersive and interactive. Content is organised as follows:

Part I: Digital Geographic Information in the public domain
Here we consider how a convergence of technologies (positioning, communication and processing) has allowed digital geographic information to make an impact 'beyond the desktop' at both a global scale through the web, and at a personal scale via the mobile device. This includes virtual globes, 'open' and 'linked' geographic information, Volunteered Geographic Information (VGI), location-based services, and mobile geospatial apps.

Part II: Virtual Geographic Environments
Here we look at the role and impact of multi-dimensional geographic visualisation to support decision making, environmental impact assessment, and the communication of spatial context. This includes animation and 3D graphics, advances in data capture, urban and rural landscape visualisation, interaction design and immersion, augmented and virtual realities.

 
Quaternary Environments: Mexico Field Course (20 credits, full year)

This module considers the quaternary evolution, environmental and settlement history of the Yucatan peninsula of Mexico, building explicitly on material covered in Environmental Change. The focus of the course will be evolution of the present climate and environment of the lowland tropics and the interaction between the natural environment and human societies.

The module is based on a 10 day residential field trip to the Yucatan and project work associated with this. Full costs of the field trip will be advised nearer the time of the visit. The main elements are:

  • an overview of climate dynamics in the tropics, with particular emphasis on changes in the monsoon, the impact of sea level change and drivers of change from mid-latitudes
  • critical review of methods of environmental reconstruction, dating techniques and sampling methods (waters, soils, sediments)
  • archives of change relevant to the study area, primarily lakes and cave systems
  • quaternary history of the Yucatan
  • mesoamerican archaeology and cultural change in the Yucatan
  • exploration of the possible role of climate in driving societal change
 
Spatial Decision Making (20 credits, full year)
The first part of the module covers the theory and practice of utilising Geographical Information Systems (GIS) for supporting spatial decision making. It reflects upon the broader discipline of Geographical Information Science (GI Science) before considering the importance of data quality, key spatial analysis tools and visualisation techniques. A group project (with individual critical reflection) focussing on a site suitability exercise forms the focus for the coursework in the autumn semester and the examination covers theoretical underpinnings.

The second part of the module extends the skills and knowledge gained in part one by applying them to a real world problem supplied by an external client (Experian). You will work in teams by responding to an invitation to tender, then developing a GIS-based solution to a problem supplied by Experian which will typically involve evaluating alternative locations for retail developments around Nottingham. Teams will plan their own meetings, manage the division of workload and ensure they are meeting the requirements of the client (but also exploring further possibilities that the client may not have considered).

 
 

Biological Sciences


100 compulsory credits:

Life Sciences Project (60 credits, full year)
The project is a year-long module. Preparatory work (familiarisation with laboratory/field safety protocols etc.) will occur in autumn, with the bulk of practical work in spring. The topic of the project will be chosen from a list of suggestions relevant to the degree subject, and will be finalised after consultation with a member of staff, who will act as a supervisor. The project involves an extensive piece of detailed research on the topic chosen after discussion with the supervisor. The practical component will involve collection of data from a laboratory or field investigation and appropriate analysis. The findings will be interpreted in the context of previous work, and written-up in a clear and concise final report in the form of a research paper manuscript or end-of-grant report. The main findings will also be delivered in an assessed oral presentation and discussed with two assessors in a viva voce.
 
Research Planning and Preparation (20 credits, full year)

This is a year-long module, but with most of the work being complete by the end of January. The module focuses on the preparing students to engage in substantial independent research in Life Sciences, and is supported by lecture content in Research Presentation Skills (C14705). Students choose a research topic from a list provided the previous academic year, and are allocated an individual research supervisor accordingly. In regular meetings, student and supervisor discuss relevant research literature and design a practical research project addressing a specific hypothesis. Assessment is via a substantial research proposal.

 
Research Presentation Skills (20 credits, full year)
The module aims to provide students with a range of presentation and IT skills that are essential for modern biological researchers. The workshop content will provide a conceptual framework, while journal clubs and coursework will deliver the hands-on experience required to develop appropriate practical skills.
 

 

Optional biology modules

Up to a further 20 credits from the options below:

  • Cutting-edge Research Technologies and Ideas in Molecular Biology (10 credits, Autumn semester)
This module will bring you up to date with the latest technological developments in molecular biology that you are unlikely to have encountered in detail in your first three years. We also discuss and explore how new technologies with broad implications come into existence and follow the process of establishment, acceptance and dissemination through the scientific community. You will have a three hour workshop once per week for this module.
 
  • Advanced Experimental Design and Analysis (10 credits, Autumn semester)
This is an advanced level biological statistics module which builds on basic undergraduate training. Lectures discuss concepts in experimental design, biological probability, generalised linear modelling and multivariate statistics. Practical sessions build on this conceptual outline, giving you hands-on experience of problem solving and analytical software, and some basic programming skills. You will spend three to four hours within lectures and workshops when studying this module.
 
  • Process and Practice in Science (10 credits, Autumn semester)
A consideration of science ‘as a process’, with brief introductions to the history, philosophy and sociological norms of science. You will cover aspects of the scientific literature and scientific communication, peer review, 'metrics’, including citation analysis, journal impact factors, and the 'h' and other indices of measuring scientists' performances. You will also cover ethics in science and the changing relationship between scientists, government and the public. You will have a three hour lecture once per week during this module.
 
  • Current Trends in Neuroscience (10 credits, Autumn semester)
This module will be concerned with an appreciation of current and future directions of research in neuroscience. Current topics will be selected as appropriate from scientific journals (eg Nature, Science, Brain Research, Journal of Neuroscience ) and/or review journals (eg Trends in Neuroscience, Trends in Pharmacological Sciences, Annual Review series).
 
 

Mathematical Sciences


60 compulsory credits:

  • Mathematics Project (60 credits, full year)


Minimum of 40 credits, maximum of 60 credits from the options below:

  • Advanced Techniques for Differential Equations (20 credits, Autumn semester)

The development of techniques for the study of nonlinear differential equations is a major worldwide research activity to which members of the School have made important contributions. This course will cover a number of state-of-the-art methods, namely:

  • use of green function methods in the solution of linear partial differential equations
  • characteristic methods, classification and regularization of nonlinear partial differentiation equations
  • bifurcation theory

These will be illustrated by applications in the biological and physical sciences.

 
  • Computational and Systems Biology (20 credits, Autumn semester)
The purpose of this module is to deepen and broaden the students’ knowledge and experience of computational and systems biology techniques, including the use of numerical solutions of ODEs and PDEs, and of relevant computer packages (eg MATLAB, Python/Scipy).
 
  • Quantum Information Science (20 credits, Autumn semester)
This Quantum Theory Pathway course gives a mathematical introduction to quantum information theory. Its content builds on MATH2013 with the aim of providing the student with a background in quantum information science which will facilitate further independent learning and the access to current research topics.
 
  • Scientific Computation and C++ (20 credits, Autumn semester)
The purpose of this course is to introduce concepts of scientific programming using the object oriented language C++ for applications arising in the mathematical modelling of physical processes. Students taking this module will develop knowledge and understanding of a variety or relevant numerical techniques and how to efficiently implement them in C++.
 
  • Applied Nonlinear Dynamics (20 credits, Spring semester)
The course will cover Nonlinear oscillations, including the linear stability of limit cycles (Floquet theory), the Mathieu equation, and relaxation oscillators (using geometric singular perturbation theory). Synchronisation by periodic forcing will be discussed using the notion of isochrons and phase-response curves, as well as Poincaré sections, circle-maps, mode-locking, and Arnol’d tongues. The treatment of Chaos will cover tests for chaos (Liapunov exponents and spectral analysis), strange and chaotic attractors, fractal boundaries, and routes to chaos in nonlinear dynamical systems. The analysis of Oscillator networks will cover weakly coupled phase-oscillators, Kuramoto networks, and the master-stability theorem for linearly coupled limit-cycle networks. The extension of techniques to Non-smooth dynamical systems will be developed for piece-wise linear systems (exact analysis), impact oscillators (with grazing bifurcations), and integrate-and-fire models (from neurons to networks). The course will conclude with a treatment of Spatially extended systems, covering pattern formation (in both PDE and integral equation models), and weakly nonlinear analysis (amplitude equations and pattern selection).
 
  • Advanced Fluid Mechanics (20 credits, Spring semester)
This course forms part of the Fluid and Solid Mechanics pathway within Applied Mathematics. Students taking this course will develop their knowledge of specialised topics within fluid mechanics and be introduced to areas of active research.
 
  • Computational Applied Mathematics (20 credits, Spring semester)
This course introduces computational methods for solving problems in applied mathematics. Students taking this course will develop knowledge and understanding to design, justify and implement relevant computational techniques and methodologies.
 
 

 

The following is a sample of the typical modules that we offer as at the date of publication but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Due to the passage of time between commencement of the course and subsequent years of the course, modules may change due to developments in the curriculum and the module information in this prospectus is provided for indicative purposes only.

 

Natural Sciences

School of Chemistry, University of Nottingham
University Park
NG7 2RD

Tel: +44 (0) 115 823 2376
Fax: +44 (0) 115 951 3555
Email: naturalsciences@nottingham.ac.uk