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Introduction

Lactacoccus lactis is an important component of many starter cultures used in cheese
manufacturing (Table ). The function of starters is the production of lactic acid from
lactose, the degradation of casein and, in some instances, the production of antimicro-
biat agents. In this way they contribute to optimal curd formation, to the exclusion of
undesired spoilage bacteria and to the development of the desired texture and flavour
of the cheese (Hoover and Steenson, £993; Kok and de Vos, 1994; Nath, 1992).
Modern industrial large-scale cheese production with a throughput of up to one
million litres of milk per day has dramatically increased the demands for a reliable and
stable performance of the starter cultures and has inspired a thorough microbiological,
biochemical and genetic investigation of L. lactis. Key largets of reseaich are: the
proteolytic system, carbohydrate metabolism, bacteriophages and bacteriophage re-
sistance. bacteriocin production and mechanisms of bacteriocin action, and the
exploration of new applications of starter culture bacteria, such as live vaccine
development {Davis and Law, 1984; Gasson and de Vos, 1994; Gottschalk, 1993; van
de Guchte et af., 1992). The present review will focus on the proteolytic system of the
model lactic acid bacterium L. lacris and its role in the growth of the organism in milk
and during cheese ripening. Furthermore, a brief overview will be given on the rapidly
accumulating knowledge on the proteolytic systems of other impostant starter iactic
acid bacteria.

Rapid growth of L. lactis in milk with the concomitant production of lactic acid is
essential in the early phases of cheese making. The organism lacks the ability to
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synthesise several amino acids and, therefore, depends on the supply of the necessary
amino acids from the medium (Chopin, 1993). The amount of small peptides and
amino acids in milk is limited and only allows growth to final cell densities of 5%--
25% of a tull grown culture. Milk protein (casein) is the major source of amino acids
for growth to high cell densities (Julliard et a/., 1995b; Thomas and Pritchard, [987).
Therefore, one of the main functions of the proteolytic system of L. lactis (Figure 1)
is to make the amino acids present in casein available for growth. This is accomplished
in a three-step process. First, the extracellular proteinase (PrtP) degrades casein into
peptides. Second. several of these peptides are incorporated by the cell via an
oligopeptide transport system (Opp). The third and last step is the degradation by
peptidases of these peplides into amino acids which are then available for de novo
protein synthesis and other metabolic activities. During cheese ripening both PrtP and
the peptidases play a role in texture development and (lavour formation (Figure 1)
{Kok and de Vos. 1994; Poolman ef al., 1995; Visser, 1992).

Table 1. Cheeses and their starter culures (adapted from Nath, 19923

Cheese Composition of the starter culture

Cheddar Lactococeus lacris subsp. lactis and subsp. cremoriy, (optional: Lenconostor
meseteroides subsp. cremoris and L. lacris subsp. lactis biovar. diacetilactis)

Swisg Streptococcns salivarius subsp. thermophilus, Lactobacillus helveticus or Lb.

delbrueckii subsp. bulgaricus or L. delbrieckii subsp. Iactis and
Propionibacterium spp.

Parmesan 3. safivarius subsp. thermophifus, LD. helveticus or Lb. delbrueckii subsp.
bulgaricus or Lb. delbrueckii subsp. lactis

Mozzarella S, salivarius subsp. thermophilus, Lb. delbrueckii subsp. bulgaricus or Lb,
fielvericus

Roguefor: S. salivarius subsp. thermophilus, L. lactis subsp. lactis and subsp. cremoris, L.
laetis subsp. lactis biovar. diacetilactis, Penicillinm rogueforti

Gouda. Edam L factis subsp. lactis and subsp. cremoris and B or BD flavour culiures®

Cottage cheese L. lactis sebsp, lactis and subsp. cremoris

‘B = Lenconostor mesenteroides subsp. cremeorist Lenconostoe lactis

B = Laetecoceus factis subsp, factis blovar. diecetitactis

8D = both Lenconostocs and L. factis subsp. factis biovar. diacetiluctis are included.

The extracellular proteinase
THE ENZYME

Cascin degradation in L. lactis is initiated by the extracellular cell envelope-associated
serine proteinase. PriP. which shows considerable homology with the subtilisins of
different Bacillus species. PrtP is synthesized as an inactive pre-pro-protein. Its
activation is catalysed by the maturation protein PriM. Both the presence of PrtM and
the proteolytic activity of PriP are necessary for the activation of PrtP (Kok and de
Vos. 1994). Recently it has been shown that PrtM has some homology to the proline
isomerase PpiC of Escherichia coli, suggesting that the conformational change of a
proline residue could trigger the autoproteolytic activation of PrtP (Ruddet a/., 1995).

SPECIFICITY OF Pritp

Biochemical characterization has shown that PrtPs from different strains of L. factis
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Figure 1. The proleolytic system of Lactocaccus lactis and its role for growth in milk and for cheese
ripening.

differ in their specificity towards casein. Initially, two extremes in substrate specificitics
have been identified, designated PI and PIII. The Pl-type proteinase, represented by
the enzymes of the strains HP and Wg2, primarily hydrolyses [3-casein and only to a
limited extent ¢ ,— and k-casein. The P type, represented by the enzymes of the
strains SK11 and AM 1, degrades }or, —. k- and B-casein, but the latter with a different
specificily as compared Lo the Pl proteinase (Klein ef al., 1995). Recently, the
specificity of PriP of 16 different lactococcal strains was re-examined using the o -
casein fragment {-23. Seven groups with specificities varying between the extremes
of the PI and the Pl proteinases were identified, indicating an almost free variation
of specificities rather than two fixed types (Exterkate er al.. 1993). Whether this
variation in substrate specificity has a physiological or other function (e.g.. in cheese
ripening) or is a mere evolutionary play with a notstrictly conserved function remains
to be eiucidated.

A question of prime impertance for the understanding of growth of L. lacris in
milk concerns the size of the peptides resulting from degradation of casein by PriP.
In carly investigations with both PI and PII proteinases it was found that PriP
degrades P-casein into peptides with 3 to 25 amino acid residues (for an overview
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see Tan et al.. 1993a). Only a few of these peptides were small enough to be
transtocated by the Opp system, which was thought to transport only peptides with
4 and 5 amino acid residues, according to some authors {Konings er al., 1989), and
with a maximum of 6 amino acids according to others (Smid er al., 1991). There-
fore. the larger peptides would have to be further degraded by extracellularly
located peptidases in order to be suitable substrates for either the di- and tripeptide
permease or the Opp system (Smid er wf., 1991), Recently, B-casein degradation by
a Pl-type proteinase was reinvestigated with special emphasis on the small prod-
ucts. Using HPLC coupled to online mass spectrometry, more than 100 different
oligepeptides with 4 to 30 amine acid residues were identified. No di- or tripeptides
and only traces of free phenylalanine were detected. Eighteen of the oligopeptides
were 4-8 residues in size and contained all 20 amino acids (Juillard er al., 1995a).
Furthermore, in several genetic and biochemical studies the Opp transport systein
was shown to be able to translocate oligopeptides with up to at least 8 amino acid
residucs. and to be essential for L. factis to grow in milk (Kunji er al., 1995;
Tynkkynen e af., [1993: for a detailed discussion see below). In conrast to earlier
speculations, these data indicate that extracellular casein degradation is catalysed
by PrtP alone and that there is no need to postulate extracellular peptidases. A
sufficient amount of the oligopeptides can be directly translocated into the ceif and
further degraded to provide the amino acids needed for growth. These observations
are supported by the fact that all of the peptidases characterized so far are located
intracellularly (see below),

GENETICS OF prtP AND priMt

PriP and PrtM are encoded by the genes priP and priM, respectively. In all cases
studied so far, both genes are adjacent to each other and are transcribed divergently. In
atl except one case, prrP and prid are present on plasmids. This observation explains
the often reported instability of the proteolytic capacity of lactococcal starter strains.
The priP and preM genes of many lactococcal strains have been characterized by
restriction enzyme analysis and in a number of cases the genes have been cloned and
(partially) sequenced. The results suggest that in lactococci only one major extracel-
lular proteinase is present and that there are only minor differences in the primary
structure of proteinases from different strains. For instance, the deduced amino acid
sequences of the proteinases of the strains Wg2 and SK 11 are 98% identical and those
of Wg2 and NCDO763 are 99% identical (Kok and de Vos, 1994: Kok, 1990). The
genes and their products have been anatysed extensively, which has ted to a detailed
understanding of their structure and function (for a thorough recent review see Kok
and de Vos, 1994).

Differences in PriP activity in cells obtained from different growth media and the
presence of a conserved stem and loop structure in the intergenic promoter region of
priF’ and priM suggested that the activity of these genes may be regulated. Recently,
studies with transcriptional gene fusions and quantitative primer extension experi-
ments have shown that the activity of both pr#P and prtM can be repressed in cells
grown in whey medium when either peptide mixtures or the dipeptides Pro-Leu or
Leu-Pro are added (Marugger al., 1995, 1996). The role of this regulatory mechanism
for growth of lactococei in milk remains to be solved.
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Transport of peptides and amino acids

In the acquisition of the essential amino acids, transport of either peptides or free
amino acids is crucial. Up to now one transport system for oligopeptides (Opp), two
transport systems for di- and tripeptides (DtpT, DtpP) and several systerns for the
translocation of amino acids have been identified in L. Jactis.

THE OLIGOPEPTIDE TRANSPORT SYSTEM

In L. factis, oligopeptides are translocated by an ATP-driven transport system which
consists of five subunits. i.e., two transmembrane proteins OppB and OppC, two ATP-
binding proteins OppD and OppF and amembrane-linked peptide-binding lipo-protein
OppA. It has been shown that this system can translocate peptides with four to up to
at least eight residues, but no conclusive experiments have been reported which would
indicate the upper size limit of this system. The genes of the Opp system are organized
in an operon, oppDFBCApep(, which has been cloned and sequenced. Two interest-
ing features of this operon are that. first, immediately upstream of oppA another
promoler may be present indicating that this gene is expressed and/or regulated
independently from the first four genes and, second, the last gene of the opp operon is
an oligopeptide endepeptidase. The possible functional significance of the latter
observation remains to be clucidated. To study the function of Opp. both an oppA
disruption mutant was made and the entire operon has been deleted (Kunjier /., 1996;
Tynkkynen et al., 1993: for discussion of the results see below),

DH/YRIPEPTIDE TRANSPORT SYSTEMS

In L. lacris two transport systems have been identified which can translocate di- and
tripeptides. The proton-motive-force-driven DtpT has a more general specificity with
preferences for hydrophiiic and charged peptides, whereas DtpP has a preference for
hydrophobic peptides, especially those containing branched chain amino acids and is
dependent on ATP or another energy-rich phosphorylated compound. The gene
encoding DtpT has been cloned and sequenced and a targetted deletion mutant has
been constructed. Using the toxic dipeptide Phe-B-chloro-Ala a mutant of DipP as
well as a dipTdmpP double mutant were also constructed (Foucaud et al., 1995,
Hagting ef al., 1994; for discussion of the functional analysis of these mutants see
below).

AMING ACID TRANSPORT

Nine transport systems for 16 proteinogenic amino acids (except Cys, Asp, His and
Met), have been identified by biochemical methods in L. lactis. So far only a mutant
has been constructed for the Ala transporter by using the toxic [-chloro-alanine
{Poolman. 1993). Growth experiments with chemically defined medium supple-
mented with amino acids showed that the various transport systems are sufficiently
active to allow growth of L. lactis on amino acids alone. The genetic analysis of the
various amino acid transporters is the next logical step to understand more of their
function for growth of L. lactis in milk and in other media.



284 1. MiERAU, E.R.S. KUNJI, G. VENEMA AND J, KOK

ROLE OF PEPTIDE TRANSPORT IN GROWTH OF L. LACTIS IN MILK

One important question concerning the proteolytic pathway of L. fucris was the actual
mvolvement of the known peptide transport systems in the acquisition of essential
amino acids. Several independent studies have shown that Opp plays a crucial role and
may be the only transporter needed in this process: (1) PrtP releases from (B-)casein
only peptides with four and more residues (Juitlard ez ¢l., 1995a); (2} no extracellular
peptidases have been identified (see below); (3} in transport experiments using casein
and PriP-containing cells, amino acid accumutation is blocked when Opp is inacti-
vated but not when Dtp'f was eliminated (Kunjier af., 1995); and (4) only inactivation
of Opp leads to severe impairment of growth of L. Jactis in milk with final cell
densities one tenth of those reached by the wild-type strain. Inactivation of DipT has
no effect on growth (Kunji ef al., 1995). Further genetic and biochemical analyses
needto be carried out to reveai the /n vivo function of the two di/tripeptide transporters
for growth in mitk. One possible function for DipT would be peptide excretion when
acritical internal concentration of peptides is reached.

The peptidases of L. lactis

The third and last step in the proteolytic pathway of L. lacris is the degradation to
amino acids of peptides which have entered the cell. Table 2 gives a summary of the
lactococeal peptidases which could be involved in peptide degradation and their main
characteristics. The peptidases can be subdivided in two major groups, namely (1)
endopeptidases, which hydrolyse their substrate endolytically, and (2) aminepeptidases,
which need a free N-terminus and cleave off either one or two amino acids from this
end ol'apeptide. No carboxypeptidases. which degrade peptides from their C-termini,
have been found in factococei {Kok and de Vos, 1994).

Whether L. Jactis has more peptidases than those listed in Table { remains 10 be
investigated. Also, little is known about the variation in this set of enzymes in differen:
tactococeal strains. Another interesting question is whether there is a correlation
between the peptidase spectrum of a strain and the specificity of the strain’s extracel-
lular proteinase.

PEPTIDASE GENE CLONING

The genes of most of the peptidases listed in Tuble 2 have been cloned and their
nucteotide sequences have heen determined. The nucleotide and derived amino acid
sequence information has been used to identify sequence similarities with other genes
or proteins, to map the peptidase genes on the lactococcal chromosome, to identify
sequences which are involved in transcription and translation of the genes, to construct
mutants for functional analyses (see Table 2), and to overexpress the genes in
homologous and heterologous hosts. Peptidase genes can be monocistronic (e. g.
pepNyas well as part of operons (e.g., pepF, pepO, pepT) (for references see Table 2)
and they are distributed randemly over the entire chromosome (Le Bourgeois er al.,
1995). The genetic analyses of many of the peptidase genes is not yet complete.
Transcription units and transcription start sites remain to be established in a number of
cases (e.g., for pepF, pepT, pepV and pep). Furthermore, only little is known about
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possible regulation of peptidase genes. First results indicate that, like pprtP, pepN and
pepX are repressed in the presence of increasing peptide concentrations (Meijerer al.
1993). Peplidase expression (PepN. PepT, PepC. PepV. and PepX) during exponential
growth in milk was measured in mutants in which up to five peptidase genes had been
inactivated. No significant differences with the wild-type strain were detected,
atthough many of the mutants grew slower than the wild-type. This indicates that
during exponential growth in milk the peptidase genes are not regulated (Micrauet al..
1996).

CELLULAR LOCALIZATION OF PEPTIDASES

Peplidase localization has been studied in several ways. First, analysis of cellular
fractions by Western blotting showed that PepN, PepC, PepX, PepO, and PepT are
present inside the cell. However, both immunogold tabelting and analysis of mem-
brane vesicles indicated that PepX. PepO and PepT are located in the vicinity of the
cell membrane (Tan. 1992a). Second, analysis of deduced amino acid sequences of
peptidases revealed that nene of these contained a signal sequence for secretion or a
membrane spanning domain {for references see Table 2). N-terminal amino acid
sequencing of purified PepF, PepO, PepN, PepC, PepT. PepA, and PepX showed that,
indeed. the amino acid sequences correspended to the start of the respective primary
transiation products (for references see Table 2). This suggests an intracellular
location for all of these enzymes. Third, growth experiments and peptide transport
studies sensitively monitor extracellular peptidase activity. When a mutant defective
in the oligopeptide transport system was grown on peptides with four to eight amino
acids. which in L. lactis can only be translocated by this system, no growth was
observed (Tynkkynen et al.. 1993). Therefore, there is no need to postulate extracel-
fular peptidases which would degrade these peptides into di- and tripeptides which
would then be taken up by DtpT or DipP. Intraceljular accumuidation of amino acids
from casein was studied in Prt* strains in which different transport systems had been
inactivated. A strain with an insertion in oppA did not accumulate amino acids,
whereas in the wild-type strain and in the drpT mutant amino acids accumulated,
confirming that no significant peptidase activity is present outside the cell (Kunji ef
al.. 1995).

ANALYSES OF THE FUNCTION OF LACTOCOCCAL PEPTIDASES IN VIVO

One way to study the function of peptidases for growth of L. lactis is to analyse
mutants lacking one or several peptidases. In a first approach, single mutants have
been constructed and their growth studied in milk and in defined mediuvm. Mutants
tacking PepF, PepQ, PepN, PepC. PepT, PepA, or PepX did not show significant
differences in growth rates and acid production during growth in milk when compared
to the wild-type strain (de Vos and Siezen, 1994; Erra-Pujadaer af., 1995; I’ Anson et
al., 1995; Mayo er al., 1993: Marugg er al., 1996; Mierau et al., 1994; Monneter al.,
1994). A possible exception is the PepA-deficient mutant which was reported to have
aprolonged lag phase. These observations indicated that the activity of these peptidases
can either be replaced by other peptidases in the cell or that they are not involved in the
degradation of casein-derived peptides.
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Peplide degradation in pepN and pepX mutants has been studied using cell-free
extracts. The pepN mutant was unable to degrade Lys-, Pro-, Phe-, Met- and Arg-p-
NA.whereas degradation of Glu-, Ala-Pro-, and Pyr-p-NA was unaffected. Degradation
of peptides with four and more amino acid residues was significantly decreased.
whereas di- and tripeptides were degraded normally. Consistently, in minimal me-
dium in which the essentiat Met was supplied as part of a tri- or tetra-peptide, the
growih rate of the pepN mutant was lower than when Met was given as free amine acid
or as part of a dipeptide (Baankreis, 1992). With a pepX mutant, a change in the
breakdown pattern of Tyr-Gly-Gly-Phe-Met (Met-enkephalin) was observed {Mayo
et al., 1993). These data showed that both PepN and PepX are involved in peptide
degradation and that PepN, under certain circumstances, plays arole in the acquisition
of essential amino acids from externally supplied peptides.

MULTIPLE PEPTIDASE MUTANTS

To study the function of the various peptidases for growth of L. Jactis in mitk one has
1o take into account that, first, the cell is supplied with a multitude of peptides (see
above} which can serve as alternative amino acid sources and, second, that many
peptidases are present in the cell which could, at least to a certain exlent, repiace each
others’ activities. Reduction of the number of peptidases and/or the use of a medium
fess complex than milk would provide experimental conditions needed to allow
detailed examination of the role of the different peptidases in celf nutrition. A set of
sixteen mutants was constructed in which up to all five of the following peptidase
genes had been inactivated: pep @, pepN, pepC, pepT and pepX (Mierau er al., 1996).
The study of these mutants led to a [irst insight in the function of the peptidelytic
system of L. Jactis in vivo, as will be detailed now.

Growth of the mutants was not affected in either M17 or in chemically defined
medium (CDM) with all twenty amino acids, indicating that the mustations per se are
rot deleterious for the cell. In miik, in which growth depends on the degradation of
casein-derived peptides, deletion of an increasing number of peptidase genes leads to
decreasing growth rates. A strain which lacks all five peptidases grows more than 10
times slower than the wild-type. The main outcome of these experiments is that
growth rates decrease gradually when the number of peptidase mutations is increased,
whereas the final cell densities reached by the strains stays largely the same (except for
the pepXpepTpepOpepN. pepXpepTpepNpepC and pepXpepTpepOpepCpepN mu-
tants which have very slow growth rates), The results indicate that the casein-derived
peptides can still be degraded under these circurnstances but at a lower rate (Mierauer
al . 1990).

In a second set of experiments. growth of the muwtants was tested in chemically
defined medium (CDM) in which the essential amino acid Leu was supplied as part of
a peplide so that growth depends on the capacity of the cell to hydrolyse this peptide.
Under these defined conditions certain mutants did not grow at all. By comparing the
growth of different mutants on a certain peptide it was possible to identify individual
peptidases responsible for the degradation of that particular peptide. The resuits of
these growth experiments showed that only a limited set of peptidases and in some
cases only one peptidase is capable of degrading a given peptide. For instance the
tripeptide Leu-Gly-Gly is degraded by either PepT or PepN while Ala-Pro-Leu is
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mainly degraded by PepX and only to a very limited extent by other peptidases.
Furthermore, the tetrapeptide Gly-Leu-Gly-Leu is degraded either by PepN or by a
combination of PepC and PepT. If PepN is inactivated together with either of the other
two peptidases, the mutant strain can not grow on the tetrapeptide. This experiment
shows that apart from these three peptidases no other enzymes are present in the cell
which can efficiently hydrolyse Gly-Leu-Gly-Leu (Kunji er af., 1996},

The results from these two types of growth experiments lead to the following modet
of peptide degradation in L. luctis as part of the proteolylic pathway allowing the
organism to use extracellular protein (casein) as source of nutritional amino acids
(Figure 2). In the first step only one enzyme, namely PrtP, breaks down casein into
peptides of 4 to 30 amine acid residues (Juillarder af., 1995a). Next, peptides from this
pool are translocated into the cell by Opp and form the substrate for the peptidases
present in the cell (Juiliard er al., 1995b: Kunji er al., 1995; Tynkkynen et ai., 1993).
Subsequently. the peptides are broken down by the cooperative action of the peptidases
into amino acids. which can than be used to generate new cell material. Each peptide
is hydrolysed by the sel of enzymes which has the highest overall rate towards this
peptide and its subsequent breakdown products. The peptides are first broken down by
peptidases with broad specificities, both from the N-terminus (PepN and PepC) and
endolytically (PepO). leading {o smaller peptides as well as to free amino acids. The
final steps are most probably performed by the general but size-specific peplidases
PepT and PepV. Specific peptides with either Pro in the first or second position, or
with Glu, pyro-Glu or Asp in the first position are degraded by specific peptidases
(PepX.PIP. PRD. PepP. PepA, and PCP). At least some of the general aminopeptidases
have overlapping specificities {PepN, PepC and PepT) so that they can take over cach
others™ functions. Although these enzymes can replace each other, they do not
necessarily degrade a peptide with the same overall rate, leading to the observed lower

PEPTIDES

CASEN W

AMING
ACIDS ]

Figure 2. Model of the degradation of casein and cascin-derived peptides by Lactocaceus lactis.
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growth rates of mutants in milk (Kunji er /., 1996). It will take more mutants and
growth experiments with a larger set of peptides to work out the function of all the
different peptidases present in L /actis in detail.

The proteolytic system of other lactic acid bacteria

Fast progress is being made in the investigation of the proteolytic system of various
Laciobacillus species and of Streprococcus salivarius subsp. thermophilus. Tables 3,
4, Sand 6 give an overview of the enzymes which have been identified so far, and their
main chraracteristics. Interestingly, a few enzymes have been identified which have not
been observed in L. lactis, such as e.g., PepL. in Lb. delbrueckii and other types of
proteinases in Lb. delbrueckii and Lb. hefvericus (for references see the tables). In
most of the cases the peptidases have been localized 10 the cytoplasm. In accord with
this location is the absence of a signal sequence or membrane-spanning domain in any
of the available deduced amino acid sequences.

Since Lactobacilli are less amenable to genetic manipulation, only in a few cases
could the function of the peptidases be studied in vivo. Defined mutants inpepX, pepN
and pepC are available in Lb. helvericus. Growth experiments in mitk showed that
pepX. pepX pepC, or pepXpepCpepN mutants had growth rates lower than the wild-
type strain, indicating that these peptidases might be important for the release of amino
acids from casein-derived peptides (J.L. Steele, personal communication).

Comparjson of the data obtained for L. lactis and for the different Lactobacilius
species and §. salivarius subsp. thermophilus indicate that the proteolytic systems of
these bacteria are very similar.

The role of the proteolytic system of L. factis in cheese making

An imporlant process during cheese ripening is proteolysis as it contributes to
devetopment of texture, taste and flavour of a cheese. Proteolysis during ripening can
be subdivided in two phases: (1) the degradation of casein or its larger subfragments
by rennet proteinase(s). indigenous milk proteinases and starter proteinases (e.g.,
PriP) into peptides. and (2} the degradation of these peptides in smaller peptides and
amino acids. Small peptides and amino acids are either flavour components them-
selves or serve as precursors in further enzymatic or chemical reactions leading to
ttavorous compounds (Figrre 1) (Lawrence er al., 1987; Olson, 1990), Cheeses made
with proteinase-negative (Prt) starters have little or no flavour (Exterkate and Alting,
1995; Law er al.. 1993; Stadhouders er af., 1988). The role of the various peptidases
of L. lactis in cheese ripening is less well understood. In a first set of experiments the
role of PepN and PepX in cheese ripening was analysed. A cheese made with a starter
containing 90% of a pepN mutant had a clear bitter defect, demonstrating the
debittering effect of PepN in vive (Baankreis, 1992). Simiiar observations have been
made in virro in which a casein hydrolysate was shown to be debittered by PepN (Tan
el al.. 1993b). Lack of PepX activity in the starter bacteria led 1o a decrease of the
organoleptic quality of cheese (Baankseis, 1992). Furthermore, casein degradation
products detected in experimental cheeses made with proteinase-negative starlers
poinied to the action of an endopeptidase, which was in one case identified to be PepO
(Baankreis, 1992; Exterkate and Alting, 1995).
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Conclusions

The research efforts of the tast few years have considerably deepened our knowledge
of the proteolytic systems of lactic acid bacteria and especially of the role of the
various peptidases in the degradation of casein-derived peptides. Yet, there are still a
number of challenges. for example to describe the regulation of the proteolytic
systemns both of the individual compoenents and of the systems as a whole. Further-
more. the now available peptidase genes (see Tables 2, 3, 4, 5 and 6) and mutants as
for example described in Mierau ef of. (1996} open the way to a direct analysis of the
role of lactic acid bacteria peptidases in cheese ripening and other {(milk) fermentations.
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