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Introduction

As sequencing of the human genome draws to a close, the fraits of this vision have
already achieved startiing maturity. By leveraging DNA sequence information to-
ward robust. new technological platforms, researchers are rapidly recharting the
modern course of molecular genetics. Until now, the currencies of genomic experi-
mentation have remained recognizable, if vastly increased in scope. We are still
assaying the regulation of gene activity or linking phenotypes to genetic variation -
only on a scale four or five orders of magnitude greater than before. Indeed. many in
the scientific community first embraced genomics for its promise of a wealth of data
traditionally generated through more painstaking means.

But large-scale technologies presage far deeper change in the very way we think
about biological systems. The results of experimental genomics — noisy, sparse in
context, and overwhelmingly vast in scope — resist the bounded conclusions drawn
from conventional biological study. Rather, these data reflect the combinatorial
complexity of cellular systems and challenge us to discern the patterns underlying
biological design. Genomic approaches reveal not only discrete links that connect
individual proteins and phenotypes, but also broad communications belween parls of
pathways, chromosomes, and cellular process. Ultimately, these studies may prove
most valuable for providing answers to those questions we never set out to ask.

Divining these new sorts of conclusions is a task to which biologists find them-
selves largely unaccustomed. And so, as genomic data proliferates. accessing and
drawing meaningful insights will scon pose as great a technological challenge as
production of the data itself. In the past two years, more information regarding genetic
diversity and mRNA expression has been released into the public domatn than from
the preceding ten. That this drastic acceleration can be explained primarily by large-
scale DNA sequencing capability and the increasing popularity of DNA arrays
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barely diminishes the implications. Recent successes in genome-wide strategies for
studying protein-protein interactions and gene disruptions prediet that a new scale
will soon be drawn for virtually every type of biological information (Winzeler ez ol.,
1999; Bartel et al., 1996; Shoemaker er al., 1996; Fromont-Racine er afl., 1997:
Schimenti and Bucan, 1998; Ross-Macdonald ¢ al., 1999).

If the scope and growth of these data sets makes our ability to mine them appear
vanishingly small, it is important to remember that the study of genomic information,
like any scientific field, requires articulation of the problem before solutions can be
generated. The past two years have observed tremendous advances in the large-scale
study of genetic variance, transcription, and gene function, representing more than
80% of all experimental genomic data in the public domain. This emergent body of
work richly illustrates the new classes of discovery made possible by genomic
information. Consideration of these lessons provides a context for both the complexity
and promise of the task at hand and reveals the first li ghts by which we navigate a new
course in biological inquiry.

Constraints in the use of genomic information

VALIDATING QUALITY

The expansive scale of genomic information makes conventional peer review all but
impossible. More traditional denominations of biological discovery — individual tinks
between proteins, or between genes and phenotype - invite meticulous examination
and duplicate experimentation. Genome era technologies, however, enable an
individual researcher to produce thousands of data points in a single afternoon.
Biological study on a genome scale, therefore, raises the odds that some component
of these results may be in error, and makes it far less likely that such errors can be
detected prior to public release.

Verification of these findings is further complicated by the considerable pressure
on genomic researchers to make results mnmediately accessible 1o the community
(Beniley, 1996). Venter and colleagues have argued that the release of non-peer
reviewed data from human genome centres may sertously compromise standards of
quality and completeness (Adams and Venter, 1996). Recent studies report that as
much as 2% of deposited sequence data may contain some form of error, ranging from
omission to incorrect assignment of sequence identity. Several reviews have
documented the ease with which these mistakes can subvert both experimental
decisions and the interpretation of results, supporting concerns that the public release
of erroneons genomic data will incur especially steep costs in the broader biological
comununity (Pennisi, [999).

Sequence information, of course, benefits from direct correspondence 1o a discrete
biological quantity. Accordingly, the quality of these data can be decisively validated
through redundant sequencing. However, most genomic conclusions, like those
drawn from conventional biological study, necessarily reflect subtle distinctions in
experimental design, execution, and means of analysis (Lander, 1999), Nearly
identical experiments at the genome level may preduce conflicting conclusions about
dozens, or even hundreds, of genes. This variability has led researchers to analyse far
larger sample sizes for the determination of statistically significant conclusions
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(Golub er al., 1999; Galitski ef al., 1999). One solution may lie in the centralized
deposition and curation of these multiple redundant data sets and the development of
standardized tools and protocols for their comparison. Like inconsistent accounts of
a single event related by multiple witnesses, these results, and their associated
conclusions, demand judicious interpretation and consideration as a composite
whole.

FINDING PATTERNS

Genomics relies heavify on the tenet that functionally related genes share quantifiable
commonalities in behaviour or appearance. Even the most focused genomic experi-
ments intimate the need for systematic methods for finding these patterns. DNA
arrays may be used to find the major transcriptional targets of a disease gene, but the
resulting data sets reflect the coordinate regulation of hundreds of biological path-
ways. Similarly, the genetic variants identified during re-sequencing of individual
cenes reveal the edges of vast, genome-wide patierns of allele inheritance. The
identification of such patterns — whether the coordinate regulation of transcripts or the
stereotyped response of gene deletion strains — now comprise a basic denomination of
biological conclusion.

Genomics researchers have adopted a number of standard mathematical methods
for the identification of these non-random patterns {Spellman et al., 1998; Eisen et al.,
1998: Golub ez al., 1999). The full range of potential algorithins that may be apptied
for this purpose remains relatively untested. Certain mathematical approaches are
certain to he better suited to analysis of specific genomic outputs {for example,
finding patterns in transcription data as opposed to genome-wide protein-protein
interaction networks), or of different stages in this analysis (for example, the
discovery of patterns as opposed to redetection of these patterns in new data sets).
Moreover, the application of several different algorithms may well be required to
discern the fuli range of biologically meaningful patterns in any given data set.

Most of our current methods for discerning patterns originate from the study of
Jarge-scale sequence and expression data. The next five years promise far greater
diversity in public domain genomic information. Maturing experimental platforms
are enabling the dissection of biological pathways on levels including mRNA
transcription, protein maodification, and links to phenotype (Yates, 1998; Lander,
1996: Ross-Macdonald er al., 1999). It follows that our analyses must soon be
extended to data sets assembled from a multitude of experimental approaches. The
complexity of such scenarios, of course, is dizzying. Researchers will soon find
themselves bestowed with combinatorial matrices of interconnections between genes,
proteins, and phenotypes. These relationships will themselves prove highly dependent
on how raw data has been generated and standardized. Means for integrating this
information, and the best computational methods for making discoveries from such a
resource, remain to be determined.

DISCERNING MEANING

The most challenging aspects of understanding genomic data may well lie beyond



94 R.J. CHO

development of the appropriate mathematical analyses. Identification of a non-
random pattern says nothing of its biological relevance. In scoped experimental
designs, of course, connections to function may be readily inferred. The ploidy-
dependent transcriptional changes observed by Fink and colleagues, tor example,
agree well with observed alterations in cell size and mitosis {Galitski er al., 1999).
However, complex data sets with less obvious phenotypic implications place greater
burdens on functional analysis; inspection of hundreds of genes that exhibit a
common paitern of behaviour for the most convincing relationships is proving
impractically tedious and arbitrary. These concerns emphasize that understanding
genomic information is based largely on what we already know. That prior base of
knowledge currently lies embedded in hundreds of thousands of public domain
research articles that speak to genetic and biochemical function. Annotation databases
help centralize this information, but only scratch the surface of our needs for more
enlightened large-scale analysis. The use of legacy knowledge to interpret the
functional significance of genomic results, fike the identification of data patterns,
may $00n necessitate computational approaches. These approaches will likety require
novel data architectures capable of coherently structuring diverse information about
gene function,

But deriving meaning from genomic information implies more than correlation of
function with pattern. Each species of these data brings to biological science a unigue
perspective, and logic, imperceptible from the proximity of traditional experimental
thinking. Genornics not only elucidates biological processes, it also vets the mosaic of
modern discovery. Recent work in genomics has challenged our beliefs about globat
transcriptional regulation, the multifunctionality of individual genes, and the course
of human evolution. Identitying such changes, the first step in extending them,
requires that we examine how this information is persistently reshaping our under-
standing of living systems.

Mathematical approaches to the analysis of genomic data

SEEKING SIMILARITY

Application of classical mathematical methods for pattern finding is not new to
biology — DNA sequence comparisons were constructed on these very foundations.
However, the sudden explosion in large-scale expression data has brought about a
change to the way scientists regard such analysis. Whereas DNA sequence com-
parisons provide u hypothesis for detailed, mechanistic study, analyses of expression
data often represent direct conclusions about a cellalar process.

The direct ontput from DNA arrays, now the most common platform for large-scale
expression study, consists of an averaged fluorescence intensity for each surveyed
gene. Where multiple timepoints are profiled, these data are normalized between each
sample and subjected to one of a number of mathematical algorithms that classify
genes with similar expression profiles into discrete groups based on: (i) a metric of
similarity: and (ii) an implementation of classification (Everitt, 1993). For instance,
both the standard correlation coefficient and the Euclidean distance metric have been
tested extensively in the assessment of gene similarity from expression data. Once a
metric has been selected, an implementation for grouping similar profiles must be
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applied. Common classes of implementation include unsupervised hierarchical
clustering (Eisen ef al., 1998), iterative k-means analysis {Tavazoie et al., 1999), and
self-organizing maps (Tamayo et al., 1999}, each providing a differing extent of
structure and flexibility in the consequent classification. In hierarchical clustering,
pairwise comparisons for similarity are performed for every profile in a data set,
generating a single, rigid dendogram. Clusters of closely related transcripis are then
selected arbitrarily for more detaited biological discussion. In iterative k-means
analysis, the number of final classifications is arbitrarily determined a priori, and a
series of assignments and recalcuiations of the group centre are performed to divide
the total data set into final clusters. Self-organizing maps similarly utilize iterative
refinements, but allow an initial mapping of nodes in k-dimensional space. These
various methods are likely to reach similar classifications for the most closely related
transeript profiles in a data set, but diverge significantly with respect to more
individualistic patterns. Side-by-side comparisons of these methods are now beginning
to enter the literature. Self-organizing maps, for example, may provide particular
value by enabling partial structure to be imposed on a data set, as opposed to the strict
classifications achieved through hierarchical clustering.

Nearly all of these mathematical analyses require subjective heuristics suppiied by
the researcher: for example, the discarding of genes with minimal fluctuation during
the time course and more detailed study of clusters with average patterns most closely
fitting canonical regulatory behaviour. As a result, the reporting of expression clusters
is influenced considerably by the predispositions of the authors. Application of a
standard set of analyses to all expression data sets might provide considerable value
in the comparison of independent studies. It has also been noted that the output of
these algorithms is dependent on the nature of the starting data — for example,
numbers of duplicate samples and the reproducibility inherent to the technology used
to generate the findings. The biological conclusions we draw may therefore reveal as
much about the underlying information as the processes we seek 1o elucidate.

MODELLING CIRCUITRY

Regulatory communications within a cell have been interpreted as signalling net-
works (McAdams and Shapiro, 1995; Yuh er al., 1998). Computational modelling
and simulation of these networks offer a promising means for studying systems too
complex for cognitive analysis. Iyengar and colleagues have constructed and exten-
sively tested such kinetic models based on protein-signalling data in the public
domain (Weng et al., 1999:; Bhaila and Iyengar, 1999). In this approach. simple
quantitative models are developed for individual biological pathways, followed by
Herative refinement of the model and its kinetic parameters to reach agreement with
empirical data. This modet is then extended sequentially to neighbouring pathways,
achieving computational representations of complex regulatory networks. In addition
to accurately fitting experimentally determined findings, these simulations are required
10 obey basic principles of mass conservation and microscopic reversibility.

The surprising success of such approaches in approximating the kinetic behaviour
of multipathway networks suggests their application to quantitative genomic infor-
mation. Although little modelling has yet been performed on such information, it has
been noted that large-scale expression data sets represent propitious territory for



96 R.J. Cho

extension of these computational paradigms {Huang, 19993, Genomic data promise
more consistent inputs than findings generated by independent laboratories under
varying experimental conditions. Furthermore, transcriptional circuitry may be mod-
elled without knowledge of function for any given gene. Computational simulations
may help solve one of the central conundrums of genomics - the observation of large
numbers of small to moderate changes in cellular activity. These alterations may
collectively influence phenotype, but like multigenic contributions to phenotype,
their effects are often difficult to measure individually. Theoretically, modelling
these inputs in a quantitative manner may allow the detection of complex, aggregate
effects — transcriptional and otherwise - on molecular and clinical phenotypes.

Major classes of genomic data and their translation to biological meaning

MINING GENETIC VARIANCE

As illustrated by the recent proliferation of single nucleotide polymorphisms (SNPs)
in pubtic databases, genome sequence is abundantly plural. Application of DNA array
and high-throughput sequencing technologies have radically accelerated the charac-
terization of nucileotide diversity in a range of organisms {(Wang et al., 1998; Hacia er
al., 1999; Kwok et al., 1996: Buetow et al., 1999). Several groups have completed the
contiguous, de novo sequencing of human genes, including the angiotensin con-
verting enzyme ACE and the lipoprotein lipase LPL (between 10-30 kB of a single
gene from 10-70 individuals) (Nickerson er al., 1998; Rieder ef ai., 1999). In a
complementary approach, groups led by Lander and Chakravarti have used oligonu-
cleotide arrays to scan shorter segments of genes related to human disease (~ 190 kB
distributed over 75-100 genes, in an average of 75 individuals} (Cargill ef af., 1999;
Halushka et al., 1999).

The excitement surrounding these advances arises from two principal applications
of genome-scale SNP data. First, such a catalogue represents a revolutionary tool for
finding genes responsible for heritable traits. SNPs comprise the densest set of genetic
markers in eukaryotic genomes and may underlie a significant proportion of phenotypic
variation. Information regarding the frequency of these variants in targeted populations
may therefore associate a gene and phenotype, either directly or indirectly, with far
greater statistical power than possible with cenventional linkage mapping (Risch and
Merikangas, 1996). Second, global surveys of genetic variance should reveal global
patterns of mutation across the genome, enabling a new perspective on molecular and
organismal evolution (Chakravarti, 1999; Nickerson et al., 1998).

The requirements for both direct and indirect association studies are considerable
at the genome level. SNPs display significantly lower heterozygosity than
microsatellite polymorphisms, reducing the relative informativeness of any given
marker. Moreover, the lower heterozygosity of SNPs predisposes to ambiguous
haplotyping, incurring further loss of discrimination (Hodge et al., 1999). The power
of these studies depends not only on the identification of larger numbers of SNPs, but
also the rarest ones. Recent disease mutations may segregate with newer {and
therefore less frequent) alleles. With regard to direct association studies, the Lander
and Chakravarti studies confirm that non-synonymous coding polymorphisms, which
can give rise to phenotypic variation by altering protein structure, display significantly
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lower minor allele frequencies in the human population (Cargill et al., 1999).
Consequently, a vast catalogue of SNPs — perhaps well over a half million - might be
required to test association for every gene in a genome. In the interim, as denser
biallelic maps are assembled in natural populations, genome-scale SNP data have
been leveraged toward the acceleration of traditional linkage mapping in model
organisms, where most variants are maximally informative. Recent studies in yeast
and A. thaliana confirm the feasibility of this approach and indicate that more than
half of all SNPs may eventually prove amenable to high-throughput genotyping with
oligonucleotide arrays (Cho er al., 1999; Winzeler ef al,, 1998).

Nucleotide diversity also bears a profound and informative imprint of evolutionary
selection. For instance, polymorphism rates vary widely from gene to gene (Cargill et
al., 1999; Halushka er al., 1999). Some of this variability may be attributed to physical
proximity to: (i) repeat sequences and pseudogenes, which may significantly increase
nearby mutation rates; and (ii) loci that experience strong functional selection for or
against diversity (Nickerson ez al., 1998). However, the relative variance in a gene is
also certain to reflect selective pressures related to its own biological function.
Methods to differentiate these effects have been described, and will become increas-
ingly relevant as greater nucleotide diversity is characterized for individual genes,
Significant differences in nucleotide diversity have also been detected between non-
coding, degenerate, and non-degenerate positions within genes. These findings are
ostensibly explained by strong selection against mutations that affect protein structure.
Unexpectedly, perigenic non-coding regions apparently contain lower average diver-
sity than coding sequence, consistent with the hypothesis that changes in regulatory
and splicing regions are more likely to affect the phenotype than are mutations to
affect protein structure (Cargill et al., 1999).

Genomic approaches also enable the characterization of genetic diversity on a
gross scale. Arrays have been utilized, for example, to detect differences in gene
comtent between strains of S. cerevisiae, between Mycobacterium species, and loss of
heterozygosity in tumour samples (Lashkari ¢f al., 1997; Pollack e al., 1999: Behr er
al., 1999). These differences have been correlated with attendant phenotypic differ-
ences. The macroscopic nature and lower frequency of such variants facilitates their
evaluation for functional significance, especially in organisms amenable to genetic
compiementation. As these data sets accumulate, centralized databases for their
curation will prove critical for the mapping of loci to phenotype, particularly in the
case of large clinical studies of loss of heterozygosity.

SURVEYING CELLULAR ACTIVITY

The simplest class of experimental genomic information describes a single cellufar
activity: for example, protein abundance or localization in the absence of overt
external stimuii (Burns ef al., 1994; Yates, 1998: Blackstock and Weir, 1999). In these
broad surveys of the genome, internal comparison of a single data type across
thousands of genes provides the opportunity to draw global conclusions regarding
biological systems. Because these approaches do not attempt to profile dynamic
process, initial interpretations can be reached at relatively low computational cost.
The most comprehensive of these surveys has been performed with respect to the
regulation of mRNA expression (Figure 4.1). Several groups have taken independent
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Figure 4.1.  Fluorescence image of an Affymetrix transcript array containing cligonucleotide probe sets
for all ORFs in the veast genome, following hybridization of 10 ug of biotin-labelled, frugmented yeast
genomic DNA. Courtesy of David I. Lockhart, Elizabeth A. Winzeler and Dan Grang, Novartis Institute for
Functional Genomics. San Diego, CA, USA.

approaches te quantitate thousands of transcript levels in log phase 8. cerevisiae cells,
characterizing the so-called yeast transcriptome (Wodicka er al., 1997; Velculescu et
al., 1997). Collectively, these results establish a standardized, genome-wide histo-
gram of absolute transcript abundance, reveal gross chromosomal effects on
ranscription (for example, telomeric sifencing) and identify open-reading frames
(ORFs) not previously annotated in public databases.

Genome-scale surveys provide a unique opportunity for observing interrefation-
ships between cellular activities that are usually examined separately. For example,
tow concordance has been established between genome-wide transcript and protein
abundance in S. cerevisiae, with differences in ratio as high as 30-fold (Burns et al.,
1994). These comparisons represent the first steps toward dissecting the determinants
of protein level for every gene in a genome. Global assessments may also be made at
the functional level. Genes displaying the lowest levels of transcription in these
studies are significantly enriched for both open-reading frames with no known
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biological role and non-essential genes (Winzeler ef al., 1999). One explanation may
be that functionally redundant genes, as a class, tolerate lower levels of EXPression.
Alternatively, expression level may correlate positively with the likelihood that a
phenotype may be observed for a gene. Identification of conditions that elevate
expression levels of some uncharacterized genes may therefore facilitate elucidation
of their function.

If patterns of cellular activity truly underlie phenotype, it follows that different cell
types may be distinguished on the basis of these data. For instance, certain transcripts
are likely to display consistent differences in abundance between, for example,
distinct tissues and genetic backgrounds. Lander and colleagues have identified a set
of such transcripts through large-scale transcriptionat surveys of numerous acute
lymphoblastic leukaemia and acute myelogenic leukaemia samples, and successfully
used these differences as a basis for the classification of new samples (Golub ef al.,
1999). Other groups have begun focusing on transcriptional differences in tumour
samples that may be predictive of phenotype, with regard to both clinical course and
therapeutic responsiveness (Perou er al., 1999). These comparative approaches
promise powerful basic research and biomedical applications without the require-
ment for characterization of gene function.

Surveys of celiular activity also reveat a general need for quantitative assessments
to reduce the noise inherent to genomic data. For instance, a considerable proportion
of transeripts in large-scale expression data display insufficient abundance for
meaningful fold-change comparisons, and should be excluded from further analysis
(Lockhart et af., 1996), In addition, the number of genes assayed in these studies
necessitates statistical tests to differentiate significant changes from random fluc-
tuation {Galitski er al., 1999). Quantitative metrics can also directly predicate
biologicatl relevance: Legrain and colleagues have demonstrated in large-scale two-
hybrid screens that the repeated identification of single clones, and identification of
scparate insetts for the same gene, are predictive of functional interaction {Fromont-
Racine ef al., 1997). In the sizeable data generated by these approaches, redundance
may represent a key signature of signal over noise.

PROFILING DYNAMIC PRCCESS

DNA array technologies are distinguished from current genome-wide approaches to
protein interaction and Jocalization in their ability to easily characterize gene activity
{transeript abundance) as a function of cellutar state (Eockhart et al., 1996: Schena et
al., 1995). Expression studies therefore represent the first genomic method useful for
the study of dynamic biological processes. Researchers have already profiled mRNA
expression levels during classic processes such as diauxic shift, mitosis, meiosis, and
the serum response (DeRisi ef al., 1997; Cho ef al., 1998; Chu et al., 1998: Spellman
et al., 1998; Iyer er al., 1999). The novel complexity of the resulting data sets has
proved somewhat of a tabula rasa from which researchers have drawn four major
classes of biological conclusion.

First, the occurrence of a gene in an expression cluster with classical kinetics of
induction has been interpreted as indication of function in the profiled process. For
example, Chu and celleagues have observed the up-regulation of numerous genes
refated to vesicle fusion and membrane formation during the profiling of gameto-
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genesis in S. cerevisiae, leading to the conclusion that these genes may facilitate spore
formation. Similarly, Iyer and colleagues have reported induction of genes implicated
in clot formation and remodelling during the serum response, concluding that
imcreased activity of these transcripts may represent an important functional con-
sequence of serum exposure. These inferences are not based purely on kinetics of
induction, but also on the observation that these kinetics are shared by other genes
previously established to play a central role in these processes; what Chu and
colleagues have termed ‘guilt by association’. Second, an apparent critical mass of
genes of common function in an expression cluster has been used to link that function
and the profiled biological process. In the study by Iyer et al., clot remodelling itself
wias proposed to play an important role in the response to serum. More recently, the
difterential expression of metabolism-related genes in ageing mice has been read as
an indication that these pathways may be causal for some of the manifestations of
senescence (Lee ef al., 1999a),

Third, expression data have been used to dissect regulatory networks. In these
studies, global transcriptional levels are quantitated before and after chromosomal
deletion or controlied repression of a putative regulatory gene (Holstege et al., 1998;
Lee er al, 1999b; Harkin er al., 1999; Wyrick er al., 1999). The consequent
differences provide long-awaited verification of the proposed physiological relevance
of specific transcription factors and identify major targets of genes whose function is
still under investigation. In some cases, these data demand reconsideration of
accepted hypotheses regarding the effects of specific regulatory molecules (Holstege
et al., 1998). Finally, profiling studies have been used to explore the regulatory
architecture of the genome: re-evaluation of known transcriptional regulatory
sequences, identification of new elements, and examination of the chromosomal
organization of coordinately regulated genes {(Cho er al., 1998; Chu et al., 1998;
Spellman er al., 1998; Tavazoie et al., 1999; Zhang, 1999).

The caveats to the first two interpretations of profiling data, naturally, do not lie in
the findings themselves, which reflect the observational nature of genomics, but in: {i)
the extremely subjective, and therefore variable, context in which these conclusions
are drawn; and (i) the general lack of mechanistic validation. With regard to
standardization of functional interpretation, recent advances in sysiematic analysis
indicate potential solutions. Church and colleagues have interpreted the statistical
overrepresentation of genes of common function within a set of coordinately regulated
transcripts as activation of a hiological pathway (Tavazoie er al., 1999). In this
approach, each gene was assigned a non-unique function based on the publicly
accessibie MIPS database. The application of this analysis to genome-wide tran-
scription data in §. cerevisiae has enabled the detection of up-regulation of, for
exampie, chromosome segregation and DNA replication pathways during cell division,
with no a priori assumptions about mitotic functions. Such methods advantageously
define a standard interpretation of function, albett a simple one, which may be
rigorously applied by multiple laboratories to independent data sets.

With regard to questions of mechanism, increasing numbers of published studies
have reported validation of the phenotypic significance of expression findings
through traditional genetic or biochemical means (Lee ef al., 1999b). These detailed
studies are of great interest to the larger biological community, especially in light of
recent studies that call into question the thesis that transcripts are generally up-
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regulated during conditions that necessitate their function (Winzeler ef al., 1999). In
the long run, however, only a small proportion of inferences made on the genome
level can be evaluated mechanistically before publication. The data sets are simply
too large and the demand for them too great. Development of complementary
genomic technologies should enable the generation of multiple lines of evidence for
the function of a gene, providing leads of higher quality for the traditional biologist.

FINDING FUNCTION

If genomic information has been perceived solely as numeric networks of data devoid
of biological significance, the emergence of large-scale efforts for the functional
characterization of genes has emphatically proved otherwise. Using variations on the
theme of genetic disruption, researchers are systematicaily evaloating the functions of
sequenced genes in organisms ranging from yeast to mouse (Shoemaker et al., 1996;
Winzeler er al., 1999; Davis and Justice, 1998; Schimenti and Bucan, 1998 Giaever
etal., 1999; Smith et al., 1996). Information from these projecis represents the critical
link to phenotype from virtually every other type of genomic information.

In a sense, these efforts present a mirror image of projects that characterize
genome-wide sequence diversity. Rather than elucidating the full spectrum of genes
that may contribute to an individual phenotype, functional genomics first seeks the
complement of biological roles fulfilled by any one gene. Information from large-
scale functional analysis projects currently ranges from one-to-many links between
individual gene disruptions and gross phenotype (in the case of systematic deletions
in vertebrate organisms), to more quantitative evaluations of the behaviour of yeast
strains deficient for the activity of specific genes. However, these projects also
promjse differentiation of the phenotypes resulting from heterozygous, homozygous,
and partial disruptions, as well as descriptions of animals containing disruptions of
multiple genes (Fields er al., 1999; Spradling er al., 1999: Giaever e al., 1999),

Scaling of functional studies to the genome provides researchers with the ability to
interpret the effects of gene disruptions in a standardized context. Knockouts have
long been known to exhibit phenotypes in a background-dependent fashion, compli-
cating assessment of the full genetic requirements for expression of a trait. Coordinated
projects, such as efforts in mouse at the Jackson Laboratory and in 8. cerevisiae
through the International Deletion Consortium, will construct a complete catalogue of
gene disruptions in a defined set of strains (Figure 4.2). Furthermore, these projects
seck to assay the phenotypes of these disruptions under standardized conditions.
Therefore, the information generated from these projects should display relatively
low variation from controliable sources. This degree of standardization also heralds
the introduction of true quantitative measures to the study of gene disruption.
Phenotypes, traditionally compared on a gross level, should now be distinguishable
on criteria such as the rate of drop-out of a deletion strain from a deletion pool, or
changes in blood gas levels in a knockout mouse.

Some of the most illuminating results regarding gene disruption have come from
the set of tagged transpositions and gene disruptions in S. cerevisiae generated by
Snyder and colleagues (Ross-Macdonald er al., 1999). The potential for multiple
transposition events in a single gene enables a higher degree of resolution in
functional characterization. For example, a series of insertions in the transcription
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Figure 4.2. Scanned images of high-density oligonuclectide arrays following hybridization with
fluorescently labelled DNA ‘barcedes’ amplified from 558 diploid yeast strains grown for 8 and 6 hours in
minimal mediam. Each strain carries 2 homozygous knockout of a single gene repliced with a cognate 20-
mer oligonucleotide barcode corresponding to a feature on the array. Samples from the two timepeints were
labelled with distinet fluorophores, aifowing detection of differential fluorescence intensities at a given
feature, and therefare, sirains that exhibit a growth defect in minimal medium. Features matching a strain
that shows a growth defect in minimal medium are Jabelled and marked with an arrow. Only a portion of
the total array is shown. Courtesy of Elizabeth A, Winzeler and David J. Lockhart, Novarlis Institute for
Functional Genomics, San Diego, CA. US.A.
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factor IMP2 distinguishes its requirements in cell wall biogenesis and sugar utilization.
These initial results suggest a significant but uncharacterized degree of pleiotropy in
eukaryotic genes. Furthermore, Snyder and colleagues have demonstrated the first
applications of pattern finding to large-scale studies of biolegical phenotype. This
approach may be utilized to group genes responsible for a similar phenotype or,
alternatively, to segregate growth conditions that induce phenotypes from a common
set of disruptions. Expansion of this model to a genome scale should facilitate not onl y
understanding of the biological role of individuat genes, but provide a framework for
perceiving function-related patterns in transceiption and proteomic data,

Of course, these mass characterizations of gene disruption comprise surface clues
~ initial, standardized ohservations that serve as a prelude to the detailed analyses
necessary to confirm specific biological hypotheses. Impaired survival of a deletion
stain in minimal media may implicate the disrupted gene in a metabolic pathway.
However, this observation may also indicate a more complex phenotype enhanced by
reduced ATP levels. Assaying each disruption under a large number of differentiating
conditions will help distinguish these possibilities, but will require continued
development of information systems sufficiently expressive to represent a broad
range of phenotypic findings and experimental conditions.

Moving forward

Any discussion of the current state of genomic information risks almost instant
obsolescence. The imminent potential of these data are so high, and our ability to
represent and analyse complex systems so rudimentary, that this field stands ripe for
revolutionary change. These advances must necessarily emerge from different direc-
tions. Researchers will require new paradigms, and technologies, that allow translation
of disparate genomic data types and traditional biological information into the same
language. These more coherent data architectures must themselves be examined for
intricate patterns revealing global biological design. To this end, the computational
methods currently used for the analysis and comparison of genetic sequence and
transcriptional information must rapidly beget algorithms capable of mining more
diverse data types. Moreover, the very quantitative parameters of these systems
appear amenable to computational simulation, allowing the evolution of genomics
into a true information science. That so little has been determined about the use of data
in the post-geneme era intimates that the landscape, and vision of molecular life
science, is up for grabs. If only one thing is clear, it is that this race is on.
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