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Introduction

One of the primary objectives of industrial fermentation research and
development is the establishment of economically viabie processes through
increasing product yields and reduced operating costs. Historically, the most
important means of achieving this has been by strain improvement. using a
variety of techniques. by growth medium development and improvements in
nutrient feeding. In recent years. however, tremendous progress has been
made in the measurement of biotechnical parameters, bioprocess instrumenta-
tion and bioprocess modelling and control. The ‘control” of biotechnological
plants is a complex problem since there is a great range of processes. These can
be considered from both a biological and an engineering viewpoint. From the
biological perspective—different substrates can be used (e.g. pure orsynthetic
substrates, natural substrates including waste}. These are converted by a
variety of micro-organisms under anaerobic or aerobic conditions to the
desired products (e.g. pharmaceuticals. amino acids, organic acids, enzvmes,
proteins, biodegradable materials, biogas, alcohol, etc.). The engineering, or
technological, aspects include differeat reactor types-—stirred tank type. tube
type, tower type, cascaded reactors, etc. In addition there are several modes of
reactor operation—batch, fed batch and continuous—each posing different
operational proeblems in terms of control system structure. The progress made
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over the past six years in measurement technology and biosensors, automation
and computer control, and the development and application of biotechnolo-
gical process modelling together with advanced control methodologies is
reflected by the contributions to a series of important International Federation
of Automatic Control {IFAC)Y meetings devoted to biotechnological processes
{Halme_ 1982; Johnson, 1985; Fish and Fox., 1988). This chapter wiil
concenirate on the modelling and controt of fermentation processes. It should
be recognized. however, that the technigues developed for. and used in,
fermentation are readily applicable, for example, to wastewater treatment and
other biotechnological processes.

Contrel of the normal physical and chemical states of a fermentation
{environmental control) is relatively straightforward. Software-based
methods, such as state estimation and adaptive and inferential control
methodologies, are becoming of special interest because they usually only
require conventional instrumentation to support them. These methods,
however, are still some way from being applied routinely in industrial situations
because of a number of problems related to the biological models required for
their implementation. Difficultics concerning numerical robustness and user
friendliness remain to be solved.

Measurements for fermentation supervision and control

In industrial fermentations the availability of measurements will be
significantly influenced by reliability, ease of use and robustness. Modern
micro-electronic instrumentation provides powerful, sophisticated and reliable
measurement of electrical signals at relatively low cost. Fermentations provide
a demanding environment for reliable, stable and noise-free measurement
from high-output impedance sensors and transducers {Clarke eral., 1982). In
such circumstances it is largely sensor and transducer characteristics that
determine reliability and robustness. The measurements must provide
demonstrable benefits without compromising the process. In particular, for
most fermentation processes this must be achieved without increased risk of
contamination. These considerations often lead to well-instrumented research
and development fermenters, while production fermenters, where control
methodologies could provide considerable benefits, are the least well
instrumented.

Present on-line fermentation process measurement, and as a result most
on-line control, is based upon a few, robust, commercial devices (Flynn, 1982;
Carleysmith and Fox, 1984). The instrumentation utilized is largely similar to
that found in chemical plants, although the probes are in a more demanding
environment in that they must withstand sterilization, and are subject to
fouling by surface coatings of organisms, cellular macromolecules, such as
proteins, and other media components. The most important sensors for
fermentation control (e.g. pH and DO; probes) are the least reliable of the
sensors widely used in chemical process control (Flynn, 1982; Lees, 1976).
These on-line sensors are largely in situ, making simple physico-chemical
measurements. The control action taken to maintain constancy of the
measured variable {e.g. by acid/alkali addition, heating/cooling, antifoam
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addition, etc.) is often related to growth and/or product formation and so may
be subject to the effects of process disturbances, shifts in metabolism and also,
indirectly, by other control actions. As a consequence, these controls could be,
but usually are not. employed to afford useful information ahout the
fermentation operation. For example. feedback control of pH if. asis usual. pH
is under feedback control. the control action taken in regulation provides an
indication of metabolic rate (Cooney, Wang and Wang. 1977).

The best, general, on-line growth-related measurements from amongst
many available (Meyer, Kappeli and Fiechter, 1985) are probably those based
upon gas analysis, enabling CO; production and O, uptake to be calculated
from the fermenter exhaust and inlet gases. These are sometimes available
continuously, e.g. with infra-red. paramagnetic and Zirconia analysers. In
practice these instruments are often multiplexed, leading to discrete analyses.
More popular, and becoming more cost effective, is mass spectrometry. This is
inherently a fast, discrete analysis, which is also usually multiplexed (Buckland
et al.. 1985; Coppella and Dhurjati, 1987). Although all these measurements
Jead to discrete data, they are relatively fast for control purposes. Flynn (1982)
has commented upon the accuracy and precision of calcutations (giving derived
variables) based on gas analysis (Spriet et al., 1982). indicating that care must
be taken in their use.

Discrete-sample analysis using auto-analysers and a variety of other specific
analytical measurement techniques (spectrophotometry, HPLC, GC, GCMS,
AA) is widely used, giving infrequent and delayed off-line data. These
techniques can give quite rapid results if samples are taken frequently. but in
practice it is usually the case that samples are taken relatively infrequently, with
‘returned’ results taking one or two hours. These results may be used manually
to adjust fermentation parameters and monitor the fermentation. The use of
infrequent off-line data in estimation control schemes is discussed later.

Solutions to the problems induced by reliance upon off-line analyses are
being found through new in situ sensors. The specificity and sensitivity required
indicates significant potential for on-line biosensors (Cleland and Enfors. 1983,
1984; Karube, 1984: Brooks and Turner, 1987). There are problems with
sterilization, stability and robustness, but developments in coatinuous
tlow-line sampling (Clarke et al. 1982; Mandenius, Danielsson and Mattiasson.
1984; Omstead and Greasham, 1988), and in off-line discrete sample
measurements (see references in Meyer. Kappeli and Fiechter, 1995 and the
clinical laboratory techaiques described by Truchaud er a/.. 1980). promise to
overcome these problems.

However, many other options are being investigated. for example in the
field of biomass determination alone a wide range of measurement tech-
niques are being applied (Harris and Kell. 1985. Ramsay ef al.. 1985).
They are based upon such diverse principles as: acoustics (Clarke er af. .
1982); piezo-electric membranes (Ishimori, Karube and Suzuki., 1981):
bioelectrochemistry (Ramsay ef al., 1985); laser light scattering (Latimer,
1982; Carr er al., 1987); electrical admittance spectroscopy (Kell, 1987; Harris
and Kell, 1985); fluorescence (Zabriskie and Humphrey, 1978: Srinivas and
Mutharasan, 1987); calorimetry (Birou, Marison and Von Stockar, 1987); and
viscosity (Picque and Corrieu, 1986).
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In general. the measurements supplied by sensors are not simple linear
correlations to the fermentation process variable of interest. Significant
correlations can be made between these measurements and the state variables
required for control. e.g. ATP or NAD(P)H for biomass. However, analysis of
the measurement and the state variable usually indicates that the measured
variable is a complex function of many factors. Under calibration conditions
most of these factors vary little and/or cancel each other out to leave the
required correlation. In practice, however, these factors can vary significantly
and, as a result, the calibrated correlation may not be valid. This may well be
signiticant for any new sensors introduced (e.g. Clarke eral., 1982; Srinivas and
Mutharasan, 1987). For example, new techniques for biomass determination
such as admittance spectroscopy, infra-red optical fibre light scattering
detection, on-line fluorescence probes for NAD(P)H, may all exhibit good
direct correlations under suitable calibration conditions but are complex
functions of biological and physico-chemical effects. Similarly, the develop-
ment of a whole range of ion-selective electrodes allows the direct
measurement of a wide range of important medium constituents, but the
measured values are activities and correction is required for a whole range of
interfering 1ons, lonic effects and chelation (Clarke er al. . 1982),

The converse of this is that these meuasurements contain a great deal of
information about the environmental conditions and the physiological state of
the organisms. but more effort will be required to use this information for
control purposes. To this end developments in sensors and in numerical and
model-based estimation techniques are essential.

Environmental and derived variable feedback control

The on-line measurement of process variables not only provides a means by
which to monitor the progress of a fermentation but also allows the regulation
of the environment to which an organism is exposed. Since the environment
that exists inside a fermenter is a major influence on the performance of a
fermentation, regulation of environmental conditions can be utilized to
influence the organism state, It can be seen from the previous section that some
variables in a fermentation are capable of measurement on a continuous basis
with some degree of reliability. It is their feedback, to enable the maintenance
of desirable environmental conditions. together with variables derived from
these measurements, which form the basis of the majority of present
fermentation control schemes.

On-line regulation is usually restricted to the maintenance of a small number
of environmental conditions. such as broth temperature, pH and dissolved
oxygen levels. This is achieved through the manipulation of fermenter heating
and cooling, acid/alkali addition and aeration rate {stirrer speed), respectively.
Feedback controller tuning (either on—off time period settings or proportional-
integral-derivative settings) to obtain acceptable performance in the presence
of system disturbances is not always straightforward. This is due to
non-linearities of the bioprocess itself and the control variable actuators, as
well as any non-linear characteristics in the process sensors. In addition,
perturbation of process variables as an aid to on-line tuning of the controllers



151

Fermentation monitoring and control

stondroi ssaacadog powda ] - A

£F010qdI0Y ~a—p 0100 [[JMOIL) g

LN

yd

[RAOUISI IPIXOIP UOQIe)
A1ddns uadfxg

\\

2INSSII]

UoIje.Ioy

d

./ \
Tore) 15y

g UOL]ONPOL] g

p— [ ATOTOOY)] —m

4

A T

ﬁllff/ 4

\

- TIOT}R.IJUDOU0D [[2)

b

aanyetadurag,

$32.IN0S AZIoUD
pue uoqae’)



132 G.A. MONTAGUE, A.J. MORRIS AND A, C, WARD

requires care, in order not to force the fermentation into significantly different
operating regimes. For example, excessive growth or lysis conditions may
resuli from perturbations in feed rates. '

Fermentation processes can also exhibit the classic problem of multivariable
systent interactions which serve to complicate the controller tuning. Figure ]
serves to demonstrate the complexity of the major interactions which can take
place between variables within a fermentation. The interactions shown are by
no means an exhaustive set, as several other interdependencies could also be
postulated.

Controllers are usually tuned on a loop-by-loop basis, neglecting the effects
of any process interactions. When all the control loops are closed the effect of
the process interactions is to propagate disturbances between the loops, which
can result in prolonged unsatistactory behaviour of the individual environmen-
tal control loops. All the above problems can be overcome to a greater or lesser
extent by using established control loop design and tuning techniques (c.g.
Miller et al., 1967).

In practice it is usually possible to maintain conditions reasonably close to
desired vatues {e.g. £0-1°C, *=0-1 pH) with well-tuned control loops.
However, the determination of ‘desirable operating conditions’ (i.e. the
controller set-points) poses the major problem. The environmental variable
set-points are often chosen based upon past experience and trial and error
approaches in order to ‘optimize’ the performance. This usually means
regulation at a constant set-point, which in many cases is not ideal due to the
constantly varying dynamics experienced in a fermentation. A set-peint
trajectory that would optimize the fermentation is difficult to specify and a
more considered approach must be developed for its specification. These
techniques will be outlined later.

While the feedback of established environmental measurements is
commaon place. the consequences of fermenter engineering design can affect
the quality and applicability of the measurements made. For example. by the
very nature of the operation of an air-lift fermenter, an organism is subjected to
cyclic variations in dissolved oxygen levels. In this case a number of dissolved
oxygen probes may well be more appropriate in order to gain some insight to
the cyclic nature of the variation. Even a relatively high frequency of exposure,
compared with overall organism growth dynamics, can have serious
consequences in terms of fermentation performance. Reuss and Brammer
(1985) demonstrated that although control techniques may work well on the
laboratory scale. the engineering implications of scale-up can significantty
degrade the quality of performance obtainable from the fermentation. Cyclic
variation of substrate in a large bioreactor due to inefficient mixing was
demonstrated to markediy reduce the yield of biomass.

The previous section outlined some of the developments in sensor
technology that are currently taking place. It is apparent, however, that at the
present time there are many other measurements of environmental conditions
{e.g. precursor, substrate concentrations} that are not routinely available
on-line for direct feedback control. The usual method adopted for
environmental fermentation regulation s therefore based upon the use of a
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combination of off-line and on-line measurements for single-loop feedback
control. Resorting to the use of off-line measurements in the feedback loop has
important consequences on the quality of control that can be obtained.
Montague, Morris and Bush (1988) discuss in detail the problems resulting and
the considerations necessary before reasonable control can be achieved. In
summary they conclude that it 15 the ability to obtain off-line measurements,
with the minimum process/measurement delay and at a rate suitable for
feedback control, which usually proves to be a problem. This said. the use of
off-line measurement stiit forms a major component of many fermentation
control schemes. More advanced techniques, aimed at overcoming the
problems of off-line measurement and the resulting process delay, have been
developed which utilize both on- and off-line measurements in on-line-
measurement-based feedback control schemes, These have been shown to be
successful, as will be discussed later.

The successful maintenance of fermentation environment using feedback
control, however, does not necessarily imply that the fermentation is being
operated under optimal conditions. In order to improve the performance of a
fermentation system, it is necessary to consider variables (or states) that give
some indication of the way in which an organism is behaviag and not just the
environment to which it is exposed. It is worthwhile at this stage considering
what the aims of a fermentation control scheme should be. Ideally. it is
desirable to be able to specify the condition (i.e. all the states) of the fermenter
at any tume. It is the present states coupled with the system inputs that
completely specify the future fermenter condition.*

The important consequences are that knewledge of all the critical variables
(states} and inputs that affect the bioprocess are required in order to specify
future fermentation conditions. In this context, environmental regulation is the
control of only a few of the many system states and therefore will not achieve
the quality of control often demanded for improved operation. To move
towards this improved operation requires the control of variables more closely
related to the states of the system, while bearing in mind the problems of
process measurement. In particular, the feedback control of the major carbon
source In a fermentation is desirable. since it usually represents a major
component of the production cost.

Off-gas (effluent gas) measurements have proved to be a popular method of
gaining insight into the performance of an organism, since they are available
on-line, without significant delay and give some indication of growth. Three
common derived variables based upon off-gas measurements can be identified:
OUR {oxygen uptake rate); CER (carbon dioxide evolution rate) and RQ
(respiratory quotient), which is defined as the ratio of the amount of carbon
dioxide produced to the amount of oxygen consumed, CER/OUR. RQ, CER
and QOUR thus represent ‘control variables’ that can be regulated throughout
the fermentation period.

The behaviour of OUR. CER and RQ varies with the type of fermentation
under investigation and the particular operating conditions which prevail.

* *We ought to regard the state of the universe as the effect of its antecedent state and the cause of
the state that is 1o follow’ (Laplace. eighteenth century).
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Johnson (1987), with reference to the baker’s yeast fermentation, discussed the
behaviour of RQ. OUR and CER during various operating regimes. In a
fed-batch baker’s yeast fermentation, two major causes for ethanol production
can be identitied. If the substrate concentration in the broth is too high then
ethanol is produced (negative Pasteur effect). In addition, if insufficient
oxygen is supplied to combust the substrate, ethanol will again be produced. In
this case the production of large quantities of ethanol is undesirable since it
represents wasted sugar. When ethanol is produced the CER is observed to rise
while the OUR remains constant. Hence an increase in RQ is a good indication
that ethanol is being produced.

The use of off-gas analysis-based control schemes has been adopted by many
authors. Aiba, Nagai and Nishizavo (1976) and Wang, Cooney and Wang
(1977), for example, applied the method to the regulation of a fed-batch
baker’s yeast fermentation and demonstrated good performance. Williams,
Yousefpour and Swanick (1984) went further in the combination of RQ and
dissolved oxygen control in an adaptive multivariable control scheme for
regulation of a yeast fermentation. They showed that a high biomass and good
conversion from nutrient to yeast could be obtained with their control strategy
(see fater).

The more straightforward control of OUR has also been widely studied. An
early reference to OUR control can be found in Humphrey and Jeffreys (1973),
who investigated the control of organism growth through variation of substrate
addition rate. Squires (1972) utilized the dissolved oxygen, as an indication of
OUR, in an attempt to control the substrate addition to a fed-batch penicillin
fermentation.

In addition to the off-gas derived-variable techniques, other derived vari-
ables that are based upon environmental measurements have been investi-
gated for use in feedback control. For example, an organism growing tends to
resultinchangesof broth pH; ina weakly buffered broth, addition of sugar tends
to lower the pH whereas insufficient substrate tends to cause arise in pH. If, asis
usual, pH is under feedback control, the control action taken in regulation
provides an indication of metabolic rate (Cooney, Wang and Wang. 1977).

Heat production. from energy balances of the fermentation, has also been
used in an attempt to define some measure of the metabolic activity. Mou and
Cooney (1976) utilized heat evolution from a novobiocin fermentation to
regulate the specific growth rate through variation of the substrate feed.

An alternative to energy balancing is the use of mass balancing techniques
for on-line estimation. The conservation approach (whether it be mass or
energy) avoids the necessity to specify yields and rate constants, although
physiological models are still required. The technique has been demonstrated
m both fed-batch and continuous yeast fermentations (Cooney, Wang and
Wang, 1977; Cooney and Swartz, 1982). Mou and Cooney {1983) extended the
mass balancing technigue to cover secondary metabolite fermentation. The
balancing techaique is more suited to fermentations which utilize defined/semi-
defined media, although even in these cases a considerable proportion of
carbon can be unaccounted for.
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Bioprocess modelling for control

From a control engineering point of view, an essential prerequisite for good
supervision and operation of bioreactors is an understanding of the process
(fermentation) behaviour (for example in the application of mass balancing
techniques discussed previously). To progress beyond the purely physical and
environmental control of the fermenter into the area of biclogical control
requires a process model that is sufficiently comprehensive to relate all
important process inputs (strains, medium. feeds, environmental conditions)
and outputs (biomass, product, pH, temperature, dissolved oxygen, off-gases,
etc.). The availability of a sufficiently descriptive mathematical model would
also provide insight into the behaviour of the fermentation state variables
which could be used for improved control. In general, there are four different
forms of process model that might be considered for control purposcs.

1. The first is a physiological model where a knowledge of the physiology of
the growth process can be expressed in causal/consequent. and usually
non-mathematical, terminology. These models are useful in initial control
strategy synthesis and may play an even more important role as
knowledge-based systems methods (expert systems) are developed—see
later.
The second form is a structured model where partial and algebraic
equations are used to describe the dynamic behaviour of the growth
process. The basic idea here is that the biomass is structured, or classified,
by some proper intracellular characteristic which describes growth,
activity, metabolism, etc. of the biomass or cells. The classification basis
might be any chemical species content of the cell (DNA, RNA, etc.), the
cell’s mass, volume, or chronofogical age (i.e. age distribution of the cell
population or biomass}. Sometimes the partial differential equations are
simplified to ordinary differential form to provide a lumped parameter
model. Such a simplification, however, will not explain the effects of the
intracellular state on the process operation and dynamic behaviour.

3. The third form represents an uastruciured model of the process where the
fermentation behaviour is assumed to be represeated by a single,
homogeneously growing, organism. In spite of its limitations, this type of
madel has been most frequently used for the development of fermentation
control stratcgies.

4. Finally, some of the newer methods being developed for fermentation
control, especially of the adaptive type, utilize ‘black-box™ or ‘input—
output’ models of the process. Here the primary model variable (output
variable) is specified in terms of a function of the relevant process inputs
{control or manipulated variables). The parameters of such a mode! do not
necessarily have any biological relevance. Johnson (1987} gives a very good
survey of fed-batch fermentation madelling and control studies.

b

Once a mechanistic understanding of the process has been obtained, the next
step is to try efficiently to represent such mechanisms in a model that is
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appropriate for the particular problem being studied. The resulting model
should be balanced with respect to its mathematical complexity and its ability to
capture all the essential features for control purposes. It should also be simple
enough to permit direct determination of its key parameters through feasible
experimental procedures. Presently available structured models and lumped
parameter models are not generally applicable—due to the large numbers of
parameters involved in the case of structured representations, and, in contrast,
the inability of the lumped parameter models to accurately predict dynamic
behaviour,

The most commonly adopted model in the design of control strategies for
fermentation processes is the homogeneous single organism form. Addi-
tionally, it is also commonly assumed that there is a single growth-limiting
substrate. A typical state-space representation of bacterial growth systems is
given by the following mass balance refationships:

X _ (XSO X — DX — koX
di
as
'd— = “"'k[!.L(X,S,f)X + D(Sr“‘“S)
{

Y = how(X, 50X

where X is the biomass concentration (kg m™?), S the substrate concentration
(kg m™%}, D the dilution rate (feed rate/volume of culture) (h™), S, the feed
substrate concentration (kgm™?), Y the product production rate
(kg m™ h™Y), u(X,$,1) the specific growth rate (h™"}, k,, k» the vyield
coefficients, k, the biomass death rate (h™') and ¢ the time (h).

A number of analytical expressions for w(X,S,1) have been developed and
Spriet (1982) suggests nine possibilities, although many more exist. The most
widely used representation is due to Monod (1930):

“mS

WX, §) = m—nmm
K, + 5§

where 1, 1s the maximum specific growth rate and K,,, the Monod constant tor
growth on substrate.

The selection of an appropriate representation for w(X,S.7) is not
straightforward. In addition. the determination of the important parameters
i, and K, from actual plant data is not easy (e.g. Holmberg and Ranta, 1982;
Dochain and Bastin, 1984). Indeed, Dochain and Bastin {1984) avoid some of
these problems by identifying the time-varying growth rate u(X,5,1) on-linc as
part of their adaptive control strategy. Other work by Bastin and Dochuin
(1986). shows how specific growth rates can be estimated on-line using
continuous time-estimation algorithms. Such algorithms do not require an
analytical description of the specific growth rate but consider it to be a function
of unknown, time-varying identifiable parameters,

‘The above basic relationships have been extended and used by many workers
to develop new on-line control strategies for a range of fermentations. Two
particular fermentation models will be summarized here—baker’s yeast and
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penicillin. These have been selected for the purposes of demonstration since
they arc representative of a wide range of industrially useful fermentations, are
quite well understood and have been used quite widely for hoth theoretical and
experimental modelling, state estimation, optimization and control studies.

A dynamic model of yeast fermentation based on material balance and
fermentation kinetics results in the following set of differential equations
(Wiiliams. Yousefpour and Swanick. 1984):

d'\‘l { o5 . WppaXy
di UK+ x) (K + v
# X~
—— K (s = x) ) x Eq. {]
[{K,.Hg) . } ' 0
ds ‘ dx;
+ Kt = ox) = Ky Eq. (2)
di dr
dxs dv,
= K + Ki(rxs — x:57) Eq.(3)
dr dt
dxy ‘ XXy Xy ) i
— = Kl =) - — | b Kt - x| Equ(4)
dr K {K, + x3)
dxs 1 dy
= F - — — — Kixs — x9) Eq. (5)
ddr Y odt
dx,,
i Eq. (6)
di

where x; s the total quantity of yeast cells, x, the percentage of dissolved
oxygen in fermenter broth. x; the percentage of carbon dioxide in exit gas. x,
the total quantity of alcohol in the fermenter. x5 the sugar available for yeast
growth in the fermenter, x, the total sugar added. K, , the oxygen transfer
coefficient. F the sugar feed rate and * indicates the equilibrium value of the
variable.

Yeast and bacterial fermentations have also been studied by. for example.
Aiba, Nagai and Nishizavo (1976): Takamatsu et af. (1979); Wang. Cooney and
Wang (1979} Dekkers (1982, 1983, 1984); Williams. Yousefpour and Swanick
(1984); Dekkers and Voetter (1985): Shioya er af. (1983): and Williams.
Yousefpour and Wellington (1986).

Attention has also been focused on mycelial fungal systems. in particular the
penicillin fermentation. A number of modelling approaches have been adopted
for this fermentation. Models closely related to that of Monod are typified by
the work of Bajpai and Reuss (1980). Although the Monod mode! has been
found to perform weil at low cell densities. a structuraily similar model
developed by Contois (1959) has the additional ability to account for
diffusional limitations experienced at high cell densities. This can be
particutarly important in high cell density fermentations such as industrial
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penicillin fermentation. The model set out below (Bajpal and Reuss, 1980;
Maontague er al., 1986a, b) has been found to give good agreement with the
practical results of Pirt and Righelato (1967).

Growth of biomass is related to substrate concentration by the relationship:

dX . S X dV
— T ——— Eq.(7)
dr K.X+S Voodr

where § represents substrate concentration, U, the maximum specific growth
rate, X the biomass, V the fermenter volume and K, the Contois saturation
constant for substrate limitation of biomass production.

Substrate inhibition kinetics. which other workers have used to good effect
with the inclusion of a term to account for hydrolysis. has been used to model

penicillin production. Penicillin production is related to substrate concentra-
tion and biomass by:

dp U, &5 X ) P odv R
S - KP - — — Eq. (8)
dt K, + S(1 + §/K)) Vodi
where w, represents the maximum specific rate of product formation, K, is the
Monod saturation constant for one substrate limitation of product formation,
K, 1s the substrate inhibition constant for product formation, K is the first-order
rate constant for penicillin hydrolysis, and P is the penicillin concentration.
Substrate concentration is modelled by assuming constant yields and
maintenance requirements:

ds -1 dX l dpP S dv _
—_—= e = = — — i X+ - — Eqg. (9)

i Y. dtf Y., di Voodi

where Y, represents the yield of biomass on substrate, Y, the yield of
product on substrate, m, the maintenance requirement and F the term that
accounts for the fermentation feed rate.

A term for the production of carbon dioxide, which the original Bajpai and
Reuss model lacked, was adopted from the work of Calam and Ismail (1980).
The carbon dioxide production relationships assumes that evolution is due to

three processes—growth, maintenance and penicillin biosynthesis:

dCOz dX
i

+ m X + ks Eq. (1)

where k, relates CO, production to growth, i, relates CO, production to
maintenance and ks relates CO; production to penicitlin formation.

An alternative approach by Nestaas and Wang (1983} considered the various
stages through which penicillin mould develops. They constructed a segregated
model for which good agreement was again obtained with experimental data.
However, the segregated nature of this model (biomass is considered to consist
of a mixture of three different states) causes some difficulty in the measurement
of kinetic parameters. This highlights the importance of selecting, or
developing, a model the complexity of which balances parameter measurement
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difficulties with its ability to represent dynamic behaviour.

A number of investigators have used the penicillin fermentation for their
modelling, state estimation, optimization and control studies. For example,
Fishman and Biryukov (1974); Mou (1979); Biryukov (1982); Kishimoto ef al.
(1982); Nakamura and Calam (1983); Thompson (1984); Montague er alf.
(1986a, b).

Estimation technigues in fermentation

It will have been scen from the earlier discussions that the sensors available
today for bioreactor measurements do not cover all the necessary and
important variables. The important ‘internal’ variables, such as biomass,
substrate and secondary product concentrations, that characterize the state and
progress of a fermentation, are very difficult to measure reliably and fast
enough for fermentation supervision and control purposes. What few
sensors/instruments there are available for such purposes are not robust
enough, or are too expensive, to be used in routine industrial control
applications. At present, though. quite rapid off-line analysis is a common
technique in the fermentation industry and assay results can be returned within
two hours on samples taken, say, every 1-8 hours. However, even off-tine,
biomass is difficult to measure due to the compiex nature of the fermentation
broths. which can contain mixtures of natural materials, including immiscible
oils, and a wide range of soluble, and insoluble, biological and inorganic
materials.

As has already been mentioned. for unrestricted growth, biomass can be
estimated in preportion to the amount of oxygen consumed or carbon dioxide
produced during the fermentation. Considering that biomass can multiply by a
thousandfeld or more during a fermentation, the method relies heavily on an
accurate biomass measurement to start the integration of the off-gas analysis.
Substrate-limited growth cannot easily be correlated to carbon dioxide
evolution and, in this case. elemental mass balancing methods have been tried.
Itis important to stress here that the use of an inaccurate estimate of biomass,
for control purposes, can result in the fermentation being driven away from its a
priori defined optimum trajectory, thus defeating one of the main purposes of
the control strategy. Periodic correction of estimated biomass by some form of
direct measurement or assay is therefore essential. In spite of these difficulties.
it has become common practice to use measurements of related variables
(secondary variables), such as gaseous oxygen and carbon dioxide, ta estimate
or infer unobtainable, or difficult to measure, (primary) variables. such as
biomass, products, etc.

The casiest, but potentially least accurate, way of obtaining an estimate of a
primary variable with measurement difficulties is to establish, by experiment. a
correlation between the primary and secondary related variables while
neglecting all measurement errors, noise, etc. A more realistic approach is to
take account of those errors and adopt a numerical estimation technique.
Estimation methods can be used primarily for two different purposes—for
estimating the parameters of a pre-defined model structure (parameter
estimation or identification), or for estimating the actual process variables (state
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estimation). In comprehensive fermentation process models, the model
parameters are usually physical or biochemical in nature and the model
structure i$ non-linear. The corresponding identification problems are
therefore also non-linear. If these are carried out by off-line computation, then
many well-known numerical optimization algorithms can be used. On-line
recursive estimation can also be carried out using any of the many existing
recursive algorithms. Most of the methods used, 10 a greater or lesser extent,
employ least squares based ideas. When linearity and additivity assumptions on
the process model are justified, then the optimal estimator is the Kalman filter.
When they are not, then recourse must be made to a suboptimal estimator.
Unfortunately, the most useful and reliable algorithms have been developed
for linear systems, whereas the biotechnical estimation problem is inherently
non-linear.

Standard non-lingar estimators, such as the extended Kalman filter {EKF),
Anderson and Moore {1979), can suffer from some numerical problems and
convergence difficulties, especially when the process noise characteristics are
not well known (Ljung, 1979). In spite of these problems, the EXF has proved
to be the usual means of tackling bioreactor identification and estimation, and
many successful application studies have been reported (e.g. Svrcek, Elliot and
Zajic, 1974; Stephanopoulos and San. 1981, 1984; Nihtila, Harmo and
Perttula, 1984; San and Stephanopoulos, 1984; Montague era/., 19864, b). The
use of an adaptive filter based upon the techniques developed by Jazwinski
(1970) has been recommended to overcome some of the problems encountered
due to filter robustness in the presence of process and measurement
uncertainties and growth model inaccuracy. A more recently developed
non-linear filter that has some useful inrovations is that due to Halme and
Selkainaho (1982). This filter basically provides a Bayesian maximum
likelihood estimate for the state variables. The most noticeable difference
when compared with the EKF is in the estimator gain calculation. A further
problem commonly faced in practice is the variation of the model parameters,
e.g. yield coefficients, maintenance, etc., either with time, point in the
fermentation cycle or environmental conditions. In such cases estimation of the
model parameters and process state variables simultaneously is often necessary
in order to obtain reliable results. This can also be achieved using well-known
filtering methods, or modifications of thent, as well as, in principle, standard
non-linear filtering procedures (e.g. Holmberg and Ranta, 1982; Halme,
Kuismin and Korteniemi, 1985; Holmberg and Olsson, 1985).

When estimating parameters, either for the purposes of model identification
or in adaptive state estimation, choosing the number of parameters that should
be estimated can present potential difficulties (Holmberg and Ranta, 1982).
There are no standard ways of determining a priori the number of parameters
that can be successfully estimated, and probably the best way is to relv on
experience. It almost goes without saying, however, that the maximum number
of parameters that might be successfully estimated depends upon the exvent
and quality of information made available to the estimator. For example, the
more extensive the information pattern, the more reliable the estimation und
the larger the number of parameters that might be estimated. It is therefore
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extremely important to utilize all the relevant information that is available for
estimation. In biotechnological processes some of this information comes from
laboratory assays and off-line analyses. The incorporation of this data into the
estimation algorithms requires account to be taken of their irregular sample
mtervals and associated delay times. This problem has been tackled
successfully by Halme, Kuismin and Korteniemi (1985).

Applications of state estimation methods

There have been a number of successful developments and applications of state
estimation, and advanced fermentation control, reported by several authors
(e.g. Stephanopoulos and San, 1981, 1984; Dekkers. 1982: Halme and
Selkainaho, 1982; Swiniarski er al., 1982; Nihtila, Harmo and Perttula, 1984,
San and Stephanopoulos, 1984; Halme, Kuismin and Korteniemi, 1985: Shioya
etal., 1985; Tarbuck et al., 1985; Montague eral.. 1986a, b; Lakroi and Cheruy,
1988). It is interesting to observe that most work has used a mechanistic
model-based approach and extended Kalman filtering. This requires the
existence, or development, of a sufficiently accurate biochemical model of the
fermentation being controlled.

Swiniarski et al. (1982), in their study of Kalman filtering methods for
biomass estimation. used the bacterial degradation of cellulose by Sporocy-
tophaga myxococcoides, which provides a convenient general model for
bacterial growth and the conversion of an extracellular non-soluble growth
substrate 1o soluble form. As such, the model is applicable to a wide range of
fermentation processes. The stationary extended adaptive Kalman filter and
adaptive EKF were derived and shown to give satisfactory results for biomass
estimation. The algorithms, however, were demonstrated to be sensitive to
errors in initial estimate of substrate and very dependent upon an initial
estimate of the noise covariances.

Leigh and Ng (1984) reported significant batch to batch variations in what
were initially expected to be nominally identical fermentations. Such
unmodeiled variations were shown to seriously degrade the biomass estimates
when using a fixed parameter model for extended Kalman filter derivation.
With this problem in mind, Leigh and co-workers suggested a combination of
approaches based on adaptive state estimation, improved modelling and
rigorous quality control to overcome possible batch to batch variations.

The adaptation and extension of the above work to represent a secondary
metabolite antibiotic production system, Strepromyces clavuligerus, was later
presented by Tarbuck et al. (1985). The authors showed that the application of
an EKF was able to provide reliable estimates of biomass.

Shioya, Takamatsu and Dairaku (1982) and Shioya er al. (1985} have
investigated the application of an EKF to the estimation of specific growth rate
for control purposes. Modifications to the filter were proposed in order to use
moving averages and dynamic mass balancing, as well as adaptively changing
the noise covariance matrix according to the prediction error. An improvement
in estimator performance was demonstrated. The estimator was then used in a
‘profile control scheme’ in a fed-batch baker’s yeast fermentation.
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An adaptive non-tinear observer for the estimation of cell concentration and
specific growth rate has been proposed by Dochain and Bastin (1985). Stability
and convergence proofs were given for three of the four different systems
studied, and simulation studies demonstrated the performance of the
simplified algorithms. However, for systems where the number of fermenta-
tton measurements might be more limited than those studied, a more rigorous
mathematical model might well be required and the use of an EKF approach
might be at least as appropriate.

Adaptive control techniques in fermentation

Practical bioprocesses operating under 1ndustrial conditions exhibit non-linear
and time-varying properties and will always be subject to uvnexplained
disturbances. As discussed earlier, this can make it difficult to set *optimumn’
values for standard proportional-integral-derivative (PID) controllers. In
addition, fermentations are by nature multivariable and conventional control
strategies may not provide a totally satisfactory performance. Adaptive control
schemes—controllers whose parameters can be found (identified) and varied
on-line as the fermentation proceeds—have therefore been considered by a
number of researchers. Figure 2 illustrates the underlying philosophy of an
adaptive control strategy. Such control schemes will cope with, and to a greater
or lesser degree overcome, the complexities and control difficulties of
biotechnological processes.

Over the past decade many adaptive algorithms have appeared in the
literature. However, there are no clear guidelines available as to which
algorithm is the most suitable for any particular type of process of interest.
Categorization of the adaptive algorithms into a small number of classes, and
investigation of the important performance characteristics of cach class, should
help ease the choice of algorithm, and this has been carried out for those
algorithms of practical interest (Montague, 1987). Three categorization
principles have been proposed:

1. The control action can be calculated either to minimize a cost function, i.¢.
a generalized minimum variance (GMV) type of algorithm (e.g. Clarke
and Gawthrop, 1979; Astrom, 1983}, or according to a pre-specified closed
loop response based upon frequency domain considerations, for example a
pole placement type of algorithm (e.g. Wellstead and Sanoff, 1981).

2. The parameter estimation routine can be applied either to estimate the

parameters of the system from which the controller parameters are

calculated—an explicit algorithm [e.g. generalized predictive control

(GPC), Clarke and Mohtadi, 1985}, or to estimate the controller

parameters directly—an implicit algorithm (generalized minimum

variance control, GMVC),

The system model used to calculate the control action may be either a time

series model (GMVC, GPC) or a state space model (pole placement

control—of the type discussed by Warwick, 1981).

W8]

A common basis for the majority of adaptive algorithms is the assumed
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Figure 2. A typicai adaptive control scheme,

general linear process model. For derivation of adaptive control laws, it is
usually assumed to be of the controlled autoregressive maoving average
(CARMA) form. However, the choice of a controlled autoregressive
mtegrated moving average (CARIMA) form provides additional benefits for
the control algorithm.

Consider a process which is described by the following difference equation:

Az () = 2 " BE () + 27 L") + Cz el A Eq. (11)

where A, Band L polynomials in the backward shift operator 27 [the backshift
operator implies. for example. that 27 'v(f) = y(r1—1 1. v(6). 1ty and v(6) arc the
system’s output. manipuiative input and mecasurable load disturbance
respectively. k and /are the process time delays (expressed as integer multiples
of the sample time) exhibited by the output to manipulative control input and
load disturbance input, respectively. In explicit adaptive control schemes these
delays. or variations in them. can be accommodated by inctuding leading zero
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elements in the B(z~") and L(z™") polynomials, respectively. e(f) is a random
zero mean disturbance with finite variance and. for simplicity, C{(z™") is often
considered to be unity. A is the differencing operator (1-z ‘). The
disturbance term, e(t)/ /A . can be thought of as being Brownian motion and, for
controller design purposes, realistically represents the form of disturbances
affecting the process. The design of control strategies {adaptive or otherwise)
based on a CARIMA representation of the bioprocess leads to controllers with
inherent integral action.

To develop a self-tuning controller, a regressor (data-vector) x and
parameter-vector ¢ are defined in terms of the process data (v, «, [} and
‘unknown’ process parameters {A4.B,L). The process model parameters
(A,B,L) are wdentified "on-line’ and are passed to an appropriate control
algorithm and the control increment calculated to update the controlier output
setting at every control interval. This is shown schematically in Figure 2. The
theory and technigues of on-line recursive parameter identification, and the
data filtering requirements, have been discussed at length by many authors,
e.g. Ljung and Sederstrom (1983).

Although, as discussed earlier, a number of authors have investigated the
application of modern control techniques to bioreactor control, the recent
work of, for example, Takamatsu er a/. (1979); Dochain and Bastin (1984,
1985); Dekkers and Voetter (1983); Frueh eraf. (1985); Montgomery, Williams
and Swanick. {1985); Poulisse and van Helden (1985); Shioya et al. (1985);
Verrbruggen. Eelderink and van den Broecke (1983); Dochain (1986):
Dochain, De Buyl and Bastin {1988) are most relevant to the adaptive control
studies described here. Almost all the studies are concerned with yeast
fermentations, with only Frueh er af. {1985) investigating penicillin fermenta-
tionr. Dochain and Bastin (1984) initially tried to use a minimum variance
control policy before adopting a self-tuning GMV control law of the Clarke and
Gawthrop (1979) type; whereas Poulisse and van Helden (1985), Dekkers and
Voetter (1985) and Montgomery, Williams and Swanick (1985} utilize LQ and
LOG methods of adaptive control. Frueh er al. (1985) used @ minimum
variance type of self-tuning control law with a cascaded PID compensator,
whereas Verrbruggen, Eelderink and van den Broecke (1983) applied a pole
placement self-tuning controller with an outer loop integrator. Almost without
exception, the models used for control law derivation have been of the
controlled autoregressive moving average {CARMA) form, leading to the
problem of including integral action in the resulting control law. In the work of
Moniague et al. (1986a, b) integral action is inherently included in the
controller by use of a CARIMA representation of the process with a Brownian
motion type disturbance model. This method has the added advantage that the
adaptive control law parameter estimator uses incremental data in the data
vector (Ay. Au, Al), rather than positional data as in many other self-tuning
algorithms.

Of interest in bioreactor control are the profite-model reference adaptive
control {MRAC) studies of Shioya er a/. (1985). They suggest a programmed
controller to foltow the desired (biomass concentration or specific growth rate)
profile, with a feedback compensator to regulate the system against
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disturbances. It is interesting to note that the GPC algorithm used by Montague
et al. (1986a, b) could also be used in model-following form by including P
weighting in the control law, where the transfer function Pcan be interpreted as
the inverse of the desired closed-loop system response {c.g. Clarke and
Gawthrop, 1979),

Two particular arcas of application of state estimation and adaptive control
techniques will be briefly reviewed. The baker’s yeast fermentation and the
penicillin fermentation have been selected since they are the most widely
studied and the techniques developed on these fermentations serve to
demonstrate the wide applicability of the algorithms.

Estimation and adaptive control of yeast fermentation

In order to maximize the cell numbers and productivity in a yeast fermentation
it is necessary to control all the states of the system. This was discussed
previously. In a yeast fermentation direct measurement of cell mass is not
usually available on-line. Williams, Yousefpour and Swanick (1984) and
Williams, Yousefpour and Wellington (1986) rccognized this problem and
chose to control RQ and dissolved oxygen in order to regulate cell mass. They
adopted an adaptive contro] strategy that used measurements of dissolved
oxygen concentration, CER, OUR. alcohol production rate, pH. and
temperature to control the fermentation by manipulation of nutrient feed rate
and stirrer speed. Temperature and pH were regulated by individual
singie-loop on—off controllers. The structure of the estimator and control
algorithms were assessed using a mathematical model of yeast fermentation.
Both single-input multi-output, SIMO. (nutrient feed control only) and
multi-input multi-output, MIMO, (both nutrient feed and stirrer speed
controlled) were studied. The SIMO control strategy was found not to achieve
the target of maximum ceil growth and yield. The MIMO control strategy
satisfied the desired performance criteria as well as meeting existing plant
operator levels of performance.

Figure 3 shows the responses of RQ and dissolved oxygen, with Figure 4
showing the corresponding control manipulations of glucose addition and
agitation rate. The suggested technique utilizes a linearized model of the
fermentation and was therefore anticipated to be of wide applicability. In
practice, careful choice of controller parameters (e.g. discrete time sample
period, cost function weightings, model erder, etc.) was found to be essential to
ensure satisfactory performance. Dekkers and Voetter (1985) also investigated
the adaptive control of a fed-batch baker’s yeast fermentation. Experiments on
three different batches were discussed. RQ was identified as the major contro}
parameter and two different controllers were studied. These were a
feed-forward adaptive controller based upon a gain scheduling approach. and a
self-tuning controller based upon the work of Astrom (1983). Figure 5 shows
the responses obtained in RO through the controlled variation of glucose feed
rate (GFR) with the feed-forward adaptive controller. QUR/M. where M
represents the total amount of biomass, is also plotted since it provides
additional important information concerning fermentation performance.
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Figure 4. Controlier-manipulated variables. nutrient feed rate and stirrer speed. corresponding
to Figure 3 (reproduced from Willkams, Yousefpour and Wellington, 1986, by permission of John
Wiley and Sons}.

Figure 6 shows similar responses, but this time the fermenter was under
self-tuning control. In this case RQ control appears satisfactory, except during
the period 8-5-9-5 hours when CO, measurement drift caused some problems.
At time 9-5 hours the analyser was recalibrated, causing a drop of 0-02 in the
measured RO, Stirrer speed (V) and dissolved oxygen (DQ) are also plotted.
Figure 7 again shows similar controlied responses under self-tuning control.
However. the effects of controller parameter estimation problems result in the
poor performance observed for several hours starting at 9-7 hours. At times
10-1 and 10-5 hours RQ again deviates from the set point due to controller
instabilities. These investigators also comment on the importance of careful
choice of the controlier parameters that influence the overall performance of
the algorithm.

Further examples of many studies that have been undertaken to investigate
the improved control of yeast fermentation can be found in the work of
Peringer and Blachere (1978), Dairaku et al. (1982) and Wu, Chen and Chiou
{1985).
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Estimation and adaptive control of penicillin fermentation

The studies of Montague er al. (1986a. b) on the control of biomass in a
fed-batch penicillin fermentation serve to demonstrate the importance of the
correct choice of control algorithm. Here a generalized predictive controlier
(GPC). a long-range receding-horizon predictive-type algorithm developed by
Clarke and Mohtadi (1985). was used to control biomass estimated by an EKF.
This controller was shown to overcome many of the problems experienced with
previous types of adaptive algorithms. With reference to fermentation. the
most important controller characteristics are its robustness, the ease of tuning
and low process overshoot. In addition, the GPC algorithm allows for the
inclusion of pre-programmed set-point profiles (future set points) in the
calculation of control action increments. It is anticipated that this facility could
make a significant contribution to bioreactor production control. The
controller is of the explicit type; that is. identification is applied to estimate the
parameters of a linear system model.

Figure 8 shows responses of fermenter biomass (superimposed upon desired
biomass profile—broken line), substrate addition (control-manipulated
variable) and penicillin concentration {secondary metabolite product). These
demonstrate the quality of control that is achievable through the application of
GPC. Following the initial rapid growth phase. which is operated open-loop,
the control foop is closed and the GPC algorithm is used to regulate growth rate
during the penicillin production phase. It is in the early penicillin production
phase where biomass profile overshoot s particularly undesirable as it would
lead to a lowering of penicillin production. Then, if normal growth rate were
maintained. oxygen transfer problems would arise towards the end of the
fermentation.

Although a number of successful simulation and pilot-plant studies have
been reported, as referenced above, it is fair to observe that in general the
algorithms still need to be ‘engineered’ to the point where robust consistent
control can be achieved without operator intervention or supervision.

Adaptive estimation for inferential control

In practice, laboratory analyses/assays are required to support fermentation
supervision and control. This imposes financial costs associated with laboratory
support as well as operational restrictions. Delayed and infrequent measure-
ment of some process outputs, determined by sampling limitations, prevents
the early detection of process disturbances. One approach to deal with the
problem of controliing infrequently sampled process outputs is to use the
information provided by other more easily measurable variables. For exampie,
this information can be used to provide an estimate of the controlled output.
The estimated values of the output can then be used for overall control of the
plant. Control schemes based on the feedback of estimated outputs are often
termed ‘inferential control schemes’. Anideal situation arises when the process
states are completely observable from the secondary outputs. Under such
circumstances, Kalman filtering techniques can be employed to estimate plant
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states using the secondary output measurements. Estimates of the controlled
output can then be computed and control of the plant achieved by feedback of
either the state estimates or the output estimates to appropriate controllers.
Published literature on the above methods is extensive. As mentioned earlier.
however, the use of Kalman filters is confined to situations where the plant is
completely observable from the secondary outputs and an adequately accurate
process model is available. Recently, other techniques have been developed
that allow the estimation of a ‘primary’ controlled output (for example,
biomass) from measurements of other ‘secondary’ outputs (for example,
fermenter outlet gas CO,, fermenter feed. etc.). Of particular interest are the
adaptive estimation and control methodologies being researched by Guilan-
doust, Morris and Tham (1987, 1988), Montague, Morris and Tham (1988),
and Dochain and Bastin (1984), Dochain, De Buyl and Bastin (1988).

An interesting approach adopted by Dochain and Bastin (1984) is to exploit
the known non-linear structure of the bioprocess, rather than consider it to be
approximated by time-varying linear ‘black-box’ models. In their approach the
parameter estimation and process control are performed simultaneously. In
addition, the specific growth rate is considered as a time-varying function of the
unknown parameters being estimated rather than being modelled by an
analytical function.

The experimental validation of an observer for the on-line state estimation of
fermentation performance (biomass and product) has also recently been
presented by Dochain. De Buyl and Bastin (1988). Here poly-3-
hydroxybutyrate production, in a 60 litre pitot-scale fermenter. is used to
demonstrate the performance of the observer. The algorithm uses on-line
measurements of reactor volume, substrate feed rate. dissolved oxygen
concentration and the gaseous oxygen balance to estimate biomass (X),
product concentration (P) and ammonia (N). Figures 9, 10 and 1/ compare
estimated and off-line measured data. showing good agreement. An important
aspect of this observer is that prior knowledge of specific growth rate and

5((9?'1)
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Figure 9. On-line state estimation—biomass concentration: B denotes off-line data used for
validation only {reproduced from Dochain, De Busl and Bastin, 1988, by permission of the Society
of Chemieal Endustry).
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Figure 10, On-line state estimation—product coneentration; B denotes off-line data used for
validation only (reproduced from Dochain. De Buyl and Bastin. 1988, by permission of the Suciety
of Chemical Industry).
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Figure 11.  On-ine state estimation—ammonia concentration: B denotes off-line duta used for
validation only (reproduced from Dochain, Do Buyland Bastin. 1988, by permission ol the Society
of Chemical Industry).

specific production rate is not required. These rates can, however, be
computed on-line (Bastin and Dochain, 1986).

An alternative starting point for the development of the adaptive estimation
(soft-sensor) algorithms adopts the philosophy that the bioprocess dynamics
can be represented in either of two quite general forms {an observer canonical
form and an input—output form). The approach using @ general input—output
model of the process is similar to that adopted for the development of
well-known adaptive control laws, briefly discussed previously. except that an
additional term representing the CO, measurement is included. The
techniques adopted in both of these approaches reflect the experiences of
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previous work on adaptive and self-tuning control {e.g. Morris, Nazer and
Wood, 1982; Montague et al., 1986a.b).

An interesting option that becomes available with the availability of a ‘fast’
estimate of controlled output {e.g. fermenter biomass concentration} is
closed-loop “inferential’ control of that variable—adaptive inferential control.
The values of estimated primary output can be used as a feedback signal for
almost any constant parameter or adaptive control algorithm. Figure 12 shows
the underlying philosophy. Here ‘fast’ measurements of fermenter feed and
CER, coupled with ‘slow’ [aboratory assays of biomass, allow a “fast” estimate
of biomass to be inferred which could be used for closed-loop control.

Industrial fermentation verification of the inferential estimation scheme has
been undertaken on a continuous fermentation, operated in stirred-tank and
air-lift-fermenter configurations, producing a fungal mycelium. Present
industrial biomass regulation is based upon the analysis of four-hourly samples
and the dilution rate adjusted upon the return of the assay information.
Adaptive estimators (Montague. Morris and Bush, 1988), provide a means by
which frequent estimates of biomass can be obtained. The estimator is supplied
with hourly CO; and dilution rate measurements and four- or eight-hourly
biomass concentration assays, which enable the prediction of dry weight at
hourly intervals. Industrial-scale trials have been promising.

Figure 13 shows the CO; and dilution rate measurements over a 470-hour
period of continuous operation. For reasons of confidentiality, the ordinate
scales have been removed in this and following figures. (1t is noted, however.
that the ordinate scale does not start at zero.) Figure 14 shows the biomass assay
results (dry weight analyses-—step-like response) over the fermentation period
and how they compare with estimated biomass concentration. Here the
estimator is supplied with filtered dilution rate and off-gas CO, measurements
every hour, and dry weight assays every eight hours. It can be seen that the
ability of the estimator to predict biomass transient behaviour (at the
measurement rate of off-gas CO,) is very acceptable. Due to the adaptive
nature of the algorithm, itis, of course, capable of dealing with the slow drift in
calibration sometimes experienced with on-ling CO; measurements.

Optimization of fermentations

The large variety of fermentation products, the complexity of fermentation
processes and the multitude of control variables offer a wide range of
possibilities for optimization schemes. A fermentation such as that of yeast can
be optimized in order to maximize a yield of biomass, whereas secondary
metabolite fermentation can be controlled in order to maximize antibiotic
production, for instance. Optimization is not only concerned with product
maximization; other process considerations are essential, for example,
production costs and fermentation time span. Optimization of present
industrial fermentations has been carried out predominantly on an empirical
basis. Although this has resulted in some considerable improvements in
operability, the application of modern mathematical optimization theory offers
the potential of even greater benefits.
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At the heart of any optimization scheme is the development of a
mathematical model of the system which is capable of adequately describing
behaviour, The models discussed previously for estimation and control
purposes can. and have been, applied in fermentation optimization studies.
Numerous references can be found and many are set out in Constantinidies
(1979). For example, Biryukov (1982} who applied a continuous maximum
principie approach to the optimization of a fed-batch penicillin fermentation.
[n this case the substrate addition was varied in order to maximize penicillin
production. Takamatsu et al. {1975) applied the continuous maximum principle
and Green's theorem to a continuous fermentation for amino-acid production.
Here the optimization enabled the maximization of amino-acid production and
minimization of transient time by the variation of the feed flow rate. The use of
4 process model can be highlighted in the work of Constantinidies and Rai
(1974) in their attempt to predict the optimum temperature profile for the
maximization of peacillin production.

Modelling the rate of cell growth by the well-known logistic faw:

X bxa — xiby Eq.(12)
dt
where b is a parameter closely related to the specific growth rate in the early
period of the fermentation and b5 is approximately equivalent to the maximum
concentration of cells that can be achieved. The rate of penicillin biosynthesis
increased proportionately to the concentration of mature cells and decreased in
proportion to the concentration of penicillin (accounting for hydrolysis),
hence:
ar = DX, ., — byP Eq.(13)
dt
where fm is the maturation time and P is the penicillin concentration.

The parameters b; were determined experimentally for a range of operating
temperatures. The maturation time was assumed to be 20 hours. that is cells
that were 20 hours old or older were capable of producing penicillin.

Applying Pontryagin’s Maximum Principle to the above equations, they
obtained a continuous profile for the control variable, temperature, which
enabled the optimization of penicillin production. This profile, shown in Figure
13, suggests a lowering of operating temperature during the peniciliin
production phase, contradicting the standard industrial operating procedure of
maintaining a constant temperature throughout the fermentation.

An alternative technique, closely linked with the adaptive inferential ideas
discussed previously, is the use of a generally structured linear model, which
adapts as changes in the process occur. This adaptation enables the tracking of
process dynamics and hence provides a means by which on-line optimization
can be achieved. Golden and Ydstie {1987) demonstrate the methodology in
studies aimed at optimizing the yield of yeast in a continuous fermentation.

The optimization of fermentation processes offers the possibility of high
returns, since the raw materials costs are high while yields can be low. Even a
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Figure 15,  Optimal temperature profile in penicillin lermentation (reproduced from Constansini-
dies and Rai. 1974, by permission of John Wiley and Sons).

small increase in yield could result in considerable savings. The area of
fermentation optimization is therefore one of growing interest. An excellent
review and background to the principles involved can be found in
Constantinidies (1979).

Knowledge-based systems in fermentation supervision and control

It should be clear from the discussions above that biological systems are
extremely complex and in many cases not well understood. In addition the
environment that exists within a fermenter is often uncertain. subjecting the
biological system to unknown localized disturbances. Indeed, the fermentation
process itself is only a small part of an equally complex industriai-sociological
system. Although the algorithmic approaches described above can offer much
insight and provide for improved process operability, the comprehensive
management of a fermentation process requires more than simply an
algorithmic approach at every level. "Expert’ and *knowledged-based” systems,
as replacement experts, may not be the complete answer, but the artificial
intetligence (Al techniques developed in the past 20 years do offer a number of
solution strategies (e.g. Stephanopoulos and Stephanopoulos, 1986). These
may be appropriate for supervisory environmental control and optimization
(e.g. Karim and Halme, 1988; Stephanopoulos and Tsiveriotis, 1988), fault
diagnosis (Halme, 1988}, integration of lower-level control algorithms and
utilization of qualitative and quantitative biological data. Al may also have a
wider role in the design and control of the biological processes actually taking
place in the fermentation (Seressiotis and Bailey, 1988).
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Real-time expert systems software environments are now starting to become
available, an excellent example being Gensym's G2 {Moore and Kramer,
1986), and are being applied to fermentation processes (Aynsley et al., 1989).
Data input from new sensors, improved signal analysis and statistics, advanced
control algorithms, state and parameter estimation leading to predictions of
future state and output behaviour, improved data handling and learning
algorithms, and Al techniques should result in both a deeper understanding of
fermentation behaviour and better process supervision and control of
bioreactors.

Discussion

As the importance of biotechnology-based industries increases in the market
place, there is a growing need to operate bioprocesses in a cost-effective
manner. Whereas the original route to process improvement was through
strain development, an alternative complementary approach discussed above
is that of improved process supervision and control. As outlined, these
techniques provide quite significant potential for improvements in process
operability and hence increased profitability. Although the techniques and
methodologies have been discussed with respect to their application to
fermentation processes. the underlying fundamental theories, and to a greater
or tesser extent their practice, are directly applicable to a wider spectrum of
hioprocess systems—for example, wastewater treatment. The discussions on
fermentation system control have made wide reference to three important
IFAC meetings (Halme, 1982; Johnson, 1985; Fish and Fox, 1988). These
conference proceedings provide a valuable source of reference for modelling
and control studies on the whole range of biotechnological processes.

References

AIBAL S NAGAL 5. aND NISHIZAVO. Y. (1976). Fed-batch cutture of Saccharomyces
cerevisiae: a perspective of computer control to enhance the productivity of bakers
veast cultivation. Biotechnology and Bioengineering 28, 1001-1016.

ANDERSON, B.D.O. aNDMooRE, I.L. (1979). Opsimal Fiitering. Prentice Flall Press.
Englewoed Cliffs, New Jersey.

ASTROM. K.J. (1983). Theory and applications of adaptive control — a survey.
Automatica 19, 471486,

AYNSLEY, M., PEEL. D., MORRIS, A.J. AND MONTAGUE., G.A. (1989). A real time
knowledge based system for fermentation control. In Proceedings of the American
Control Conference. Pittshurgh, USA.

Barrai, R.K. aND REUSS, M. (1980). A mechanistic model for penicillia production.
Journal of Chemical and Technical Biotechnology 30, 332-344,

BASTIN, G. AND DOCHAIN, D. (1986). On-line estimation of microbial specific growth
rates. Automatica 22(6). 707-710.

Birou, B., MaRrIson, LW. AND vON STOCKAR, U. (1987). Calorimetric investigations
of acrobic fermentations. Biotechnology and Bioengineering 30, 650-66(,

BIRYUKOV. V.V, (1982). Computer control and optimisation of microbial metabolite
production. In Proceedings of the 1st IFAC Workshop on Modelling and Control of
Biotechnical Processes, August, Helsinki (A. Halme, Ed.), pp. 135-144. Pergamon
Press, Oxford.



182 G.A. MONTAGUE, A.J. MORRIS AND A.C. WARD

BROOKS, 5.L. aND TURNER, A.P.F. (1987). Biosensors for measurement and control,
Transactions of the Institute of Measurement and Control 20, 3743,

Buckranp, B., Brix, T., FASTERT, H., GsEwonyo, K., HUNT, G. AND JaiN, [
{1985}. Fermentation exhaust gas analysis using mass spectrometry. Bictechnology
3,982-992.

Caram, CT. aNp ISMAIL, B.ALK. (1980}. Investigation of factors in the optimisation
of penicillin production. Journal of Chemical Technology and Biotechnology 30,
249-262.

CARLEYSMITH. S.W. anD Fox. R.1. (1984). Fermenter instrumentation and control.
Advanced Biotechnological Processes 3, 1-51.

CARR. R.J.G..Brown, R.G.W_, Rarrry, J.G. aND CLARKE, D_J. (1987). Laser light
scattering and related techniques. In Biosensors: fundamentals and applications
(A.P.F. Turner. [. Karube and G.S. Wilson, Eds), pp. 679-701. Oxford University
Press, Oxford.

Cearke, DJ.. Kerl, D.B., MORRIS, I.G. AND BURNS, A. (1982}, The role of
on-selective electrodes in microbial process control. fon-sefective Electrodes
Review 4, 75-131.

CLARKE, . W. AND GAwTHROP. P.J. {1979). Self-tuning control. Proceedings of the
Institation of Electrical Engineers Part D 126(6), 633-640.

CLARKE, D.W. aND MoHTADI. C. (1985). Self-tuning control of a difficult process. In
Proceedings of the 7th IFAC Conference on Identification and Systen Parameter
Estimation, July, University of York, England. pp. 1009-1015. Pergamon Press.
Oxford.

CLELAND, N. AND ENFORS, $.0. (1983). Control of glucose-fed batch cultivations of E.
coli by means of an oxygen stabilised electrode. European Journal of Applied
Microbiology and Biotecinology 18, 141-147.

CLELAND, N. aND ENFORS. S.0. (1984), Externally buffered enzyme clectrode for
determination of glucose, Analviica Chimica Acta 163, 281-285.

CONSTANTINIDIES, A. (1979). Appiication of rigorous optimization methods to the
controland operation of fermentation processes. Annals of the New York Academy
of Sciences 326, 193-221.

CONSTANTINIDIES, A. AND RAL V.R. (1974}, Application of the continuous maximum
principle to fermentation processes. In Biotechnology and  Bioengineering
Symposiwm, No. 4, pp. 663-680. John Wiley and Sons, New York.

ConTots, D.E. (1959). Kinetics of bacterial growth: Relationship between population
density and specific growth rate of continuous cultures, Jowrnal of General
Microbiclogy 21, 40-30,

CooNeY, C.L. AND SwarTZ, J.R. (1982). Application of computer control to yeast
fermentation. In Proceedings of the 1st IFAC Workshop on Modelling and Control
of Bictechnical Processes, August. Helsinki (A. Halme, Ed.), pp. 243-252.
Pergamon Press, Oxford.

Coongy, C.L., WANG, Y. W. anD WanG, D.1.C. (1977). Computer aided material
balancing for prediction of fermentation parameters. Biotechnology and
Bioengineering 29, 55-67.

CopperLa, S.J. AND DHURIATI, P. (1987). Low cost computer-coupled fermentor
off-gas analysis via quadrupole mass spectrometer. Biotechnology and Bioen-
gineering 29, 679-689.

Damraku, K., IzuMoTo, E., MORIKAWA, H., SHIOY A, S. AND TAKAMATSU, T, (19823,
Optimal quality control of baker's yeast fed-batch culture using population
dynamics. Biotechnology and Bioengineering 24, 2661-2674.

DEKKERS, R.M. {1982). State estimation of a fed-batch baker’s yeast fermentation. In
Proceedings of the Ist IFAC Workshop on Modelling and Control of Biotechnical
Processes, August, Helsinki {A. Halme, Ed.), pp. 201-211. Pergamon Press,
Oxford.

DeKKERS, R.M. (1983). Dynamic optimization of a fed-batch fermentation process.,



Fermentation monitoring and control 183

Preprints of the Ist IASTED International Svmposium on Applied Control and
Identification, Copenthagen. Volume 2 (F. Conrad. Ed.). pp. 334-339.

DEKKERS, R.M. (1984). Optimal control of a fed-batch fermentation. In Innovarions in
Biotechnology (E.H. Houwink, R.R. Houwink and V. Meer, Eds). pp. 313-33{0.
Elsevier, Amsterdam.

DEKKERS, R.M. AND VOETTER, M., (1985). Adaptive controt of a fed-batch baker’s
yeast fermentation. In Proceedings of the Ist IFAC Symposium on Modelling and
Cantrol of Biotechnological Processes, December, Noordwijkerftour (A, Johnson.
Ed.}. pp. 103-110. Pergamon Press, Oxford.

Docualn, D, (1986). On-line parameter estimation, adapiive state estimation and
adaptive conirol of fermentation processes. PhD thesis. University of Louvain.
Belgium.

Doctams, D, anD BasTin, G. (1984). Adaptive identification and control algorithms
for nenlinear bacterial growth systems. Automaiica 20, 621~634.

Dociain, D, AND BasTin, G, (1985). Stable adaptive algorithms for estimation and
control of fermentation processes. In Proceedings of the 15t IFAC Svmposium on
Muadelling and Control of Biotechnological Processes. December, Noordwijkerhiout
{A. Johnson, Ed.). pp. |-6. Pergamon Press, Oxford.

Docuamn, D., oE BuvyL, E. AnD BAsTIN, G, (1988}, Experimental validation of a
methodology for on-line estimation in bioreactors. In Proceedings of the <th
International Congress on Computer Applications in Fermentation Technology -
Modelling and  Control of Biotechnical  Processes. SCHIFAC, September,
Cambridge, England (N. Fish and R, Fox, Eds).

Fisii. Noanp Fox. R {Eds) (1988). Proceedings of the 4th [niernationad Congress on
Computer Applications in Fermentation rechnology — Modelling and Convol of
Biowechnical  Processes, SCHIFAC, Sepiemiber, Cambridge.  England.  Ellis
Horwood. Chichester.

FisuMaN, V.M. anD BIRYUKOV. V. V. (1974). Kinetic model of secondary metabolite
production and its use in computation of optimal conditions. Bioiechnology and
Bioengineering 4. 647-662.

Frynw. D.S. (1982} Instrumentation for fermentation processes. In Proceedings of the
Ist IFAC Warkshop on Modelling and Control of Biotechnical Processes, August.
Helsinki (A. Hadme. Ed.), pp. 5-12. Pergamon Press, Oxford.

FrRueH, K., LORENZ. To.. NIEMOFF. J.. DIEKMANN, J.. HIDDESSEN, R. AND
SCHUEGERL, K. (1985). On-line measurement and control of peniciflin V
production. In Proceedings of the 1st IFAC Conference on Modelling and Control of
Biotechnological Processes, December, Noordwijkerfiout (A, Johnson, Ed.). pp.
45-48. Pergamon Press, Oxford,

Gorpen, MP. anNp Ypstie, B.E. {1987). Non-lincar adaptive optimization of
continuous bioreactors. In American Institute of Chemical Engineers Miami
Mecting. pp. 356-361.

GUILANDOUST. MLT.. MORRIS, A.J. AND THamM, M. T. (1987). Adaptive Inferential
Control. Praceedings of the Institution of Electrical Engineers, Part D, 134{3},
171-179.

GurAanDpousT, MU T.. MORRiS, A J. aNnD TraM. M. T. (1988). An adaptive estimation
algorithm for inferential control. Fndustrial Enginecring Chemistry and Research
27, 1658-1664.

Harme, AL (En.) (1982). Proceedings of the 1st IFAC Workshop on Maodelling and
Contral of Biotechnical Processes, August, Helsinki. Pergamon Press, Oxford,
HavLme, A, (1988). Expert system approach to recognise the state of fermentation to
diagnose faults in bioreactors. In Proceedings of the 4th International Congress os
Computer Applications in Fermentation Technology - Modelling and Control of
Biotechnical Processes, SCHIFAC, September, Cambridge, England {N. Fish and
R. Fox. Eds). Ellis Horwood, Chichester.

HALME, A. AND SELKAINAIO, A. (1982). Application of a non-linear filter to




84 G.A. MonTAGUE, AL, MORRIS AND A.C. WARD

multivariable parameter adaptive controi in a distributed micro computer. In 61
IFAC Symposium on Identification and System Parameter Estimation, Washington,
USA. Pergamon Press.

HaLME, A, KuisMin, R.AND KORTENIEMI, M. (1985). A methed to consider delayed
laboratory analysis in state and parameter estimation of bioreactors. In
Proceedings of the Ist IFAC Symposium on Modelling and Control of
Biotechnological Processes, December, Noordwijkerhout (A. Johnson, Ed.), pp.
179-184. Pergamon Press, Oxford.

Hawrris. CM. anp KELL, D.B. (1985). The estimation of microbial biomass,
Biosensors 1, 17-84,

HOLMBERG. U. aAND Orsson, G. (1983), Simultancous on-line estimation of oxvgen
transfer rate and respiration rate. In Proceedings of the 1st IFAC Sympeosinum on
Modelling and Control of Biotechnological Processes, December, Noordwijkerhout
(A. Johnson, Ed.), pp. 185-189. Pergamon Press, Oxford.

HOLMBERG, A. anD RANTA, J. (1982). Procedures for parameter and state estimation
of microbial growth process models. Awromarica 18, 181-193,

HUMPHREY, A.E. AND JEFFREYS, P. (1973). Invited lecture presented at the IV GIAM
meeting, Sac Paulo, Brazil.

IsIMORI, Y., KARUBE, 1. anD SuzZUKI, S. (1981). Determination of microbial
populations with piezo-electric membranes. Applied Environmental Microbiology
42, 632-637.

JazZwiINsKL, A H. (1970). Stochastic Processes and Filtering Theory. Academic Press.
New York.

JOHNSON, A (ED.) (1985). Proceedings of the Ist IFAC Symposium on Modelling and
Control of Biotechnological Processes, December, Noordwijkerhout. Pergamon
Press, Oxford.

JOHNSON. A. (1987} The control of fed-batch fermentation processes — a survey.
Automatica 23(6), 691-705.

KariM, M.N. aND HaLME, A. (1988). Reconciliation of measurement data in
fermentation using on-line expert system. In Proceedings of the 4th International
Congress on Computer Applications in Fermentation Technology ~ Modelling and
Control of Biotechnical Processes, SCHIFAC, September, Cambridge, England (N,
Fish and R.I. Fox, Eds). Ellis Horwood. Chichester.

KARUBE, 1. (1984). Possible developments in microbial and other sensors for
fermentation control. Biorechnology and Genetic Engineering Reviews 2, 313-339.

KELL, D.B. (1987). The principles and potential of electrical admittance spectroscopy.
In Biosensors: fundamentals and applications (A P.F. Turner, 1. Karube and G 5.
Wilson, Eds). Oxford University Press, Oxford.

KISHIMOTO, M., SAWANO. T.. YOsHIDA, T. AND TAGUCHI, H. {1982). Optimization of
a fed-batch culture by statistical data analysis. In Proceedings of the Ist [FAC
Workshop on Modelling and Control of Biotechnical Processes, August, Helsinki
{A. Halme, Ed.}, pp. 161-168. Pergamon Press, Oxford.

LAKROL M. aND CHERUY, A, (1988). A new nonlinear adaptive approach to automatic
control of bioprocesses. Proceedings of the #th International Congress on Computer
Applications in Fermentation Technology — Modelling and Control of Biotechnical
Processes, SCHIFAC, September, Cambridge, England (N. Fish and R.1. Fox,
Eds). Eilis Horwood, Chichester.

LATIMER, P. (1982). Light scattering and absorption methods of studying ceil
population parameters. Annual Review of Biophysics and Bioengineering 11,
129-150.

LEES, F.P. (1976). The reliabitity of instrumentation. Chemistry and Industry §
195-205.

LEIGH, J.R. anD NG, M.H. (1984). Estimation of biomass and secondary preduct in
batch fermentation. In 6th International Conference on Analysis and optimisation
of systems, Nice, pp. 19-22.

LIuNG, L. (1979). Asymptotic behaviour of the extended Kalmar filter as a parameter

H



Fermentation monitoring and control 185

estimator for linear systems. [EEE Transactions on Automatic Control AC-24.
36-30.

LiunG, L. AND SODERSTROM, T. (1983). Theory and Practice of Recursive
Identification. MIT Press. Cambridge. Mass.

MaNDERIUS, C.F.. DANIELSSON, B. AnND MATTIASSON, B. (1984). Evaluation of a
dialysis probe for continuous sampling in fermenters and in complex media.
Analytica Chimica Acta 163, 135-141.

MiLLER, J.A., LorEZ, A M., SMITH, C.L. aND MURRILL, P.W. (1967). A comparison
of controller tuning techniques. Control Engineering December, 72-75.

Mvyer, H.-P., KarPELL, O. AND FIECHTER, A. (1985). Growth control in microbial
cultures. Annual Review of Microbiology 39.299-319.

MoNOD. J. (1950). La technique de culture continué. théorie ¢t applications. Anrales
de U Institut Pasteur 79, 390-410.

MoNTAGUE, G.A. (1987). Inferential self-tuning control of the fed-batch penicillin
fermentation, P thesis, University of Newcastie-upon-Tyne.

MONTAGUE, G.A., MORRIS, AL anp BusH, I.R. (1988). Considerations in control
scheme development for fermentation process control. JEEE Controf Systems
Magazine. pp. 4448,

MONTAGUE. G.A., MORRIS, A.J. aND TuaMm, M.T. (1988). Adaptive inferential
estimation and its application to biomass control. In Proceedings of the 4rh
International Congress on Computer Applications in Fermentation Technology —
Moadelling and Control of Biotechnical Processes, SCHIFAC, Sepiember,
Cambridge, England (N. Fish and R.1. Fox, Eds). Ellis Horwood., Chichester.

MONTAGUE., G.A., MORRIs, AJ., WRIGHT, A.R.. AYNSLEY. M. AND Warp, A.C.
(1986a}. On-iine estimation and adaptive control of penicillin fermentation.
Proceedings of the Institution of Electrical Engineers, Part D 133(5). 24(-246.

MONTAGUE, G.A.. MORRIS, A J.. WRIGHT. A_R., AYNSLEY. M. AhD Warn, A.C.
{1986b). Modelling and adaptive control of fed batch penicillin fermentation.
Canadian Journal of Chemical Engineering 64. 567-580).

MONTGOMERY, P.A., WiLLIaMS, D. AND SwanicK, B.H. (1983). Control of a
fermentation process by an on-line adaptive technique. In Proceedings of the 1si
IFAC Symposium on Modelling and Control of Biotechnological Processes.
December., Noordwifkerhout (A, Johnson, Ed.). pp. 81-89. Pergamon Press,
Oxford.

MoOORE, R.L. AND KRAMER, M.A. (1986). Expert systems in on-linc process control,
In Proceedings of the 3rd International Conference on Chemical Process Control,
Asilomar, California.

MoRrrIs. AJ.. NAZER. Y. AND WooD. R.K. (1982). Multivariate self-tuning process
control. Optimal Control and Appiications 3. 363-387.

Mou., D.G. (1979). Toward an optimum peniciliin fermentaiion by maoniroring and
cortrolling growth through computer aided mass balancing. PhD Thesis, MIT.
Cambridge, Mass.

Mou, D.G. anp Cooney. C.L. (1970}, Application of dynamic calorimetry for
monitoring fermentation processes. Biotechnology and Bicengineering 18,
1371-1392.

Mou, D.G. anDp Cooney, C.L. (1983). Growth monitoring and controi through
computer-aided on-line mass balancing in a fed-batch penicillin fermentation.
Biotechnology and Bioengineering 25, 225-255.

Narkamuka, I anD CataM, C.T. (1983). Optimal control of penicillin production
using a mini-computer. Biotechnology Letters 5, 561-566.

NESTAAS. E. AND WaNG, D.L.C. {1983). Computer control of the penicillin
fermentation using the filtration probe in conjunction with a structured process
model. Biotechnology and Bioengineering 25.781-796.

NIHTILA, M., HARMO, P. AND PERTTULA. M. (1984). Real-time growth estimation in
batch fermentation. In Proceedings of the 9th IFAC World Congress, July,
Budapest, Hungary, pp. 225-230. Pergamon Press.



186 G A. MONTAGUE, A.J. MORRIS AND A.C. WARD

OMSTEAD, DR, AND GREaSHAM, R.L. (1988). Integrated fermentor sampling and
analysis. In  Proceedings of the 4ih International Congress on Compuier
Applicarions in Fermentation Technology - Modelting and Control of Biotechnical
Processes, SCHIFAC, Seprember, Cambridge, Fngland (N. Fish and R.1. Fox,
Eds). Ellis Horwood, Chichester.

PERINGER, P. AND BLACHERE, H.T. (1978). Modelling and optimal control of baker’s
yeast production in repeated fed-batch culture. In Proceedings of the 2nd
International Conference on Computer Applications in Fermentation Technology,
University of Pennsylvania, Philadelphia, pp. 205-214.

Picoue, D. anp Corrievu, G. (1986). New instrument for on-line viscosity
measurement of fermentation media. Biotechnology and Bioengineering 31, 19-23.

PirT, 5.1, AND RIGHELATCG, R.C. (1967). Effects of growth rate on the synthesis of
peniciliin by Penicillium chrysogenum on batch and chemostat cultures. Applied
Microbiclogy 15, 12841290

PouLisse, H.N.J. anD van HELDEN, C. (1985). Adaptive 1.Q control of fermentation
processes. In Proceedings of the 1st IFAC Symposium on Modelling and Conirol of
Biotechnological Processes, December, Noordwijkerhour (A, Johnson, Ed.}y, pp.
7-11. Pergamon Press, Oxford.

Ramsay, G., TurNER, A.P.F., FRANKLIN, A. anD Hicams, LI (1985), Rapid
bioelectrochemical methods for the detection of living organisms. In Proceedings
of the Ist IFAC Symposiumt on Modelling and Control of Biotechnological
Processes, December, Noordwijkerhour (A. Johnson, Ed.}, pp. 65-71. Pergamon
Press, Oxford.

REuUss, M. anp Bramuger, U. {1985). Influence of substrate distribution on
productivities in computer controlled bakers yeast production. In Proceedings of
the Ist IFAC symposium on Modelling and Conirol of Biotechnological Processes,
December, Noordwijkerhout (A, Johnson, Ed.), pp. 119-124. Pergamon Press,
Oxford.

San, K.Y. AND STEPHANOPOULOS, G. (1984). Studies on on-line bioreactor
identification. 11, Numerical and experimental results. Biotechnology and
Bivengineering 26, 11891197,

SERESSIOTIS, A. AND BAEY, J.E. (1988). MPS: Ap artificial intelligence software
system for the analysis and synthesis of metabolic pathways. Biotechnology and
Bioengineering 31, 587-602.

SHIOYA, S, TAKAMATSU, T. AND Dairaru, K, (1982). Measurement of state variables
and controlling biochemical reaction processes. In Proceedings of the Ist IFAC
Workshop on Modelling and Control of Biotechnical Processes, August, Helsinki
(A. Halme, Ed.}, pp. 13-25, Pergamon Press, Oxford.

SHICYA, S.. SHiMizu, H.. OGATA, M. aND TakaMaTsy, T. (1985). Simuiation and
experimental studies of the profile control of the specific growth rate in a fed-batch
culture. In Proceedings of the [st IFAC Symposium on Modelling and Control of
Biotechnological Processes, December, Noordwijkerhout (A. Johnson, Ed.}, pp.
49-54. Pergamon Press, Oxford.

SPRIET, J.A. (1982). Modelling of the growth of micro-organisms: a critical appraisal. In
Environmental Systems Analysis and Management {A. Rinaldi, Ed.), pp. 451456,

SPRIET, J.A., BOTTERMAN, I., DEBUYSER, D.R., DE VISCHER, P.L. AND VANDAMMA,
E.J. (1982). A computer-aided non-interfering on-line technique for monitoring
oxygen-transfer characteristics during fermentation processes. Biotechnology and
Bioengineering 24, 1605-1621.

SQUIRES, R.W. {1972). Regulation of the peniciilin fermentation by means of a
submerged oxygen-sensitive electrode. Developments in Industrial Microbiology
13, 128~135.

SrRiNIVAS, S.P. AND MUTHARASAN, R. (1987). Ianer filter effects and their
interferences in the interpretation of cuiture fluorescence. Biotechnology and
Bioengineering 30, 769-774.

STEPHANOPOULGS, G. AND SAN, K.Y (1981). State estimation for computer control of



Fermentation monitoring and control 187

biochemical reactors. In Advances in Biotechnology (M. Moo-Young, Ed.},
volume 1, pp. 399-403. Pergamon Press. Oxford.

STEPHANCPOULOS., G. AND San, K.Y. (1984). Studies on on-line bioreactor
identification, I, Theory. Biotechnology and Bioengineering 26, 11761188,

STEPHANOPOULOS, G. AND STEPHANOPOULOS. G. (1986). Artificial intelligence in the
development and design of biochemical processes. Trends in Bioiechnology
September, 241249,

STEPHANOPOULOS, G. AND TSIVERIOTIS. C. (1988). Toward a systematic method for
the generalization of fermentation data. In Proceedings of the 4th International
Caongress on Computer Applications in Fermentation Technology — Modelling and
Control of Biotechnical Pracesses, SCHIFAC. September, Cambridge, England (N.
Fish and R.1. Fox, Eds}. Ellis Horwood. Chichester.

SVRCEK, W.Y., ELLIOT. R.F. aAnD Zanc, LE. (1974), The Extended Kalman Filter
applied to a continuous culture model. Biotechnalogy and Bioengineering 16,
§27-840.

SWINIARSKE, R.. LESNIEWSKL. A.. DEWSKI, M.A M., NG. M.H. anNp LEGH, J.R.
(1982}. Progress towards estimation of biomass in a batch fermentation process. In
Proceedings of the Ist IFAC Workshop on Modelling and Control of Biotechnical
Processes, August, Helsinki (A. Halme. Ed.), pp. 231-241. Pergamon Press.
Oxford.

TaraMaTsy, T., HasHIMOTO, L, SHIOYA . S., M1ZUHARA, K., KOIKE. T. aND OHINO,
H. {1975). Theory and practice of optimal centrol in continuous fermentation
process. Automatica 11, 141-148.

TAKAMATSU, T., SHIOYA, §.. SHIOTA, M. anD KiTABATA. K. (1979). Application of
modern control theories to a fermentation process. Biotechnology and Bioen-
gineering Svmposin 9. 283-302.

TArRBUCK, L.A., NG, M.H., LEIGH, J.R. anND TaMpion, J. (1983). Estimation of the
progress of Streptomyces clavuligerus fermentation for improved on-line control of
antibiotic production. In Proceedings of the Ist IFAC Svmposium Modelling and
Control of Biotechnological Processes, December, Noordwifkerhionr (A Johnsen.
Ed.}.pp. 17i-178. Pergamon Press. Oxford.

THOMPSON. M. L. (1984). Systent analysis, sinudation, control and optimisation of the
fed-batch penicillin fermentation, MS thesis. MIT, Cambridge . Mass.

TRUCHAUD, A., HERSANT, I., GLIKMANAS, G.. FIEVET. P. AND DUBOIS. O. (1980).
Parallel evaluation of Astra8 and Astrad multichannel analysers in two hospital
laboratories. Clinical Chemistry 26, 139-141.

VERRBRUGGEN, H.B.. EELDERINK. G.H.B. AND VAN DEN BROECKE. V.. (1983).
Mualtiloop controiled fed-batch fermentation process using a seiftuning controlier.
In Proceedings of the Ist IFAC Conference on Modelling and Control of
Biotechnological Processes, December, Noordwijkerhout {A. Johnson. E4.), pp.
91-100. Pergamon Press, Oxford.

WanG. H.Y., COoNEY, C.L. AND WANG, D.I1.C. (1977). Computer aided bakers yeast
fermentations. Biotechnology and Bioengineering 19, 69-86.

Wana, H.Y., COONEY, C.L. AND WANG. D.L.C. (1979). Computer control of baker’s
veast production. Biotechnology and Bioengineering 21, 975-995.

WaRrwICK, K. (1981). Self-tuning regulators — a state space approach. Iniernational
Journal of Control 33(5), 839-858,

WELLSTEAD, P.E. aND SanofF, S.P. (1981). Extended self-tuning algorithm.
Inrernational Journal of Control 34, 433455,

WiLllams, D YOUSEFPOUR, P. AND SWANICK, B.H. (1984). On-line adaptive control
of a fermentation process. Proceedings of the Institution of Electrical Engineers,
Part D 131(4), 117-124.

WiILLIAMS, D., YOUSEFPOUR, P. AND WELLINGTON, E.M.H. (1986}. On-line adaptive
control of a fed-batch fermentation of Saccharomyces cerevisiae. Biotechnology
and Bioengineering 28, 631-645,

WU, W, Cuen, K.Co anp CHiou. HOW. (1985). On-line optimal control for



[88  G.A. MoNTAGUE, A.J. MORRIS AND A C. WARD
fed-batch culture of baker's yeast prodaction. Biotechnology and Bioengineering
27, 756-760.

ZABRISKIE, D.W. AND HUMPHREY, A.E. (1978). Continuous dialysis for the on-line
analysis of diffusible components in fermentation broth. Biotechnology Bio-
engineering 24, 1295-1301.





