9
Immobilized Biosystems in Research and
Industry

J.F. KENNEDY"*, E.H.M. MELO* anD K. JUMEL"

* Research Laboratory for the Chemistry of Bioactive Carbohydrates and
Proteins, Department of Chemistry, University of Birmingham, Birmingham,
BIS2TT, UK and " Chembiotech Lid, Institute of Research and Development,
University of Birmingham Research Park, Vincent Drive, Birmingham, B15
2850, UK

Introduction

Despite more than 20 years of scientific research into the immobilization of
enzymes, industrial applications are limited (Powell, 1984). However, novel
developments have been achieved by extending the study of immobilization
techniques fo include non-enzymic proteins, cells and other molecules, as well
as by improving techniques of immobilization for enzymes using new methods
of activation for carriers which should increase the range of potential industrial
applications. Nowadays, the knowledge obtained from the investigations of
enzyme immobilization techniques has led to the immobilization of other
bioactive materials such as protein A, antibodies, concanavalin A, cells.
nucleic acids, etc., thereby encouraging applications in therapeutic, analytical
and industrial processes {Aston and Turner, 1984; Karube, 1984: Neujahr,
1984; Powell, 1984, Akin, 1987, Nilsson, 1988).

The identification of an appropriate source material (e.g. enzyme, celi,
antibody or antigen, etc.) is the first consideration before preparing an
immobilized biosystem. In theory at least, the selection of a better bioactive
agent is the most effective way of meeting requirements. Chemical
modification, genetic engineering and immobilization are also ways to improve
a biocatalyst's characteristics. Recommendations for desirable minimum
requirements for characterization of an immobilized biocatalyst have been
listed (Buchholz and Klein, 1987). This paper deals with some of the more
recent developments in the immobilization of biosystems and their applications
in therapeutic, analytical and industrial processes.

Abbreviations; ELISA, cnzyme-linked immuroserbent assay: HPLC, high performance liqun\i
chromatography.

Biotechnology and Genetic Engineering Reviews — Vol. 7. December 1989 B
0264-9825/89/07/297-313 $20.00 -+ $0.00©) Intercept Ltd. P.O. Box 716, Andover, Hampshire. SPI0 1YG. UK

297



298 J.F. KENNEDY, E.H.M. MELO AND K. JUMEL
Emmobilization of biosystems

The immobilization of any biosystem will depend on the type of bioactive
material that is to be immobilized. It is well known that the attachment of the
active agent to a polymer matrix depends on the physical relationship between
support and ligand. Immobilization methods may be classified into various
groups: adsorption (the catalyst may be physically adsorbed onto the polymer);
entrapment (the catalyst may be entrapped inside a semi-permeable matrix or
encapsufated in a polymer membrane); crosslinking (the catalyst may be
crosslinked with itself or used to strengthen existing polymer—catalyst
linkages); and covalent binding (the catalyst is covalently bound to the matrix).
The chemistry involved in these methods has been reviewed (Powell, 1984;
Kennedy, White and Melo, 1988}, However, the factors that influence the
choice of the method to be used for the immobilization of biosystems are
generally found to be empirical. Few general rules exist, although some more
obvious considerations such as requirement for a specific physical form of the
immobilized biosystems may rule out certain methods. The choice of methods
for the immobilization of biomaterials normally arises trom a screening of the
different methods available.

For certain applications, for instance processing of high molecular weight
polymers or gene manipulation, immobilized biosystems may not be
appropriate or even useful, whereas for other applications, such as
immobilized enzymes in biosensors, immobilized concanavalin A in affinity
chromatography, immobilized antibodies in immunoaftinity processes,
immobilization is mandatory rather than simply more etfective or cheaper.

Novel techniques for immobilization of biosystems

Although the earliest immaebilized enzymes were produced by adsorption, the
application of immobilized enzyme technology was limited until methods of
covalent coupling with retention of enzyme activity were introduced. Initially
there were very few successful methods, and researchers relied chiefly on
cyanogen bromide activation of agarose and activation of cellulose derivatives
such as diazo- and carboxy-cellulose. Cyanogen bromide is still used
extensively (Kohn and Wilchek, 1982, 1983 a, b, 1984) but there 1s now a large
variety of ligand coupling methods available. Recently proposed activating
agents (Scouten, 1987} include the following.

SULPHONYL CHLORIDES

Since enzymes are costly and easily degraded it is desirable that the method
used for immobilization be efficient and invoives the use of mild conditions to
enable a high yield of bound active enzyme to be obtained at neutral pH and
low temperatures. It is an economic advantage if the enzyme is stabilized by
immobilization. It has been found that sulphonate esters are useful reagents
not only in organic chemistry but also for immobilization of affinity ligands and
enzymes {Nilsson and Mosbach, 1980, 1981, 1984; Niisson, Norrton and
Mosbach, 1981). Leakage of the ligand from the matrix is one of the major
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difficulties found with many methods of activating matrices. The formation of
stable secondary amide bonds between hydroxylic matrices (e.g. agarose) and
amine-containing ligands and proteins has been investigated (Nilsson and
Mosbach, 1980, 1981; Bulow and Mosbach. 1982) by using sulphonyl chlorides.
which produce sulphonates with a very good leaving group character. for the
activation of the matrices. Tresylated carriers allow efficient immobilization at
near neutral pH and at 4°C and are now commercially available. Tosylated
supports are useful for coupling at pH > 9 and at 25°C.

CHLOROCARBONATES

Supports bearing hydroxyl groups have been activated with chlorocarbonates
{Figure I). N-Hydroxysuccinimide chlorocarbonate and 4-nitrophenyl chlor-
ocarbonate have been found to be the most useful activating agents (Wilchek
and Miron, 1982). Other chlorocarbonates, such as tri- or penta-chlorophenyl
chlorocarbonate as well as 4-methylthiophenylchlorocarbonate (Wilchek,
Miron and Kohn, 1984), can also be used but with lower efficiency. These
reagents react with polyalcohols to give activated carbonates which, on
subsequent reaction with amines, yield stable and uncharged carbamates. The
extent of activation and coupling can be followed spectrophotometrically
{Wilchek and Hurwitz, 1983).

1, I''"CARBONYLDIIMIDAZOLE

Immobilization of a biospecific ligand onto an inert matrix requires initialty the
introduction of reactive groups of defined chemical functionality into the inert
matrix, and subsequently a coupling reaction with the appropriate ligand,
preferably under mildly basic conditions. Until recently. most procedures for
immobilizing ligands onfo polysaccharides and other soft hydrophilic gels have
involved the use of cyanogen bromide activation procedures (Wilchek
and Hurwitz, 1983). However, the potential for additional non-specific
tion-exchange interactions and leakage of the ligand from the matrix due to the
instability of the N-substituted isourea linkage constitute the main difficulties
inherent in all cyanogen bromide-based systems. It has been observed that
imidazole greatly facilitates the phosgene activation of beaded agarose and
subsequent immobilization of protein ligands in high vield under mild
conditions with excellent stability of the bonds between the ligand and the
matrix. Additional studies (Bathell er af., 1979, 1981a, b; Hearn et al., 1983
Hearn 1986) have revealed that carbonyldiimidazole, a product of the reaction
between phosgene and imidazole, and related heterocylic carbonylating
reagents can convert free hydroxyl groups into imidazolyl-carbamate groups
which, on reaction with N-nucleophiles, result in the formation of N-alkyl
carbamates. An important advantage of the 1,1"-carbonyldiimidazole method
compared to the standard cyanogen bromide procedure is the absence of any
additional charged groups introduced by the functional groups of the activation
reagent during either the activation or ligand coupling steps. The activation of
gel matrices by 1,1"-carbonyldiimidazole is illustrated in Figure 2.
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Figure2. The activation of gel matrices by 1.1 -carbonyldiimidazoie and the subsequent coupling
of the ligand to the support or regeneration to the parent matrix (from Hearn, 19877,

TRANSITION METAL ACTIVATION

A number of methods of immobilization of biological molecules has been
reviewed (Kennedy and Cabral, 1983). However, no one method is perfect for
all molecules or purposes. One technique in which matrix derivatization after
preparation can be avoided and instantaneous coupling can be achieved under
simple conditions is the metal-link chelation process. This procedure is based
on the chelation properties of transition metals, namely of titanium and
zircontum which seem particularly attractive on account of the non-toxicity of
their oxides. Although this method was initially developed using titanium (1V)
chloride as metal activator, other transition metal salts can also be used as
support activators with subsequent derivatization of the metal-activated
support {Cabral er al., 1983).

Immobilization techriques for affinity chromatography

Using 4-nitrophenyl carbonate-Sepharose or N-hydroxysuccinimide
carbonate-Sepharose, a number of proteins and other ligands have been
coupled for their use in affinity chromatography studies, including concanava-
lin A for glycopeptides and proteins. avidin for isolation of biotin-containing
peptides and proteins, different antibodies for isolation of their corresponding
antigens, etc. Furthermore, carbohydrate derivatives such as 4-aminophenyl-
p-D-glucopyranoside, 4-aminophenyl-f-D-lactopyranoside. etc. have been
coupled for the isolation of the corresponding lectins.
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In only a few instances have immobilized enzymes been used as reagents for
low molecular weight biomolecules. This limited use is probably due to the low
capacity and high cost of such systems. With the introduction of high-
performance techniques using small volume columns, the analytical potential
of such systems may be realized. The reversed affinity high performance liquid
chromatography (HPLC), which utilizes immobilized enzyme, is a potential
system for the purification of complex isomeric or racemic mixtures.
Furthermore, it could provide a method of detection and purification of new
chemotherapeutic agents interacting with enzymes. Enzyme-catalysed reac-
tions are slowed down when used in fluid media at subzero temperatures
{Douzou, 1977). Under these conditions, enzyme—substrate complexes can be
stabilized, permitting their purification by liquid gel filtration (Fink, 1973;
Hastings et al., 1973). In order to maintain a fluid medium, antifreeze (usually
an organic solvent) must be added to the system under investigation. Two
principal applications of subzero temperature separations have been described
(Balny and Douzou, 1987): the first concerns the investigation of non-covalent
forces involved in protein—protein or protein-ligand interactions, one protein
or one ligand being covalently bound to an insoluble carrier, whereas the
second covers the improvements in protein fractionation procedures (Figure
3).

Immeobilization of cells

The idea of using immobitized cells as a research too] was conceived by Updike
(Updike, Harris and Shrago, 1969) who used immobilized micro-organisms in a
flowing stream configuration for biochemical studies. Immobilized cells have
been used to elucidate metabolic reaction pathways (Koshcheenko, Arinbasar-
ova and Skryabin, 1980). Penicillinm urticae entrapped in polvacrylamide
facilitates the isolation of a new intermediate in the biosynthesis of penicillins
(Sekigushi, Gaucher and Yamada. 1979), patulin (IDeo and Gaucher, 1983},

: /%@

Figure 3.  General scheme for affinity chromatography through a ‘productive’ E-S compound
(from Balny and Douzou. 1987).
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etc. Combinations of immobilized cells and transducers, such as oxygen
electrodes and thermistors, are useful devices for analytical purposes and might
also constitute convenient tools in metabolic studies (Mattiasson, Larsson and
Maosbach, 1977; Danielsson, Mattiasson and Mosbach, 1981}. In addition to
microbial and yeast cells, immobilization of plant and animal cells has £rown in
importance. As already stated. there is no best support, as requirements for
particular applications differ. The choice of the proper support will be
governed by factors such as cost, mechanical stability, ease of preparation,
biocompatibility and resistance against biodegradation. The entrapment
technique for organelles and cells is probably a good first choice. However,
adsorption as well as other immobilization techniques may be useful in a
number of cases.

Microbial enzymes can be excreted from the cell into the broth
{extracellular) or retained in the cells during cultivation (intracetular). In
order to utilize intracellular enzymes in immobilized form, it is necessary to
extract them from the microbial cells. The extracted enzymes are generally
unstable and not suitable for use as immobilized enzymes. However, in order to
utitize the stabilizing effects of the cell environment. and to avoid the extraction
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Figure 4. Schematic procedures for immohilization of cells using k-carragecnan (from Chibata er
al.. 1987).
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of enzymes from the cells and utilize their multi-enzyme systems, direct
immobilization of whole cells has been attempted (Bucke, 1987; Chibata eral.,
1987; Skryabin and Koshcheenko, 1987; Fukushima et /., 1988). There are
advantages and disadvantages in immobilization methods for cells {Akin, 1987,
Kennedy, White and Melo, 1988) and, as yet, no universal method has been
developed. Therefore, the choice of suitable methods and conditions for
immobilization of cells has to be investigated in each case. Advantages of the
immobilization method using encapsulation in K-carrageenan are that the
immobilization can be performed under mild conditions without the use of
reagents that destroy enzyme activity in cells {Figure 4).

Applications of immobilized biosystems

The applications of biosystems can be divided into three categories, namely
therapeutic uses, analytical uses and industrial uses.

THERAPEUTIC USES

Discussion of the therapeutic uses of immobilized biosystems has been
restricted traditionally to the replacement of an enzyme that cannot be
synthesized in the body, either as a result of an inborn error of metabolism or
organ failure, by a sample of the required enzyme from an alternative source
{enzyme replacement); or the use of a non-natural enzyme to remove some
unwanted material from the body in the treatment of a disease (enzyme
therapy). However, the discussion should be broadened to include the use of
immobilized antigens, antibodies, antibiotics, drugs. etc. Biomedical applica-
tions of immobilized biosystems are still in their experimental stage, as many
necessary prerequisites—absence of toxicity, absence of haemolysis and
allergenicity, chemical stability in vivo and immunological reactions—must be
achieved very precisely before application can be realized.

Enzyme replacement

A particular enzyme, which as a result of genetic or other diseases is not
synthesized by the cell, can be replaced in order to reduce the build-up of toxic
products in the body. Phenylketonuria is an example of a disease in which the
lack of phenylalanine-4-monoxygenase {EC 1.14.16.1} leads to the formation
of phenylpyruvic acid (toxic) instead of 4-hydroxyphenylpyruvic acid. In order
to control such diseases the use of immobilized enzymes (in encapsuiated form)
has been attempted as an alternative to injecting the required soluble enzyme,
since the immobilized enzyme reduces the immunological responses to the
enzyme while controlled release of the enzyme from an unreactive
encapsulated form can allow constant low dosages to be available without
frequent application of the enzyme. Immobilized biocatalysts can also be used
in extracorporeal circulation to control and consequently eliminate the
build-up of toxic compounds in the body fluids.
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Enzyme therapy

The difference between enzyme replacement and enzyme therapy is that in the
latter a non-natural enzyme is used to change the normal environment in the
body in order to control the diseased state. In the treatment of leukaemia. for
example, asparagine is removed from the blood by the enzyme L-asparaginase
(EC 3.5.1.1). The immobilized enzyme is administered to the body in a
biodegradable form. This therapeutic application can be extended to control
other kinds of diseases using immobilized antibiotics, antibodies, etc. (Cera et
al., 1988; Dumitriu et al., 1987).

ANALYTICAL USES

The role of immobilized biosystems, in particular immobilized enzymes in
analytical systems, is one of the most interesting and promising arcas at present
under investigation.

Enzyme electrodes

The determination of enzyme activity is of great importance in clinical studies
and in the area of biochemistry. Enzymes are valuable and extremely
important aids in the diagnosis of a vast variety of disorders. Some have been
used for the determination of the concentration of their substrates or products
which exist in serum or plasma. The concept of the soluble enzyme electrode
was first introduced in 1962 (Guilbaut, 1984). However, the first working
enzyme electrode, using D-glucose oxidase (EC 1.1.3.4) immobilized in a
polyacrylamide gel and placed around an oxygen electrode held by a piece of
cellulose acetate, was for the determination of the concentration of b-glucose
in biological solutions and in tissues, and was reported by Updike and Hicks
(1967). The reaction catalysed by the immobilized glucose oxidase is:

B-D-glucose + O, — gluconic acid + H,0,

the consumption of oxygen from the solution, which is directly related to the
concentration of D-glucose present, being measured by the oxygen electrode.
Selection of a suitable gel matrix is of great importance to improve the stability
of the enzyme while allowing free passage of substrate to the enzyme {Figure
5).

Immunoaffinity

Another application of biological probes is the construction of sensor probes
utilizing bound antibodies or antigens. Immobilized creatine kinase M (EC
2.7.3.2) for detection of cardiospecific CK-MB isoenzymes is an example of a
system that has been used successfully. The linkage of an antibady or antigen to
a matrix followed by enzymatic determination of the immunocomplex
formed is called enzyme-linked immunosorbent assay (ELISA) (Louborg,
1984; Johnstone and Thorpe, 1987) (see Figure 6). The attachment of
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Figure 5. Diagram of a glucose seasor probe.

monoclonal antibodies to insoluble carriers yielding carrier-monoclonal
antibody conjugates has been used for the preparation of highly active
immobilized enzymes (Solomen er al., 1987). Figure 7 shows the covalent
coupling of a monoclonal antibody onto Eupergit C (oxirane C, Réhm-
Pharma) via the oxirane active groups of the polymer (Hannibal-Friedrich,
Chun and Sernetz, 1980).

Affinity chromatography

Affinity chromatography has become, in the past 15 years, a particularly
powerful tool for the purification of biologically active molecules. With
well-designed affinity chromatography systems very specific purification can be
achieved in high yields in a single step during the isolation of a specific protein
or polynucleotide component. The technique exploits the biological specificity
of those substances which can form stable, reversible complexes with
matrix-bound biospecific ligands. Until recently, most procedures for
immobilizing ligands onto polysaccharide and other soft hydrophilic gels have
been based on cyanogen bromide activation procedures (Wilchek, Miron and
Kohn. 1984}, The problems of unwanted ion-exchange interactions and the
leakage of the ligand from the matrix (described above) have led to
investigation of a number of alternative methods of activation. This has led to
the development of the oxirane approach (Sundberg and Porath, 1974), and
the use of s-triazines {Lang, Suckling and Wood, 1977), cyanate esters (Kohn
and Wilchek, 1983a), and sulphonyl chlorides (Nilsson and Mosbach, 1981,
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1984) as activating reagents. The use of carbodiimide reagents results in the
important advantage (compared to the standard cyanogen bromide procedure)
that no additional charged groups are introduced into the product as assessed
over the pH range normaily used in affinity chromatography (Bethell ef al.,
1979). A number of applications of affinity chromatography for the purification
of biological active molecules have been reviewed (Nishikawa, 1983; Hearn,
1987).

INDUSTRIAL USES

A comparison of the economics of the immobilized and soluble biosystem
processes has shown that the use of an immobilized process can halve the cost of
production in many cases. It is known that there are only a few successful
industrial applications using immobilized enzymes, such as D-glucose
isomerase, i.e. xylose isomerase (EC 5.3.1.5), L-aminoacylase (EC 3.5.1.14),
etc. Recently, there has been a number of other proposals for the use of
immobilized enzymes, most of which have been developed only on the
laboratory or occasionally pilot-plant scale. However, several immobilized
microbial cell methods have been proposed for the production of ethanol,
methane, acetic acid, lactic acid, amino acids, antibodies, and steroid
transformation.

The development of a high-fructose corn syrup process is the story of how
process engineering bridged the gap between the enzyme manufacturers and
the corn syrup industry in the years around 1974. The soluble enzymes
a-amylase (EC 3.2.1.1) and amyloglucosidase (glycan-1,4-a-glucosidase, EC
3.2.1.3) are used for the production of glucose syrups and crystalline dextrose
from starch. These enzymes are employed as soluble products because of the
melecular weight and structure of the substrate—starch. The conversion of
dextrose (readily derived from starch) to fructose and high-fructose products
was not economically feasible until the necessary enzyme became available in
an immobilized and stabilized form bound to an insoluble carrier and capable
of re-use (Poulsen, 1984). The past 10 years have shown a tremendous increase
in the production of D-fructose from b-glucose, with the enzyme cost of the
isomerization step being reduced almost tenfold as a result of immobilization.
Hydrolysed lactose is sweeter and more soluble than lactose. Immobilized
lactase (EC 3.2.1.108) systems have been designed and operated under
industrial conditions to produce lactose hydrolysates from lactic acid wheys
(Baret, 1987).

Immobilized cells (e.g. yeasts, bacteria) have been used for continuous
ethanol fermentation processes. Various reactor designs, including packed
bed, moving bed and suspended bed, have been constructed for ethanol
fermentation using immobilized yeast cells.

Xanthine oxidases (EC 1.1.3.22) are able to oxidize a variety of
azaheterocyclic compounds (Figure 8) other than xanthine itself. Immobilized
milk xanthine oxidase has been prepared for its application in organic synthesis
(Tramper, 1987).
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. Figure 8. (a) Oxidation of 7-(4-x-phenyl) pteridin-d-ones to 7-(4-x-phenyl) limazines by

immobilized milk xanthine oxidase. (b) Oxidation of T-atkylpteridin-4-ones to 7-alkyllumazines by
immobilized milk xanthine oxidase. {c) Oxidation of xanthine (R = H) and I-methyl xanthine (R =
CH;) to uric acid and 1-methyluric acid by immobilized milk xanthine oxidase (from Tramper,
1987},

Future frends

After this brief description of how immobilization can be brought about, it has
to be said that many of the problems associated with immobilized biosystem
technologies are being solved in a number of diverse and interesting ways. The
indications are that immobilization techniques will be extended rapidly for use
in industry, analytical and diagnostic systems, and the main impact of
immobilization is still to come.
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