Genetic Legacy of the Vikings

Professor Steve Harding
Wirral Minor Names of Scandinavian origin

kjarr, holmr, ràk, inntak, slakki, Ærgi, skali, þveit etc.
A Y Chromosome Census of the British Isles

Cristian Capelli,1 Nicola Redhead,1 Julia K. Ambrosy,1 Fiona Gratrix,1 James F. Wilson,1 Torell Møen,2 Tor Hervig,1 Martin Richards,1 Michael P.H. Stemple1,3 Peter A. Underhill,1 Paul Bradshaw,1 Atom Shaha,1 Mark G. Thomas,2 Neal Bradman,1 and David B. Goldstein1

1Department of Biology
The Centre for Genetic Anthropology
University College London, UK

2Gower Street
London WC1E 6BT
United Kingdom

3Trondheim University Hospital
N-7006 Trondheim
Norway

4Haukeland University Hospital blood bank
N-5021 Haukeland
Denmark

5Department of Chemical and Biological Sciences
University of Huddersfield
Huddersfield HD1 3DH
United Kingdom

6Department of Genetics
Stanford University
Stanford, California 94305-5120

7BBC Archaeology
London
United Kingdom

8Istituto di Medicina Legale
Università Cattolica del Crema
Roma I-00168
Italy

9Department of Zoology
Oxford University
Oxford OX1 3PS
United Kingdom

Summary

The degree of population replacement in the British Isles associated with cultural changes has been extensively debated [1-3]. Recent work has demonstrated that comparisons of genetic variation in the British Isles and on the European Continent can illuminate specific demographic processes in the history of the British Isles. For example, Wilson et al. [4] used the similarity of Basque and Celtic Y chromosomes to argue for genetic continuity from the Upper Paleolithic to the present in the paternal history of these populations (see also [5]). Differences in the Y chromosome composition of these groups also suggested genetic signatures of Norwegian influence in the Orkney Islands north of the Scottish mainland, an important center of Viking activities between 800 and 1300 A.D. [6]. More recently, Weale et al. [7] argued for substantial Anglo-Saxon male migration into central England based on the analysis of eight British sample sets collected on an east-west transect across England and Wales. To provide a more complete assessment of the paternal genetic history of the British Isles, we have compared the Y chromosome composition of multiple geographically distant British sample sets with collections from Norway (two sites), Denmark, and Germany and with collections from central Ireland, representing, respectively, the putative invading and the indigenous populations. By analyzing 1772 Y chromosomes from 25 predominantly small urban locations, we found that different parts of the British Isles have sharply different paternal histories; the degree of population replacement and genetic continuity shows systematic variation across the sampled areas.

Results and Discussion

To represent the indigenous population of the British Isles, we have selected a site in central Ireland that has had no known history of contact with Anglo-Saxons or Viking invaders (Carricket, see Figure 1). (The demonstrated similarity of Celtic and Basque Y chromosomes [4, 5] p < 0.6, using haplogroups), these sample sets were combined [6, 7] to provide a representative of the Y chromosomes of the indigenous population of the British Isles. Norwegian invaders were represented by two sites in western Norway (Bergen and Trondheim), Danes were represented by a general Danish collection, and Anglo-Saxons were represented by samples from their historical homeland in Jutland and Holstein (North Germany). Linguistic and historical investigations seem to suggest that inter-marriages were minor and not unduly blunted the genetic landscapes of North Germany and Denmark in the last 1500 years [10]. We also note that some historians view the Anglo-Saxons themselves as Germanic invaders from what is now North Germany/Denmark. Population differentiation between the continental and indigenous British Isles groups was assessed by using an analog of Fisher's exact test calculated using haplogroup (high) frequencies, as implemented by the Adequas software package [11]. There was no significant difference between the Trondheim and Bergen samples or between the Danish and North German samples (p < 0.6), while the Norwegians were different from the other northern European samples (p < 0.05). We therefore clustered these source populations into two continental groups, referred to from now on as the Norwegian and Danish/German sample sets. Note that the similarity of the Danish and North German Y chromosomes means that, at the haplotype level, we cannot distinguish the genetic contributions to the British Isles of the two component groups. All continental populations, however, show significant differences from the indigenous group (p < 0.01), and Norway can be distinguished, though to a lesser degree, from the German/Danish sample group.

Georgina R. Bowden,* Patricia Balaresque,* Turi E. King,* Ziff Hansen,† Andrew C. Lee,‡ Giles Pergl-Wilson,∥ Emma Hurley,∥ Stephen J. Roberts,∥ Patrick Waite,§ Judith Jesch,∥ Abigail L. Jones,¶ Mark G. Thomas,## Stephen E. Harding,† and Mark A. Jobling*

*Department of Genetics, University of Leicester, Leicester, United Kingdom; †National Centre for Macromolecular Hydromechanics, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom; ‡The Queen Katherine School, Kendal, Cumbria, United Kingdom; §West Lancashire Heritage Association, Ormskirk, United Kingdom; ||School of English Studies, University of Nottingham, University Park, Nottingham, United Kingdom; ¶The Centre for Genetic Anthropology, Department of Biology, University College London, London, United Kingdom; and #Department of Biology, University College London, London, United Kingdom

The genetic structures of past human populations are obscured by recent migrations and expansions and have been observed only indirectly by inference from modern samples. However, the unique link between a heritable cultural marker, the patrilineal surname, and a genetic marker, the Y chromosome, provides a means to target sets of modern individuals that might resemble populations at the time of surname establishment. As a test case, we studied samples from the Wirral Peninsula and West Lancashire, in northwest England. Place-names and archaeology show clear evidence of a past Viking presence, but heavy immigration and population growth since the industrial revolution are likely to have weakened the genetic signal of a 1,000-year-old Scandinavian contribution. Samples ascertained on the basis of 2 generations of residence were compared with independent samples based on known ancestry in the region plus the possession of a surname known from historical records to have been present there in medieval times. The Y-chromosomal haplotypes of these 2 sets of samples are significantly different, and in admixture analyses, the surname-ascertained samples show markedly greater Scandinavian ancestry proportions, supporting the idea that northwest England was once heavily populated by Scandinavian settlers. The method of historical surname-based ascertainment promises to allow investigation of the influence of migration and drift over the last few centuries in changing the population structure of Britain and will have general utility in other regions where surnames are patrilineal and suitable historical records survive.

Introduction

Studies of the human past draw on lines of evidence through studies of men sharing surnames (Sykes and Irven 2000; King et al. 2006; McEvoy and Bradley 2006), Al-
Knowsley Hall, 27 November 2007

Mark Jobling

Judith Jesch

Kevin Taylor
DNA – message from our ancestors

- DNA is a ‘text’ that changes slowly through time, and varies between individuals

- Analyse DNA from skeletons
 - ‘Real’ information about the past
 - Difficult, small sample sizes, prone to modern DNA contamination; maybe no descendants

- Analyse modern people
 - Easy to get samples
 - Can be unrepresentative of past populations, need methods of inference
DNA – message from our ancestors

“Nucleotide Bases”:
- adenine A
- Thymine T
- Cytosine C
- Guanine G
In a human cell nucleus there are 23 pairs of chromosomes.
Genetics of physical characteristics

- Pigmentation, stature, facial shape
- Complex, poorly understood, wide distribution in N. Europe
- Blood groups
- Poorly discriminating and widespread
Genetics of physical characteristics

- Dupuytren's contracture
- Distribution suggests possible Viking origin
- Evidence from Icelandic sagas
- More frequent in regions of Britain influenced by Vikings
- But - genetic basis unknown
- Crops up in other populations
Male-specific Y-chromosome

Maternally inherited mitochondrial DNA

Male-specific Y-chromosome
Was one of your ancestors a Viking?

As a new supplement to our popular Y-Line service, Oxford Ancestors can now help you find out if any of your ancestors were Vikings, someone who travelled from Norway across the storm-tossed waters of the North Sea.

We are able to offer this remarkable new service thanks to extensive research at University College London. This research compared Y-chromosomes from thousands of men from Scandinavia to identify a range of Y-Line signatures very likely to be found through the generations, so by analysing your own Y-chromosome we can reveal if your great-great-grandfather was a Viking.

We are now able to check your own Y-Line signature against these recorded Y-chromosomes. If it does match then, providing your paternal ancestry is Norse, your great-great-grandfather was a Norse Viking.

In order to do this, we will need to carry out a Y-Line analysis to produce a range of Viking signatures. The cost for this analysis is £160 ($235).

◆ 1,099,511,627,776 ancestors @ 40 generations ago
Y-chromosome DNA ‘fingerprint’

- Look for characteristic features in the non-recombining part of the Y-chromosome DNA
Male 1 GTACTAGACTACTACTACTACTACTACTGTTG...
 5 repeats

Male 2 GTACAAGAGACTACTACTACTACTACTACTACTGTTG...
 6 repeats

Male 3 GTACAAGAGACTACTACTACTACTACTACTACTACTGTTG...
 7 repeats
SNP: Single Nucleotide Polymorphism

STR: Short Tandem Repeat

Haplogroup

Haplotype
Y-chromosome haplogroups

Courtesy of the Sanger Institute
Results from a man’s Y-chromosome test

<table>
<thead>
<tr>
<th>HAPLOGROUP</th>
<th>A</th>
<th>BC</th>
<th>DE</th>
<th>F*</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>R1*</th>
<th>R1a</th>
<th>R1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAPLOTYPETwicklung</td>
<td></td>
</tr>
<tr>
<td>DYS436</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DYS437</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DYS438</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DYS434</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DYS435</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DYS439</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DYS391</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DYS390</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>DYS393</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>DYS392</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DYS388</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>DYS19</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>DYS3891</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DYS389II</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Individual Viking ancestry?
Results from a man’s y-chromosome test

...enter his haplotype results into a database called “YHRD”...
HIT

MISS

17

17
<table>
<thead>
<tr>
<th>Population</th>
<th>Count</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>10 of 63</td>
<td>16</td>
</tr>
<tr>
<td>Holland</td>
<td>13 of 87</td>
<td>15</td>
</tr>
<tr>
<td>Friesland</td>
<td>6 of 44</td>
<td>14</td>
</tr>
<tr>
<td>Gröningen</td>
<td>6 of 48</td>
<td>13</td>
</tr>
<tr>
<td>Zeeland</td>
<td>6 of 46</td>
<td>13</td>
</tr>
<tr>
<td>Belgium</td>
<td>15 of 125</td>
<td>12</td>
</tr>
<tr>
<td>Norway South</td>
<td>3 of 25</td>
<td>12</td>
</tr>
<tr>
<td>Cologne</td>
<td>13 of 135</td>
<td>10</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>9 of 99</td>
<td>9</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>13 of 155</td>
<td>8</td>
</tr>
<tr>
<td>Asturias</td>
<td>6 of 90</td>
<td>7</td>
</tr>
<tr>
<td>Central-EastSpain</td>
<td>10 of 148</td>
<td>7</td>
</tr>
<tr>
<td>Freiburg</td>
<td>32 of 433</td>
<td>7</td>
</tr>
<tr>
<td>London</td>
<td>17 of 247</td>
<td>7</td>
</tr>
<tr>
<td>Pomerania</td>
<td>14 of 208</td>
<td>7</td>
</tr>
<tr>
<td>Berlin</td>
<td>32 of 548</td>
<td>6</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>9 of 150</td>
<td>6</td>
</tr>
</tbody>
</table>
Population

<table>
<thead>
<tr>
<th>Location</th>
<th>Count</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway Central</td>
<td>3 of 48</td>
<td>6</td>
</tr>
<tr>
<td>Norway East</td>
<td>5 of 85</td>
<td>6</td>
</tr>
<tr>
<td>Norway Oslo</td>
<td>2 of 33</td>
<td>6</td>
</tr>
<tr>
<td>Denmark</td>
<td>4 of 63</td>
<td>6</td>
</tr>
<tr>
<td>Norway North</td>
<td>2 of 45</td>
<td>4</td>
</tr>
<tr>
<td>Sweden</td>
<td>22 of 510</td>
<td>4</td>
</tr>
<tr>
<td>Zeeland</td>
<td>2 of 46</td>
<td>4</td>
</tr>
<tr>
<td>Budapest</td>
<td>3 of 117</td>
<td>3</td>
</tr>
<tr>
<td>Freiburg</td>
<td>12 of 433</td>
<td>3</td>
</tr>
<tr>
<td>Hamburg</td>
<td>3 of 114</td>
<td>3</td>
</tr>
<tr>
<td>Latium</td>
<td>6 of 222</td>
<td>3</td>
</tr>
<tr>
<td>Norway West</td>
<td>2 of 64</td>
<td>3</td>
</tr>
</tbody>
</table>
Population Viking ancestry

- **Comparisons at individual level insecure**
- More secure using admixture approaches at population level (≥20 people)
- Resolution of the method improving all the time
- Still can’t distinguish Danish Viking influence from Anglo Saxon
- Need to take into account modern population movements, especially in or near more urbanised areas
- 2 generation and “old surname” criteria
▲ = Scandinavian major place-name
Medieval Wirral Taxpayers/Criminals/Ale house records:
Volunteers

• “Modern” Wirral and West Lancashire Volunteers
 100 volunteers from Wirral and 49 volunteers from West Lancashire satisfying the “2 generation” criterion – paternal grandfather born in the area.

• “Old” or “Medieval” Wirral and West Lancashire Volunteers
 37 volunteers from Wirral and 42 volunteers from West Lancashire satisfying the “2 generation” criterion – paternal grandfather born in the area AND possessing a surname present in the area before 1572.
The “Medieval” names

- **Wirral (1545 subsidy rolls of Henry VIII, criminal and ale house records):**
 Barker, Beck, Bennett, Billing, Bird, Bryde, Bushell, Colley, Corfe, Edmunds, Forshaw, Gill, Green, Harding, Hesketh, Holmes, Hough, Joynson, Kemp, Kirk, Kirkby, Lunt, Rathbone, Richardson, Rimmer, Robinson, Sampson, Scarisbrick, Sherlock, Skinner, Taskar, Tellett, Tottey/Totty, Young, Oxton, Raby, Upton.

- **West Lancs (names of those promising to contribute to the stipend of the priest of the altar of Our Lady of Ormskirk, 1366; plus place-names):**
 Balshaw, Brown, Carr, Coly, Cook, Cooper, Fletcher, Gray, Holland, Holmes, Jones(son), Leyland, Melling, Molyneux, Otty, Prescott, Rimmer, Serjeant, Thomasson, Walsh, Webster, Westhead, Alker, Bilsborrow, Charnock, Corfe, Crombleholme, Gill, Hesketh, Hulme, Lunt, Pendleton, Penketh, Pennington, Rigby, Risley, Roby, Scarisbrick, Sephton, Swarbrick
Ormskirk, Nov. 2002: Sample testing
Y-chromosome haplogroup distributions

[Map showing Y-chromosome haplogroup distributions across various regions in the UK and Norway, with pie charts indicating the distribution of different haplogroups.]
Percentage of R1a (relative to Norway)
Full admixture “parent population” analysis

~50% Scandinavian
Effect of surname frequency

Admixture level increases further when common surnames are excluded – significant differences between modern and rarer names
Viking family movements?

Goodacre, et al. 2005
Perspectives

• The results confirm the belief that Wirral and West Lancs were once heavily settled by Norse Vikings: ~ 50% ancestry in medieval samples

• Admixtures methods are very approximate

• Sampling strategy important in linking old genes with modern geography; surname method is very useful but only for male history

• Good for assessing Norse ancestry, but currently cannot distinguish Danish Viking from Anglo-Saxon controls

• Resolution of the method improving all the time, and with better control data

• The studies have been extended to N. Lancs, Cumbria and N. Yorkshire
Viking genes in Northern England project

 Funded by BBSRC DNA anniversary award, results published February 2008 in *Molecular Biology and Evolution*

- **Part 2 - North Lancashire, Cumbria and N. Yorkshire (2008-2011)**
 Funded by the Wellcome Foundation
Merseyside Young Archaeologists, January 2003
Population Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Count</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway Central</td>
<td>3 of 48</td>
<td>6</td>
</tr>
<tr>
<td>Norway East</td>
<td>5 of 85</td>
<td>6</td>
</tr>
<tr>
<td>Norway Oslo</td>
<td>2 of 33</td>
<td>6</td>
</tr>
<tr>
<td>Denmark</td>
<td>4 of 63</td>
<td>6</td>
</tr>
<tr>
<td>Norway North</td>
<td>2 of 45</td>
<td>4</td>
</tr>
<tr>
<td>Sweden</td>
<td>22 of 510</td>
<td>4</td>
</tr>
<tr>
<td>Zeeland</td>
<td>2 of 46</td>
<td>4</td>
</tr>
<tr>
<td>Budapest</td>
<td>3 of 117</td>
<td>3</td>
</tr>
<tr>
<td>Freiburg</td>
<td>12 of 433</td>
<td>3</td>
</tr>
<tr>
<td>Hamburg</td>
<td>3 of 114</td>
<td>3</td>
</tr>
<tr>
<td>Latium</td>
<td>6 of 222</td>
<td>3</td>
</tr>
<tr>
<td>Norway West</td>
<td>2 of 64</td>
<td>3</td>
</tr>
</tbody>
</table>
My Viking Dad with my Viking dog!

From Abigail Forshaw
More links to our Viking past

MORE Vikings have been found in Wirral!

Scientists found two men from Meols shared identical historical links to Scandinavia during DNA testing.

Bizarrely one – Stan Royden – is married to a Norwegian woman, Mette, and is chairman of the committee for the Scandinavian Church in Liverpool.

“The second – Roy Shuttleworth – is secretary of the Friends of Meols Park and has been looking into the area’s Viking past.

Although not related, the men were found to have very similar chromosome types.

Their strongest DNA link was to Gotland, an island off the east coast of Sweden.

The findings were released this week and are the result of a DNA ancestry event held last November as part of the Nordic Festival in Liverpool.

Viking expert Professor Steve Harding from Nottingham University and colleagues Professor Mark Jobling and Dr Turi King at Leicester University tested 186 men free of charge.

A genetic survey carried out last year by scientists from Nottingham and Leicester Universities and University College London found that up to 50% of the DNA of men from old Wirral families was Norse in origin.

Mr Royden, 64, said: “I was quite surprised because I thought I was all Anglo-Saxon.

“I’ve always felt an affinity with the place – my first job was in Norway, which is where I met my wife Mette.”

In another bizarre coincidence, the Scandinavian Church Stan is involved with is in the Diocese of Gotland and comes under the jury of the Bishop of Gotland.

Mr Shuttleworth, 56, said he was “totally amazed” by the results.

He said: “I couldn’t believe it, especially as we’re working on a Viking project in Meols.”

Only men can be tested for the Viking link because the test is based on DNA from the male Y chromosome which is passed down the paternal line from generation to generation, with little or no change.

Professor Harding said: “The results for Stan and Roy showed the match in both cases was Gotland in Sweden, where 15% of men have the same Y chromosome type as Stan and Roy.

“They also have matches elsewhere around Scandinavia.

“We can’t say for sure but there is a very good chance they are both carrying the Y-chromosome of a Viking. Don’t forget the Vikings moved all a lot, so they didn’t necessarily come from just one place.

“They’re just ordinary men but in every cell they have this link to Scandinavia.”

A research paper on the Wirral genetic survey was published last year. Find out more at http://www.nottingham.ac.uk/~sczsteve.

Professor Harding is giving a talk on Viking Wirral and Viking genes at Wallasey Central Library between 2:30 and 4pm on Mon, Oct 12.

For more information call 589 2334.

By LORNA HUGHES

© Wirral News
Popular publication on the survey out soon:

The Wirral and West Lancashire Viking DNA Project 2002-2007 - with Mark Jobling and Turi King

www.nottingham.ac.uk/~sczsteve