Svedberg 125th anniversary

Advances in conformational analysis in heterogeneous systems

Steve Harding

NCMH, Nottingham, UK http://www.nottingham.ac.uk/ncmh

Power law plot - example

Biomacromolecules 3, 761-767

Change in Conformation

Rollings J (1992) in *Laser Light Scattering in Biochemistry* (Harding, Sattelle & Bloomfield eds)

Conformation Zoning Diagram

Pavlov, Rowe & Harding (1997). *Trends in Analytical Chemistry*, **16**, 401-405.

 $\log (10^{12} [s] / M_{L})$

HYDFIT plot – flexibility determination, L_p

Garcia de la Torre & Ortega (2007), Biomacromolecules 8, 2462-2475

Konjac glucomannan, L_p ~ 13nm (Kok et al, 2009)

Conformation analysis in a <u>polydisperse</u> protein system – gliadin

Structure and heterogeneity of gliadin: a hydrodynamic evaluation S. Ang et al, Eur. Biophys. J. (2009)

ELLIPS1

www.nottingham.ac.uk/ncmh

Conformation analysis in a <u>dimerising</u> protein system – <u>neurophysin</u>

Conformation analysis in a <u>dimerising</u> protein system – <u>neurophysin</u>

www.nottingham.ac.uk/ncmh

Conformation analysis in a <u>dimerising</u> protein system – <u>neurophysin</u>

Shape parameters R and Λ are from sedimentation, viscosity and fluorescence measurements

$$\begin{split} \Lambda &= \{3\eta_o[\eta]M\} / \{N_A k T t_h\} \\ R &= k_s / [\eta] \end{split}$$

Neurophysin dimerises – here's what happens

Freeze-thaw bioprocessed IgG₄

Freeze-thaw bioprocessed IgG₄

Monomer – is there a link between conformation change and aggregation? – need s <u>and other data</u> to answer this Bead model – "cusp" shape for IgE, 1990

Modelled on s=7.26S, R_q = 6.8nm

.. and iterated from crystal structure of a hinge deleted IgG mutant

More recent strategies use even more data: \underline{s} , \underline{R}_{g} , \underline{D}_{max} , $[\underline{\eta}]$ and $\underline{crystal \ structure \ of \ the \ domains}$

1688

A model of chimeric IgG3 wild type

Modelling algorithm: SOLPRO

A model of chimeric hinge deleted IgG3 HM5.

Biophysical Journal Volume 91 September 2006 1688-1697

Crystallohydrodynamics of Protein Assemblies: Combining Sedimentation, Viscometry, and X-Ray Scattering

Yanling Lu,* Emma Longman,* Kenneth G. Davis,* Álvaro Ortega,[†] J. Günter Grossmann,[‡] Terje E. Michaelsen,[§] José García de la Torre,[†] and Stephen E. Harding* *National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, England; [†]Departamento de Quimica Fisica, Universidad de Murcia, Murcia, Spain; [‡]CCLRC Daresbury Laboratory, Synchrotron Radiation

Freeze-thaw bioprocessed IgG₄

Monomer – is there a link between conformation change and aggregation? – need s <u>and other data</u> to answer this

Differential pressure Viscometer:

Viscotek (Malvern) or Viscostar (Wyatt)

....on-line intrinsic viscosity measurement

Freeze-thaw bioprocessed IgG₄

Monomer – is there a link between conformation change and aggregation? – need s <u>and other data</u> to answer this

ACMA

Thanks to:

Professors Arthur Rowe, Jose Garcia de la Torre, Simon Ross-Murphy, Georges Pavlov & Drs. Dave Scott & Gordon Morris