Modelling biological macromolecules in
solution: 1. The ellipsoid of revolution
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T he problems of determining the axial ratio of biological macromolecules in solution employing the ellipsoid of
revolution as a model are discussed and analysed in terms of the sensitivities of the various volume-independent
functions available. It is shown that over the whole range of axial ratio only the R function (Rowe, 1977) is
applicable, but the newly derived 1 and A functions may have application to macromolecules of axial ratio > 3.
The widely employed [§ function is shown to be entirely unusable in terms of the defined criteria.
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Introduction

X-ray crystallography, where applicable, is by far the most
accurate method for determining the conformation of
macromolecules. Unfortunately, this technique is also the
most laborious, and the calculated structures are of a
static form of the macromolecule, which may be only an
approximation to the dynamic structure in solution. The
study of the transport properties of macromolecules in
solution (hydrodynamics) yields information directly
relevant to the actual structure in solution, but the
interpretation of evidence from such techniques poses
certain problems which several decades of investigation
have not yet overcome.

There are two basic approaches for determining the
gross conformation using hydrodynamic techniques. One
method is to assume a structure and then to calculate its
hydrodynamic properties, for example the intrinsic
viscosity, sedimentation coefficient or translational
diffusion coefficient, and then to see how much these
predicted properties differ from the experimentally
determined properties for the unknown structure. The
model is then -successively changed (refined) until the
predicted properties converge to agree with the actual
properties. This method has been developed by
Bloomfield, Garcia de la Torre and coworkers' ~%. There
is. however, a serious drawback in that the final calculated
structure may not be the only one that gives these
properties.

The alternative approach is to calculate a structure
directly from the known hydrodynamic properties. Some
general model must, of course, be assumed, but, although
the models available from this approach are less precise,
the method does not suffer from the uniqueness problem.
The most general, and almost universally applied, model
is the ellipsoid of revolution, i.e. an ellipsoid with two equal
axes” ' In this paper we consider the optimal procedures
for a structure calculation based upon this model, and in
the second paper of this series*® show how the restriction
to two equal axes may, in appropriate cases, be relaxed.
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Theory

Volume-independent shape functions

There are several shape functions arising from the
various hydrodynamic properties of a macromolecular
solution. The most salient are:

(1) the viscosity increment:

v__[’l]ﬁ[’l]Mr )

L.x NAVe
where [1] is the intrinsic viscosity (ml g ~!), v, the swollen
specific volume (ml g ~'), M, the molecular weight, V, the
volume of a macromolecule (ml) and N, Avogadro’s
number.

(2) the translational frictional ratio:

/ M,<1—fpo>(4n > 2

foo Nomes \3%.

(2)

where 5, 1s the solvent viscosity, p, the solvent density and
s 1s the sedimentation coefficient (extrapolated to infinite
dilution). Following the convention of Scheraga and
Mandelkern'8, f; (and 0,, 1, below) refers to a hydrated
sphere of the same volume.

(3) the reduced molecular covolume:

U
Uw=
red NAV( (3)
where U is the molecular covolume (ml mol ™ 1).
(4) the rotational diffusion ratios:
0; 6n,l. )
%v— *I;’*T ()l (l —a, b, () (4)

where a, b, ¢ refer to the semiaxes of the ellipsoid (for a
prolate ellipsoid a>b=c and for an oblate a <b=c).
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Figure I Rate of change (1st derivative) of the relative error in
various volume-independent hydrodynamic functions (defined
in the text) with respect to the relative imprecision in the axial
ratio of the assumed ellipsoid of revolution. Numerical
differentiation has been performed on values of the various
functions computed at intervals of 1 in axial ratio, by taking the
analytical derivative of the local coefficients of a sliding strip
least-squares quadratic fit. The horizontal broken line in each
case indicates the minimum value which this derivative must
have if an axial ratio precise to +20° is to be retrieved from the
measured function, the latter being assumed to be precise to
+ 3%, Rates for the ¢ and ¥ functions are not plotted, in the
interests of clarity. They are close to the baseline (i.e. the function
is very insensitive) for all values of axial ratio

(5) the dielectric dispersion relaxation time ratios:

T, kT )
1—0—3—%‘[/:2' (i=a, b, ) (5)
where, for ellipsoids of revolution
T 1 : 6
= =T =—
=20, =% g10, )

(6) the harmonic mean rotational relaxation time ratio:

T, 3 kT
e = T
T (To/Ta) +(2To/T) ~ 31V, "

(7

A

Explicit relations for v''"'2 fif"3 U % 0,/0,'5-',
1,/10'>"'® (and hence t,/14)'” in terms of axial ratio for
ellipsoids of revolution have been given.

The determination of all these functions, however,
requires a knowledge of the molecular volume
V.=(M,v/N,. V, can be eliminated by various
combinations of equations (1){7) to yield shape functions
which are volume-independent:

go _NaT v Nashal'no (8)
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where k, is the sedimentation concentration regression
coefficient given by:
se=s(l —kg)=s(l + ko)™ ! (14)

and where s, and s are the sedimentation coefficients at
concentration ¢ and infinite dilution, respectively,

5 0; 6noU;[n]M,
Qi = Y m S
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(Refs 18, 19, 10)

(15)
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Results and discussion

Many of the volume-independent functions given in
equations (8)-(16) above are extremely insensitive to axial
ratio and sensitive to experimental error. Nevertheless,
many workers have applied them, notably the f§ function,
without adequate regard for the inaccuracies involved in
their use. It is therefore both important and interesting to
compare quantitatively their sensitivities to axial ratio
and to experimental error.

Sensitivity
In Figure I we plot the fractional change in the function
(B, R...)arising from a given fractional change in the axial
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Table 1 Use of the R function to predict the conformation of various macromolecules in solution in terms of an ellipsoid of revolution
model
Model-
Model- indepen
Ky k, [ Axial dependent dent
Protein (mlg ™) (mlg") (mlg™!) R ratio (£,/0) (5,/0) Conclusion
Apoferritin* 8 12 5.16 1.55 1.45%0 2,640 1.5 Approx. spherical: agrees
with X-ray crystallo-
graphy and electron
microscopy®
BSAZ* 5.5 7.7 275 20 1.4 Not a hydrodynamic
cliipsoid (c.f. B<2.1)*°
Fibrinogen?? 7 14 78 09 6.3 1.1 20 Prolate ellipsoid ~6:1.
Agrees with electron
microscopy?2®
Ovalbumin*® 5.45¢ 6.6 349 1.56 1.54° 1.54¢ 1.2 Approx. spherical
C-protein?’ 11 15.4 126 0.87 26.0°,6.65¢ 0.9%,2.12¢ 1.4 Oblate ellipsoid ~25:1
Myosin?8-2° 85 92 234 038 30¢ 43¢ 1.1 Not hydrodynamic
Synthetic A-filaments*° 1608 366 176 0.9 19.5¢ 16“ 2.3 ellipsoids of revolution
Collagen sonicates®'
M,=352000 308 880 1252 0.246 804 2.28¢ 2.85 Prolate ~80:1
M, =330000 291 756 1078 0.270 64 2.85¢ 2.60 Prolate ~65:1
M,=273000 241 564 639 0.377 30¢ 6.12¢ 234 Not hydrodynamic
M,=227000 193 428 400 0483 18¢ 9.13¢ 2.22 ellipsoids of revolution

“ Prolate ellipsoid; * oblate ellipsoid;  corrected to solution density?!

ratio. A large change in the function denotes high
sensitivity, and it is clear that the various functions differ
widely, both as a function of axial ratio and among
themselves. To evaluate the practical use of the functions
we define the following criteria:

(1) Estimates of axial ratio of worse than +20%
precision are of little or no interest.

(2) Functions can be calculated from experimental
data to a precision of better than + 3%, but seldom to
much better precision (see below). In terms of these criteria
— admittedly slightly subjective ones — we see from
Figure [ that many of the defined functions are unusable,
especially at low axial ratio. The R and J, functions are the
most sensitive functions for the whole range but the newly
defined IT and A functions may have application for
particles of small (but not very small) asymmetry, and the
rotational functions (4, 7, and y,) for prolate ellipsoids.

In addition to its purely mathematical sensitivity to
shape variation, a shape function must be judged with
respect to its insensitivity to experimental error. It is
readily seen from equations (8),(9), (11) and (16) that the 8,
Y.\, 7, and y, functions require a relatively large number
of measurements to be made, and many terms appearing
in these equations are either squared or cubed. On the
other hand, the A function [equation (12)] requires
knowledge of the harmonic mean rotational relaxation
time, 7,,, the measurement of which suffers from problems
of internal rotation of the chromophore and segmental
rotation of the macromolecule, a good example being
fibrinogen®®??. In order to determine &, or 7, a
knowledge of the rotational diffusion coefficient 0, (or,
alternatively, 7, see equation (6)) is required. Accordingto
Benoit*?, for ellipsoids of revolution there will be one
electric birefringence relaxation time 7, related to 0, by'®
1, = 1/(60,). Using this technique, 0, has been measured to
a precision of +1.5%; for haemoglobin and Squire'®,
determining the corresponding value of 7., has found that
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the axial ratio of haemoglobin lies within the range 1.2
(prolate) to 2.6 (oblate), corresponding to an error in 7}, of
~ +5%.

The evaluation of 4, and 7, is more complicated since
they require 6, and t,, respectively, and hence, from equa-
tion (6), the resolution of two dielectric relaxation times.
Resolution is almost impossible without constraints in the
analysis of the dispersion curve, but Moser et al.**** have
developed a technique whereby 6, (or equivalently t,) is
first obtained by electric birefringence decay as above and
then used as a constraint in the analysis of the dielectric
dispersion curve to obtain t, (and hence 6,). In their
programs, Moser et al. have added the further constraint
that the corresponding y, and y, functions give the same
axial ratio, and for bovine serum albumin they obtain a
prolate ellipsoid of axial ratio 30, compared with
‘unconstrained’ values from y, and y,, respectively, of 3.5
and 5.1. The ratio of the two dielectric relaxation times*3
is also a volume-independent function of axial ratio; an
axial ratio of 3.0 is again obtained for BSA**. There
remains some doubt, however, from other measurements
as to whether BSA is ellipsoidal at all (see Table I and Ref
46).

Although these algorithms apparently produce
resolution of the two-term dielectric dispersion curve for
an axial ratio ~3, it is not known whether adequate
resolution is possible for more symmetric particles, i.e.
where the relaxation times will be closer. Another
difficulty!? is that the method is limited to solutions of low
conductivity so that macromolecules in physiological
conditions cannot be examined, measurements being
restricted to those pH values and ionic strengths at which
proteins have minimum solubility. Finally, the relaxation
times are concentration dependent and have to be
extrapolated to infinite dilution®”.

The degree of experimental uncertainty associated with
a calculation of values for all the various functions can be
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Table 2 Crystallographic dimensions of some globular
proteins

Dimensions

Protein (A) Reference

Carboxypeptidase 50x42x38 32

Myoglobin 43x35%x23 33
Cytochrome ¢ 25x25x35 34
Lysozyme 45x30%x30 35

38 x 28 x 22 36
70 x 55 x 50 37
64 x 55 x 50 38

Ribonuclease
Pre-albumin
Haemoglobin

estimated from values assigned to the errors in the
molecular parameters from which these functions are
calculated. We assign these as follows:

Sxow 0.2% 0,2%
M, 1.0% 0, 1.5%
[7](1+0.5%)%% T, 1.5%
v 0.5%% 7, 2.5%
1, 2.0%

k, (1.04+0.5%)%

¢ 0.5%

U(1.5+0.5%)%,

The asterisked quantities reflect the contribution of
uncertainty in the concentration measurement which
being a systematic error will cancel in certain cases. From
these assigned errors, using normal statistical procedures
we may estimate the resulting uncertainty in the derived
functions as:

B17Y% 3,279
Y 44% 5, 2.3%
Mm21% 7y, 26%
W 20% 7y, 33%
A 2.7%
R 14%

0,

The error in the final estimated parameters is ~29%, in
most cases, although the R function is a little better than
this and the  function significantly worse. The purely
mathematical sensitivity of the various functions
discussed above and illustrated in Figure [ is therefore the
dominating factor in deciding which function is the most
readily usable.

The R function requires knowledge only of the
sedimentation regression coefficient k, and the intrinsic
viscosity [n] which can both be determined accurately by
fiting data to a new universal equation for transport at all
solute concentrations up to the critical packing
fraction®®'°. This insensitivity to experimental error
strengthens the conclusion from consideration of the
sensitivity to axial ratio that the R function is by far the
most applicable to protein systems. Also, any systematic
errors in solute concentration cancel in the ratio k./[5].

Criterion for the yoodness of fit of a chosen model
Although, using procedures defined above, a
hydrodynamically equivalent prolate or oblate ellipsoid
of revolution can be fitted with reasonable precision to a
protein structure in solution it could still be different from
either ellipsoid, i.e. the choice of an ellipsoid of revolution

in the first instance may be a poor approximation to the
true structure.

A useful criterion for determining whether the truc
structure resembles an ellipsoid of revolution — or any
model for which data are available — is a comparison of
the model-dependent with the model-independent
estimate of the swollen molecular volume, V., swollen
specific volume, t,, or the ‘swelling’ ratio, v/, for the
protein.

The model-dependent estimate can be found by back-
substitution of the axial ratio for the ellipsoid of
revolution, found from the R function, into equation (1)
for the viscosity increment, from which ¢/ can be found.
An estimate that is independent of any assumed model can
be found from the ratio of the viscosity regression

coefficient, k,, to the sedimentation regression
coefficient?', i.e.:

b _Ky

vk,

Such a comparison is given for several proteins in Table 1.

Conclusions

[t is evident from Table I that the application of an
ellipsoid of revolution model to many protein systems in
solution is not valid. One exception is fibrinogen, for
which the result predicted by the hydrodynamic data
appears to agree quite accurately with that from electron
microscopy.

The most likely protein system to which an ellipsoid of
revolution would be a valid model is that of globular
proteins, whose shapes, as their name implies, are
reasonably regular. A perusal of the shapes and
dimensions of globular proteins predicted by X-ray
crystallography illustrates that in some cases an ellipsoid
of revolution model could well be valid, e.g. lysozyme
and cytochrome ¢ (Table 2; see also Table 1 of Squire
and Himmel*!). In many cases, however, such as
carboxypeptidase and myoglobin, the distinction as to
whether the protein is better modelled either by a prolate
or oblate ellipsoid may be arbitrary and, indeed,
impossible in some cases.

[t would be a significant step forward, therefore, if the
restriction of two equal axes on the ellipsoid were
removed to allow use of the more general ‘triaxial
ellipsoid. However, due either to the lack of the necessary
theoretical relationships linking the axial dimensions of
the ellipsoid with experimental parameters, or, even if they
are available, due to the lack of the necessary
experimental precision, numerical inversion procedures
or data analysis techniques, this model has not yet been
available. A very recent study has shown, however, that
this restriction can now be removed*®,
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