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Abstract—Two FORTRAN IV algorithms are given for determining the two axial ratios of a
macromolecule (as modelled by a tri-axial ellipsoid) from its hydrodynamic parameters. The first
involves a simple graphical inversion procedure of the volume independent A and R functions but can
only be applied to a restricted range of macromolecules. The second algorithm is more general and
involves an R-function constrained non-linear least squares fit to birefringence decay data.

Macromolecular shape Tri-axial ellipsoid Graphical intersection method
Constrained minimization

1. INTRODUCTION

In an earlier communication [1] an algorithm was presented for evaluating the hy-
drodynamic parameters of a macromolecule (as modelled by a general tri-axial ellipsoid)
from given values of its axial ratios. The development of an algorithm for performing the
reverse operation [viz. evaluation of the two axial ratios (a/b, b/c) of the ellipsoid of semiaxes
a = b > c]is not so simple. The difficulties derive from the fact that, although explicit
solutions of the hydrodynamic parameters in terms of axial ratio are now available, analytic
inversion procedures are not.

The principles of two numerical inversion procedures have been outlined before [2,3]. A
given hydrodynamic parameter has a line solution of the two axial ratios (a/b, bjc)
characterizing a general ellipsoid of semi-axes a > b > ¢. Hence if two or more are combined
graphically a unique solution may be found from the intersection. The parameters would
thus be chosen according to how ‘orthogonal’ their intersection was, their experimental
measurability and their sensitivity. These criteria however proved very restrictive and the only
generally applicable method was one involving intersection of the R function (derived from
viscosity and sedimentation measurements) with & , functions (derived from viscosity and the
two electric birefringence decay constants, 6, 6_) [2, 4]. Even here, hitherto available
methods for extraction of the two decay constants from a two-term exponential decay were
impossible with data of current experimental precision. However, it was shown that a new
method, where information from the R function (which can be relatively easily determined) s
placed in the analysis for the extraction of the decay constants as a constraint provided
adequate resolution for data of current experimental precision. We now present the
FORTRAN IV algorithm on which this method is based.

The alternative method [3] is to combine R graphically with the A function (determined
from viscosity and harmonic mean relaxation data). This method is not generally applicable
to all macromolecules but only to those asymmetric enough (one axial ratio = 3) so that the
A function is sufficiently sensitive but not so asymmetric that the measured harmonic mean
relaxation time is not affected by internal rotations within the macromolecule. However,
because this method is simpler we present its algorithm briefly first.
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Fig. 1. Flow chart for the A — R algorithm.

2. ASIMPLE GRAPHICAL INVERSION PROCEDURE

The essence of the procedure is described in the flow chart of Fig. 1. The value of A or R for
any specified value of the pair of axial ratios (a/b, b/c) can be evaluated numerically [ 1] using
a standard numerical package for solving the elliptic integrals. Arrays of such values are
evaluated in the (a/b, b/c) plane (a 21 x 21 matrix takes approximately 1000 s of computer
time in a CDC cyber 72). A contour plotting routine (‘CONTRL’ in the CDC GHOST
graphics system) interpolates between these matrix points and can plot the A and R functions
in the (a/b, b/c) plane.

3. AN R-CONSTRAINED LEAST SQUARES ALGORITHM

This algorithm is more complicated and it will be instructive to present it in some detail.
The problem revolves around extracting the two decay constants for an asymmetric particle
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Fig. 2. Flow chart for the R-constrained least squares algorithm.

from an electric birefringence decay curve. The resolution of exponentials is notoriously
difficult even for very precise data [, 6] — this is clearly illustrated in Fig. 1 of Small and
Isenberg [ 7]. A consideration of two recent papers by Jost and O’Konski [ 5], and O’Connor
et al. [ 6] reveals that, for a two-term exponential decay a non-linear least squares method is
the most applicable. Even so, the requirements on the precision of the experimental
birefringence data are about two orders of magnitude greater than the current limits [2, 8].

The procedure introduced before [ 2] was to include information from the parameter R asa
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a’b

Fig. 3. Plot of the R-function for a hypothetical protein of axial ratio (a/b, b/c) = (1.5, 1.5). The
coordinates of the encircled points are used for cubic spline interpolation in the R-constrained least
squares algorithm.

constraint in the analyses. In this way the problem is effectively reduced from four
independent variables (two pre-exponential factors A, and two decay constants 6, ) to three
(A, a/b) since a/b should now specify a unique value for b/c, and hence 0,.

4. COMPUTATIONAL METHOD

An outline of the procedure is given in the flow chart of Fig. 2. The R function is assumed to
have already been measured from the ratio of the sedimentation concentration regression
coefficient to the intrinsic viscosity. It is then plotted in the (a/b, b/c) plane over a suitable
range of axial ratio (see Section 2 above). The coordinates of ‘knots’ in the curve (Fig. 3) can
then be specified in our routine (or alternatively if the facility is available the whole R-curve
can be digitized). Other preliminary data required for converting a given estimate for (a/b,
Ay, A”) into decay constants through the & , functions are the intrinsic viscosity, solvent
viscosity, molecular weight and temperature of the birefringence experiment.

The program (Table 1, with key to computer symbols given in Table 2) employs the NAG
quasi-Newtonian algorithm E04JAF [9] for minimising a function F, subject to bounds on
the estimates for the independent variables. The subroutine FUNCTI (Table 3) specifies F as
the sum of the squares of the residuals for each current estimate of (a/b, A’,, A’_): the value of
the axial ratio b/c corresponding to a given estimate for a/b is first evaluated with the aid of the
cubic spline interpolation routine EO1LF1 +applied to the R ‘knot’ points introduced earlier.
The value for (a/b, b/c) specifies a unique value for the swelling independent hydrodynamic
shape functions J,, which can be evaluated with the aid of the NAG numerical integral
routine DOIAGF. Using the values for the intrinsic viscosity, molecular weight, solvent
viscosity and temperature of the birefringence experiment entered by the programmer, the
routine will then evaluate the birefringence decay constants 6 , fromequation (4) of Harding
and Rowe [2]. Hence the computer estimate for the decay Curve

An=A' et A g-60-

is specified, and hence the sum of the squares of the residuals (ssr).

This package from the University of Leicester Computer Centre will not be given here since the NAG package
EOIADF will perform the same interpolation.
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generation of synthetic data (cf. [2]).
ACH DATA PT,
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Table 1. Main program for the R-constrained algorithm. The sections denoted || correspond to the
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WRITE (3,120) (X(1)9X(2) 42X (3))
110 FORMAT (™ FUNCTION VALUE ON EXIT IS“,F15,12)
120 FORMAT( * A/8= ™, FB,5," A+=",F15.12,
+" A==y F15,12)
IF(Q1.LE.FYGOTO 20
Q1=F
Q2=x(1)
23=x(2)
84=X(3)
30 CONTINUE
WRITE(3,130)
130 FORMAT( ™ ™)
WRITE (3,140)
140 FORMAT ("% %)
L0 RITE(3 150 a1
150 FORMAT('"“BEST LEAST SQUARES VALUE = *,F15.12)
WRITE (3,160) 02
160 FORMATL ® A/ B = "4F8.5)
WRITE(3,170)0Q
170 FORMAT( * B/ C = "yFB.5)
WRITE (3,180)A3
180 FORMAT( ™ At = “yF7.4)
WRITE(3,190) Q4 w
190 FORMAT( ® A= = “,F7.4)
20 STOP
END

I'rosraa data: %:géég
«1119

6
1.1i19,

5. RESULTS

In the main program (Table 1) we have incorporated a method for generating our own
synthetic birefringence curve of mock random standard absolute error of 0.1 degrees, (within
the limits of current experimental precision [8]) on each data point.

Owing to the possible danger of the routine falling into subsidiary minima [5] it is
necessary to repeat the processing for several different initial starting estimates for the three
independent variables. Provision for this is made in the program: the user enters the lower
limit for the three parameters and the routine uses NAG pseudo-random number generator
GO5AAX to produce the initial estimates within reasonable limits.

Table 2. Key to computer symbols used*

Computer Symbol
A, A/B
B
B/C
C
A+
A_
GAMMA
X (1)
X (2)
tX(3)
XC(1)
D
S
Vv
w
THPLUS
THMNUS
XC(2)
XC(3)
AAl—AA6
AD1—AD6

0
FC

Parameter

a/b

b

b/c

c,

A,

A

Birefringence (radians)

Starting estimate for a/b

Starting estimate for 4’,

Starting estimate for A"

Current estimate for a/b

Value of b/c corresponding to this estimate
Value of v corresponding to this estimate
Value of 6, corresponding to this estimate
Value of 4_ corresponding to this estimate
Value of 0, corresponding to this estimate
Value of §_ corresponding to this estimate
Current estimate for 47,

Current estimate for 4"

a/b coordinates for 6 pts on the R curve
b/c coordinates for 6 pts on the R curve
square of a residual

sum of squares of the residuals (ssr)

" Other symbols are defined in the NAG manual [9] or ref [1].

TOn exit, X (1), X (2), X (3) contains the best estimates for these parameters.
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Table 3. Subroutine for evaluating the sum of the squares of the residuals for a given estimate of a/b,

A’y and A"
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Despite the need for these precautions it is evident from a simulation for a typical globular

protein of true axial ratios (a/b, b/c)

(Table 5).

(1.5, 1.5) that the algorithm is extremely stable

The algorithm has also been tested for the effect of error in the intrinsic viscosity and
molecular weight, for different true axial ratios and for different true pre-exponential factors

and in every case remains stable. In order to achieve the highest accuracy with the method itis
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Table 4. Subroutine for specifying the integrands in the numerical evaluation of the elliptic integrals

(et [1]

SUBRGUTINE FOR CALCULATING THE ELLIPTIC INTEGRALS USED FOR DETERMINING

THE S VALUE FROM THE CURRENT ESTIMATE FOR A/B
PEAL FUNCTION FUN(Y)
COMMON/PARAM/GAMMA(101),T(101),4,CoDeNNyAA(B) 4 AD(3)
B=1.0
GOTO(10920930940450+6C47Cy 50990)

10 FUN=1,0/7((A%A+Y)*¥*q4 5% (3*%B+Y)**Q, D'(C‘C*Y)“U 5)
RPETURN

20 FU?GI-U/((A’A+Y)“0 S¥(B*B+Y) **{,5*(C*¥C+Y)**0.5)
RETURN

30 FgN=1.U/((A‘A*V,"U S*¥(3%3+Y)**¥0,5*(C*C+Y)**1.5)
RETURN

L0 FUN=1,0/((A®A+Y)**(,5%(B*B+Y) *¥1,5%(C¥CtY)*¥*1,5)
RETURN

S0 FUN=1,0/((A®A+Y)**1 5% (3*B+Y)**¥), 5% (C*C+Y)**1,5)
RETURN

60 FUN=1.0/((A*A+Y)**1 5% (B¥B+Y)*¥1,5%(C*C+Y)**¥0.,.5)
RETURN

70 FUN=Y/Z((A®A+Y) **( G* (B¥B+Y)**] 5% (C*¥C+Y)**1,5)
RETURN

80 FUN=Y/ ((A*A+Y)**1 ,G¥ (B¥B+Y)**(0.5%(C*C+Y)**1.5)
RETURN

90 FUN=Y/ ((A*A+Y)**1 ,5¥ (R¥B+Y)*¥1 ,5¥(C¥C+Y)*¥(,.5)
555URN

necessary to develop procedures for determining the optimum cut-off time for the
birefringence decay and also to allow for the concentration dependence of the decay
constants; these have already been outlined [2].

SUMMARY

Two methods are now available for modelling biological macromolecules in solution as
tri-axial ellipsoids. Both involve numerical inversion of swelling-independent hydrodynamic
shape functions followed by graphical intersection of two or more of these. The necessary
computational procedures on which these methods are based are presented here. The first
involves data from fluorescence depolarization, viscosity and sedimentation velocity but is
applicable only to a restricted class of particle asymmetries. The second involves data from
electric birefringence, viscosity and sedimentation velocity, and although more generally
applicable, requires constraints in the minimization procedure for extracting the relevant
birefringenece decay parameters.
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