1 Dilute solution viscometry of food biopolymers
S.E. HARDING

1.1 Introduction

Viscosity 1s relevant from a food perspective for two reasons. First, it is an
important functional property of foods, and understanding how biopolymer
concentration, shape, size and polydispersity affects this is industrially very
important. Second, we can turn the first point on its head to say that viscometric
measurements on food biopolymers, either in highly purified form or in con-
trolled mixtures of highly purified materials, allow us to probe fundamental
molecular properties of the food macromolecule (conformation in dilute solu-
tion, molecular weight, molecular weight distribution and interaction proper-
ties). Since viscosity properties of biopolymers under highly concentrated and
gel systems is covered under the general term ‘rheology’ and dealt with
elsewhere in this volume, this article will focus on the dilute solution viscosity
properties of food biopolymers (proteins and polysaccharides), and in particular,
the measurement and use of a molecular parameter known as the intrinsic
viscosity, a parameter which underpins the whole of the viscosity behaviour of
food and other dispersions. For a more general form of this review concerning
other biopolymer dispersions the reader is referred to another article by the
author (Harding, 1997).

Dilute solution viscometry, like rheology, has been the subject of significant
advances, both at the ‘rheological’ or concentrated solution end and at the dilute
solution end. The intrinsic viscosity itself however, is not a new molecular
parameter. Einstein considered it for a suspension of spherical particles in 1906
(with a correction in 1911). The classical review of its measurement and
application, particularly to proteins, appeared almost 40 years ago (Yang, 1961)
and a corresponding treatise focusing mainly on the theory for linear macromol-
ecules appeared almost 30 years ago (Yamakawa, 1971). A more recent treatise
was the highly useful text of Bohdanecky and Kovar (1982) again focusing on
linear polymers.

The intrinsic viscosity is also not a true viscosity at all: the dimensions of
viscosity are conventionally the *Poise’ in cgs units (dyn-cm™*-s) or the ‘Pascal
second’ (N'm ’z-s) in Sl units, whereas intrinsic viscosity has reciprocal concen-
tration units: although in the past units of dl-g~' have been highly popular, the
cgs unit of ml-g ' is now the preferred, simply because it is consistent with the
units generally used for other solution measurements.
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This article will thus serve the purpose of addressing the progress that has
been made in:
(a) instrumentation
(b) molecular modelling of quasi-rigid particles such as globular food proteins
(c) the hydration problem
(d) molecular modelling of the conformation and flexibility of linear bio-
polymers, which is the hallmark of food polysaccharides.

1.2 The intrinsic viscosity

1.2.1 Definitions

The viscosity of a fluid is a measure of its resistance to flow. Formally, the
(shear) viscosity coefficient, # (or x) of a fluid is defined as the shearing stress,
7 (or o) per unit rate of shear, g (other common notations are G or ff) via
Newton’s formula:

n=1lg. (M
An alternative definition of viscosity is in terms of energy dissipation (e.g.
Tsvetkov et al., 1971):

E = ng’, @
where E is the work done in unit time per unit volume due to the directional
flow. A Newtonian fluid is one where the viscosity coefficient # is not a variable
with shear rate: macromolecular solutions approximate Newtonian fluids at slow
or creeping velocities, , as found in, for example, capillary viscometers. More
formally, if the fluid is also incompressible the equation of motion for the fluid
can be described by the following form of the Navier—Stokes equation:

d
p(a—l: +u- Vu) = —Vp + nV?u + pF, 3)

where 9/0t is the time rate of change at a fixed point in the fluid, p is the
hydrostatic pressure the fluid would be supporting if it was at rest at its local
density p and temperature T and F is the external body force per unit mass (in
the absence of any other forces this will be from the acceleration due to gravity).
Equation 3 (or its equivalent form in energy dissipation terms), in the appro-
priate co-ordinate systems and boundary conditions forms the basis of the
calculation of the effect of dissolving or dispersing macromolecular solute on
the viscous flow properties of a fluid (Happel and Brenner, 1973).

In practical terms, the effect of the dissolved/dispersed macromolecular solute
on a solution is given by the relative viscosity, (#.1) or the reduced viscosity (or
‘reduced specific viscosity’), (#req):

et = N/Mo “4)
Hsp = Mot — 1 (5
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and

Need = ”sp/C = (”rel - l)/C, ¢ (6)
where 7 is the viscosity of the solution (or dispersion), 7, is the viscosity of the
solvent and c is the weight (mass) concentration. As indicated above the cgs
system of units is preferred, so the unit of reduced viscosity is ml/g, although the

traditional unit of dl/g is still in use. A related term is the inherent viscosity (#iu)
or (|n]) which is defined by:

Mian = (In 7)/c. @)

Because of the effects of non-ideality and/or associative phenomena, both 7,
and 7, will be concentration dependent. The limit as ¢ — 0 of both 7, and #in
is defined as the intrinsic viscosity [#], presumably so named because it is an
intrinsic function of the dissolved/dispersed macromolecule:

[7] = lime - o(#7req) =lim o (775p/C) (®
(7] = lim, - ¢ By =lim, o{(In n7ee)/c)}. )

1.2.2 Form of the concentration extrapolation

The following equations have been given to describe the dependence of 7.4 and
Ninn With concentration, correct to first order in concentration (i.e. dilute solu-
tions). The most popular of these is the Huggins (1942) equation:

flrea = [n)(1 + Kuln] - ©) (10)
where Ky 1s the (dimensionless) Huggins constant. A variant is the form:
Mred = [’7](1 +kH'C)v (ll)

(Rowe, 1977) and so the concentration dependence parameter has the same units
(ml/g) as the equivalent parameters from sedimentation velocity (k) and transla-
tional diffusion (k4) respectively. Ky and ky are both generally positive, i.e. a
plot of .4 versus c usually has a positive slope (Figure 1.1).

Another form is due to Schulz and Blaschke (1941):

Need = [’7](1 + KSB : ”sp)~ “2)

The equivalent concentration dependence relation to equation 7 for the inherent
viscosity, (In 77.)/c, is the Kraemer (1938) equation:

(Inne)/e = [7)(1 = Kkln] - o), (13)

with a negative slope (Figure 1.1) and where Ky is the Kraemer constant.
These equations were put forward over 50 years ago and subsequent attempts

have been made to modify and refine them. For example a power-law form of

equation 13 has been proposed (Baranov er al., 1987; Krasovskii er al., 1993):

(In neadle = ([n]e)”, (14)
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Figure 1.1 Huggins and Kraemer extraction methods for intrinsic viscosity. Reduced viscosity 77

(ml/g) versus concentration (@) and inherent viscosity 7 {=In(71)/c} (ml/g) versus concentration

(A) for irradiated (10 k Gy) guar in phosphate chloride buffer (pH = 6.8, I = 0.10). The ‘common’

intercept gives [7], the slopes are Ky[7]* and Kx[n7]>. Ku is the Huggins constant and K the Kraemer
constant, respectively (from Jumel, 1994).

and Chee (1985) has suggested other numerical procedures. Other attempts at
developing the Huggins and Kraemer relations have centred around estimating
[#] from measurement of 7, at a single concentration (Solomon and Ciuta,
1962; Solomon and Gotesmann, 1967; Deb and Chatterjee, 1968; Elliot et al.,
1970; Rudin and Wagner, 1975; Ram Mohan Rao and Yaseen, 1986). For
example, Solomon and Ciuta (1962) proposed a combination of equations 10
and 13 to yield the approximate relation:

7] = (1/€) - [2{nsp = ()], (15)

a relation which is also known also as the ‘Solomon—Gotesmann’ (1969)
equation. This has been popular with pressure imbalance types of viscometers
coupled on-line to a gel filtration (size exclusion chromatography) column
(section 1.3 below). Deb and Chatterjee (1969) suggested the following alter-
native relation:

[m] = (1/e) - [3 InCpeet) + (3/2)(15") = 3n1]'"", (16)

and more recently Ram Mohan Rao and Yaseen (1986) gave a more simplified
form:

(7] = (1/2¢) - [nsp = In(1pcer))- )

Other workers have attempted instead to improve the form of the extrapola-
tion of equations 8 and 9. For example, Reilly et al. (1979) have pointed out that
when 75, or In7, is divided by the solution concentration, the error in the
quotient caused by error in the relative viscosity measurement is magnified at
low concentration, therefore extrapolation methods using 7., as opposed to 7/c
would appear to be advantageous. For example, application of I’Hopital’s rule to
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equation 8 provides an alternative method for evaluation of the intrinsic vis-
cosity in terms of the derivative dny/dc at zero concentration (Kozicki and
Kuang, 1996):

[7] = (dnsp/dc)c=0 (18)

i.e. the limiting slope at ¢ = 0 of 7, plotted versus ¢. Kozicki and Kuang (1996)
have pointed out that (0, 0) is an experimental point and hence extrapolation
outside the range of data—as required by the Huggins, Kraemer and related
procedures (equations 10-14) —is therefore unnecessary. These workers have
also demonstrated that non-linear least squares fitting the specific viscosity data
versus concentration c to either the polynomial:

N = [n]c + azc2 + as cz, (19)
or in the relation:
e = [nlc + b -, (20)

with [5], a2, a3 or[n), b, d as the variables gives significantly improved
estimates for [#], with equation 20 the best.

1.3 Experimental measurement

This requires measurement of the relative viscosity 7. and concentration, ¢. A
plot of either the reduced specific viscosity, 7.4 = #sp/c versus concentration, or
just 7, versus concentration, or manipulation of equations 15-17 can then be
used to extract [#] as discussed in section 1.2.2.

NMe can be measured in one of three principal ways using a capillary vis-
cometer, a plate viscometer (cone and plate or parallel plate or cup and bob), or
a so-called ‘pressure-imbalance’ differential method. One often neglected
feature is the importance of accurate concentration measurement for the sub-
sequent evaluation of [5]: this will also be considered.

1.3.1 Capillary viscometry

The capillary or ‘Ostwald’ viscometer (Ostwald and Malss, 1933) is still the
most common viscometer and involves essentially just a piece of glassware —
albeit beautifully constructed (Figures 1.2a and 1.2b) — suspended in a constant
temperature environment.

The principle is simple: measurement of the time for a volume of liquid
(solution or solvent) to flow through the capillary in the vertically aligned
viscometer. This measurement is performed for the solvent and then the bio-
molecular solution at onc or more concentrations. To facilitate measurement at a
series of concentrations where the dilutions can be performed in situ. a modified
form (Figure 1.2¢) called an Ubbelohde viscometer (Ubbelohde, 1936) can be
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Figure 1.2 Ostwald (a) and extended Ostwald (b) and Ubbelohde (c¢) viscometers
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used which is designed so that the head of liquid when the flow time is being
measured is independent of the amount of solution in the viscometer: pro-
gressive dilutions can then be made directly in the viscometer. However, if a
macromolecule degrades or denatures appreciably during a series of measure-
ments, this type of viscometer should not be used. Kragh (1961) discusses the
advantages and practical limitations of both this and the conventional

Ostwald.
From Poiseuille’s law (Tanford, 1961) the relative viscosity is given simply

by:
Hrel = (fp/topo), (21)

where ¢ and f, are the flow times for the biomolecular solution at a particular
concentration ¢ and p and p, the corresponding and solvent densities. The
relative viscosity without the density correction is known as the ‘kinematic’ (as
opposed to ‘dynamic’) relative viscosity 57/ = t/ty; subsequent derived param-
eters: #sp, Mred, IN(71a1)/c and []’ are the corresponding kinematic quantities. To a
reasonable approximation, for concentrations <l mg/ml 7l ~ Mrer. Although
measurements at such low concentration are possible with many solutions of
polysaccharides which have large relative viscosities, for globular proteins and
globular macromolecular assemblies (even large spheroidal plant viruses) this is
not generally possible since the relative viscosities are too small (~1.003 or
less). However it is not necessary to measure solution density at each concentra-
tion since the correction of Tanford (1955) can be applied:

(7] = [7]" + [(1 = Vpo)/po] (22)
or
Mrea = Mrea + [(1 = Vpo)/po], (23)

where V is the partial specific volume of the macromolecule. Of course if this
latter parameter (¥) is not known for the solvent conditions being used, or cannot
be calculated from the chemical composition of the macromolecule (Perkins,
1986) then solution density measurements are required:

v = (l/po) - (1 — dpldc). (24)

po and p can be measured using a mechanical oscillator device as described by
Kratky et al. (1973). There are two ways the precision with which 7, can be
increased, particularly for measurements at low concentration, both based on
increasing the flow time (and hence flow time difference ¢+ — t,) for solvent and
solution. The first is the method of Szuchet-Derechin and Johnson (1966) which
is to add a low concentration of glycerol (~3%) to the solvent and solution: this
has permitted the measurement of protein relative viscosities at concentrations
<4 mg/ml. The second way is to use specially designed extended Ostwald
viscometers (Figure 1.2b) (Holt and Creeth, 1972) which increase the flow time
difference (1 — fy) by extending the length of the capillary (the same result can
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in principle be obtained by decreasing the capillary radius but this increases
problems of capillary blockage). In a further development Booij ef al. (1991)
have described a multiple bulb viscometer with different volumes and different
capillary lengths between them, facilitating shear rate dependence studies of the
intrinsic viscosity.

Measurement of flow times is now done automatically using photosensors,
and a commercial example is the Schott—Gerite (Hofheim, Germany) system.
Because solvent viscosity is such a sensitive function of temperature, a con-
trolled water bath (to within at least 0.01 °C) and accurate temperature measure-
ment (using, for example, an accurately calibrated platinum resistance
thermometer) are necessary. Other practical details (kinetic energy correction,
guarding against capillary blockage, effect of alignment and other errors)
described in Kragh’s (1961) classical article are still however relevant and
should be consulted by any potential user.

1.3.2 Plate viscometers

With this type of viscometer the solution is placed in a space between two plates
and one is moved at constant speed relative to the other which is held by a
torsion wire on which the viscous drag will exert a torque: measurement of the
torque change with increase in speed (and hence shear rate) gives the viscosity
n of the solution. If this is repeated for the solvent 7, the relative viscosity
et = 1/no can be readily found. There are three principal types (Lapasin and
Pricl, 1995): cone and plate, parallel plate and cup and bob. Like capillary
viscometry, measurement is now automated and an example of a commercial
system is the CS Rheometer from Bohlin instruments (Lund, Sweden). Although
all permit (after appropriate calibration) the evaluation of absolute, 7, and the
investigation of the effect of shear rate on # (and hence the measurement of non-
Newtonian behaviour), for dilute solution work the accuracy is considerably less
than for capillary viscometry. The principal limitation is that to measure the very
small torsions at dilute solution conditions it is necessary to have a very narrow
gap between the plates: it is practically very difficult to maintain a uniform
separation when one plate is moving relative to another (Kragh, 1961), and this
puts a lower limit for accurate measurement of 7,4 ~ 1.01. For a detailed
consideration of the application of these methods, the reader is referred to
Lapasin and Pricl (1995) and references cited therein.

1.3.3  Pressure imbalance differential viscometer

This uses a fluid analogue of a Wheatstone bridge electrical circuit (Haney,
1985a,b). It is referred to as a ‘differential viscometer’ since it measures relative
viscosity directly. It is also highly sensitive, permitting the accurate measure-
ment of low relative viscosities and hence measurements at low concentration
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Figure 1.3 Simplified schematic of pressure imbalance differential viscometer. Uses fluid analogue

of a Wheatstone bridge electrical circuit to measure differential viscosity directly from the chroma-

tography effluent. R,-Ry capillaries. A, B solvent reservoirs. P;: inlet pressure. DPT: differential
pressure transducer. From Haney et al. (1985a,b).

(~1 mg/ml for globular proteins). At baseline conditions the differential pres-
sure across the bridge will be zero because there is solvent in all four capillaries.
When sample solution enters the bridge (Figure 1.3) it fills capillaries R;, R, and
R; while solvent from a delay reservoir remains in capillary R4. The difference
in viscosity between the solvent in Ry and solution in R; causes a pressure
imbalance AP in the bridge which from Poiseuille’s law can be relative viscosity
or specific viscosity of the solution (Haney, 1985b):

Ny = 4AP(P; — 2AP). (25)

From knowledge of the concentration the reduced specific viscosity can be
obtained. A commercially available instrument is from Viscotek Ltd (Houston,
USA).

Besides its great ‘sensitivity at high dilution and rapidity of measurement,
solution can be injected continuously via a flow cell; it can thus be fitted on-line
to a concentration detector (refractive index or u.v. absorbance-based — section
1.3.4) for converting 5. to reduced specific viscosities. It can also be fitted
on-line to a multi-angle laser light scattering detector (Wyatt, 1992) so that the
(weight average) molecular weight (M..) can also be obtained.
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Either #5,/c can be obtained and plotted versus c to obtain [#] as described in
section 1.2.1, or, since concentrations can be very small (~1 mg/ml for globular
proteins) the single point [5] evaluation formulae can be applied, such as the
Solomon—Ciuta (1962; Solomon—Gotesman, 1967) formula (equation 15). Use
of this latter equation is particularly valuable for polydisperse materials (the
hallmark of polysaccharides and other heavily glycosylated systems) if the
system is coupled not only to a concentration and molecular weight detector but
also downstream from size-exclusion chromatography (SEC) columns (Dutta
et al., 1991; Jackson et al., 1991): the [n] versus M,, relationships can then be
readily described (section 1.5.1 below). A popular set-up would thus have this
on-line facility plus a separate injection port if monodisperse solutions were
being characterized not requiring column separation. A further development (not
for SEC) is the so-called Dual Capillary Viscometer (Viscotek Ltd, Houston,
USA) which operates with just two capillaries (one solvent, one solution) with
the same rate of flow.

1.3.4 Concentration measurement

Concentration errors are more often than not the principal limiting factor to
which the accuracy of a macromolecular parameter — molecular weight, sed-
imentation coefficient, diffusion coefficient or intrinsic viscosity — can be meas-
ured by hydrodynamics. It is particularly important for the measurement of
intrinsic viscosity not only because of the extrapolation to zero concentration
(section 1.2.2) but particularly because the concentration is also required for the
evaluation of the reduced specific viscosity or inherent viscosity (cf. equations 8
and 9). For proteins, the most popular concentration measurement method is by
measurement of u.v. absorbance at 278 nm. The extinction coefficient is
required from prior measurement (and hence itself from accurate concentration
measurement!) or can be estimated from the amino-acid composition (Perkins,
1986). A more general method, which is not just limited to proteins, is based on
measurement of the solution refractive index, n, measurement using differential
refractometry (Wyatt, 1992). The refractive increment, dn/dc is required (which
again requires accurate concentration measurement).

By analogy the density, p, of the macromolecular solution can be measured
(Kratky et al., 1973): concentration can be calculated from this so long as the
density increment, dp/dc (or the partial specific volume, ¥, see equation 24) is
known. ¥, like ¢ for proteins, can be calculated from knowledge of the composi-
tion of the macromolecule (Perkins, 1986). Alternatively chemical methods for
concentration measurement can be used, such as the Kjehldahl method for food
proteins or the phenol-sulphuric acid method for food polysaccharides (Ball,
1989). With both refractive index and density methods it is important the
concentration of non-macromolecular solutes in the solvent is the same for both
the macromolecular solution and the reference solvent: careful dialysis with
allowance (by weight measurement) for loss of water is recommended. For
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polysaccharides that are optically active, the extent of rotation of polarized light
is also a function of concentration and this can also be used (Van Holde,
1985).

A most important point from all this is that concentration cannot be measured
to an accuracy much greater than ~1%: the [5] can thus also be measured to no
better than ~ % 1%, no matter how accurate measurement of relative (or specific)
viscosity is. This fact is sometimes forgotten when attempts to obtain detailed
information about biomolecular structure in solution are made.

1.4 Determination of food biopolymer conformation in dilute solution

1.4.1 The viscosity increment, v

There are two molecular contributions to the intrinsic viscosity: one from shape,
the other from size or volume, as summarized by the relation:

(] =v-vs, (26)

where v is a molecular shape parameter known as the viscosity increment (see,
e.g., Yang, 1961) and v, (ml/g) is known as the swollen specific volume: an
anhydrous macromolecule will essentially expand when suspended or dissolved
in solution because of solvent association, and v, (=V - M/Nx where V' is the
swollen volume (ml), M the molecular weight (Da or g/mol) and N, is Avoga-
dro’s number) is a measure of such (aqueous) solvent associated with the
macromolecule, and is defined as the volume of the macromolecule in solution
per unit anhydrous mass of macromolecule. This ‘associated’ solvent as we
consider in more detail below can be regarded as that which is either chemically
attached or physically entrained by the macromolecule. vy can be related to a
popular term called the ‘hydration’ J, by the relation:

v, = V+6/po. Q27)

The viscosity increment v is referred to as a ‘universal shape function’ (Garcia
de la Torre et al., 1997; Harding et al., 1997b) since, unlike [#], it can be
directly related to the shape of a particle independent of volume. For its
experimental measurement is does however require measurement of vg (or ¥, 6
and p,) as well as of course [7].

1.4.2 The ‘hydration’ o

Opinions vary as to what this parameter actually means — if it is a parameter at
all — but it represents the amount of solvent ‘associated” with the macromolecule
and includes ‘chemically bound’ via hydrogen bonds and ‘physically entrained’
solvent. The ‘monolayer’ concept sometimes propagated is however without
proper justification and it is therefore safer to regard ‘hydration’ as simply the
level to which aqueous solvent can be added to a dry macromolecule beyond
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which there is no change in a macromolecular property other than dilution of the
sample (Rupley and Careri, 1991).

Various techniques have been used to assign values for J, particularly for
globular proteins and have been considered in some detail elsewhere by Kuntz
and Kauzmann (1974). Another interesting method was subsequently presented
by Rowe (1977) involving use of the ratio of the viscosity concentration
dependence regression coefficient k, (equation 11, with the corresponding
parameter k; from sedimentation velocity in the analytical ultracentrifuge. Rowe
(1977) equated the ratio of k,/k; to v,/v and this method has been used for
example to assess the ¢ for the meat protein myosin (Byron, 1995).

For globular proteins a value of 0.3-0.4 has been inferred from nuclear
magnetic resonance (Kuntz, 1971), infra red spectroscopy (Rupley et al., 1983)
and computer simulation. It is possible to assign a value for J from viscosity
measurements via equations 26 and 27 and also via analogous relations for the
translational frictional ratio (from sedimentation coefficient or translational
diffusion coefficient measurements) if the shape of the macromolecule is known.
For example, by approximating crystal structures of globular proteins as ellip-
soids of revolution, Squire and Himmel (1979) showed that apparent hydration
values calculated from the sedimentation or diffusion data varied greatly (from
~0.1-~1, with a mean, from over 20 proteins studied of ~0.54). Zhou (1995)
later claimed that this discrepancy with the other treatments was due to inade-
quacy of the crude ellipsoid of revolution as a model for the molecular surface,
and that using a more refined approach based on relating the intrinsic viscosity
to the capacitance and polarizability of a protein estimated from its atomic
structure, a value of 0.3-0.4 for J is returned apparently consistent with the other
techniques. This narrow range must not however be regarded as prescriptive
for all biomolecular types, particularly the larger and highly expanded poly-
saccharides and glycoconjugates which can have § values >50 (Harding et al.,
1983; 1997a).

1.4.3 Effect of molecular charge

In addition to shape and ‘hydration’, if the biomolecule possesses electrostatic
charge this can also affect the intrinsic viscosity. These effects can be partic-
ularly serious if the macromolecule is a multiply charged ‘polyelectrolyte’.
Proteins and many polysaccharides are all polyelectrolytes. This electrostatic
contribution will be strongly dependent on the pH of the solution (relative to the
pK., of the charged groups) and the ionic strength, / (in mol 17" or ‘M’) of the
solution. The polyelectrolyte itself will only make a significant contribution to /
under conditions where the presence of low molecular weight electrolyte is
negligible (<0.01 M): this is the exception rather than the rule for food systems,
and from a molecular characterization standpoint most physical measurements
are done buffered and in the presence of low molecular electrolyte to an / of
0.01 or above.
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For compact globular proteins, there will be three distinct ‘electroviscous’
contributions (Shaw, 1980; Dickinson, 1992): one from the resistance of the
diffuse double (electrostatic) layer surrounding the protein — the ‘primary
effect’; another from repulsion between the double layers of different protein
molecules — the ‘secondary effect’; another of these interparticle repulsions
affects the shape of the protein itself — the ‘tertiary effect’. The latter effect is
very small for globular proteins (Tanford and Buzzell, 1956) and the first two
are only significant at very low ionic strength. In water, for example, the
contribution to the solution / is entirely from the polymer: hence as the polymer
concentration decreases, the [ will decrease which results in an increase in [7].
For linear molecules (many polysaccharides) the effect can be more significant
and is considered in more detail in section 1.5.5.

1.4.4 Spheres and ellipsoids of revolution

The effect of a suspended particle is to increase the energy dissipation during
bulk flow because the extra stresses acting over its surfaces are doing work
(Happel and Brenner, 1973). It was the pioneering work of Einstein (1906;
1911) who, based on scalar energy dissipation arguments and with the assump-
tion that the suspension behaved macroscopically as an isotropic incompressible
Newtonian continuum, was able to evaluate a value of 5/2 for the parameter
v (=[n]/vs) for a suspension of non-interacting randomly distributed spheres.
(His 1906 paper contained an error that was corrected in the later 1911 paper.)
Brenner (1958) obtained the same result using an improved derivation ‘avoiding
a rather unusual integration over the surface of a large, vaguely defined spherical
surface concentric with the particle’.

When attention turned to ellipsoids of revolution (3-D ellipsoids but with the
restriction of two of the three axes equal, Figure 1.4) the calculation became
considerably more complicated because of two opposing effects: the hydro-
dynamic shear which tends to align the ellipsoids in the direction of flow, and
Brownian motion which tends to randomize particle orientations. The relative
effects of the two are represented by the rotary Peclet number, P, = g/D;, where
g is the shear rate and D, is the effective rotational diffusion coefficient of the
macromolecule. For macromolecules Brownian motion is the dominant factor,
ie. P = 0, and Simha (1940) gave the first correct formula:

" ’ 2 + 2 + "
v= %{ Ly g[ﬂ, Fita, 1 o) LI ]} (28)
aray [15a3a080  15aray 5| Bo[2aiaszBo + (ay + a3)fo
where the ayg, etc. are elliptic integrals as defined by Jeffery (1922). See Harding
and Colfen (1995) for these in a form appropriate to the notation of equation 28.
For prolate ellipsoids a, = a, a, = b and for oblate ellipsoids @, = b and a, = a
with @ > b in both cases. The elliptic integrals in equation 28 are soluble
numerically (and now easily using numerical packages such as the NAG (1986)
routine DOIGAF), and Figure 1.5 shows a plot of v versus a/b for both prolate
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Figure 1.4 Ellipsoid representation for the solution conformation of quasi-rigid biopolymers. Semi-

axes are @ = b = c. The extremes are (i) sphere (a/b, b/c) = (1,1); (ii) Prolate ellipsoid (b/c = 1);

(iii) Oblate ellipsoid (a/b = 1); (iv) Rod (a/b > 1; blc = 1); (v) Disc (a/b = 1, b/c > 1); (vi) Tape
(a/b> 1; blc > 1).

and oblate ellipsoids. Simpler approximations are available although there is
absolutely no need for these now the full equation 28, along with other useful
hydrodynamic shape functions are available using an easy to use PC routine
(ELLIPS2 (Harding et al., 1997b)) which covers also general triaxial ellipsoids
with two axial ratios (a/b, b/c) — as described below. There is also no need now
to follow the customary practice of quoting extensive tables of data.

T T T T T T T

a/b

Figure 1.5 v evaluated from the Simha formula (equation 28) plotted against axial ratio (a/b) for
prolate and oblate ellipsoids.
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It is impossible however to invert equation 28 directly to specify (a/b) in
terms of v. However a simple polynomial approximation has been found
(Harding and Colfen, 1995) which is accurate to within 1%, and the PC
QUICKBASIC algorithm ELLIPS1 (Harding et al., 1997b) has been set up to
perform these calculations and other inversions of hydrodynamic shape func-
tions (from sedimentation, exclusion volume, and rotary diffusion). These
formulae, for v, are:

(a/b) = —10.71584 + 2.79158v + 1.622009v* + 0.01556169v°

- 0.192997v* + 0.02060718° (prolate 1.1 < a/b < 2)
= —3.80413 + 2.8712v — 0.3908319+* + 0.03612282v°
—0.001733981v* + 0.0000332711v° (prolate 2 < a/b < 10)

= 4241113 + 0.464459v — 0.001981036v* + 6.111643.107%’
—9.374974.107°* + 5.478654.10'2 - v’ (prolate 10 < a/b < 100)
—25.23436 + 10.43327v + 2.122294v* — 0.4294092/°
+ 0.05816609v* — 0.1960477v° + 0.04331335/°

(oblate 1.1 = a/b < 2)

I

—5.439531 + 3.883619v — 0.6477747v* + 0.08353639v°

— 0.004945992v* + 9.922261.107%° (oblate 2 < a/b < 10)
0.6888919 + 0.9078403v + 0.04002417v* — 1.154619.107*

+ 1.457981.10%v* — 6.725395.10"% - v’ (oblate 10 < a/b < 100)
(29

Although the Simha result (equation 28) is correct, the derivation as originally
given by Simha (1940) is wrong, and in fact the correct formula is a result of
fortuitous cancellation of errors (Saito, 1951), a discrepancy resolved some 40
years later (Harding et al., 1982).

1.4.5 Triaxial modelling

Although some globular proteins have two axial dimensions approximately
equal, and indeed the ellipsoid of revolution representation can be very reason-
able to the overall conformation (Figure 1.6) it can be rather limited in its ability
to represent the overall conformation of most quasi-rigid macromolecules. The
formula corresponding to Simha’s for general triaxial ellipsoids, with the restric-
tion of two equal axes removed, was first given by Hocquart et al. (1974), and
independently confirmed by Rallison (1978) and Harding er al. (1981) who used
different approaches. This formula, in terms of the viscosity increment
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Figure 1.6 Prolate ellipsoid approximation with (a/b) = 1.5, to the crystal structure for ovalbumnin.
Crystal structure: Stein et al. (1991). Hydrodynamic shape (based on [#7] with other parameters):
Harding (1981b).

v = [5]/v; is given by:
1 { 4(a; + g + Qo) +1[ o+ o

abc (15 (aga + apa7 + cyag) 5| g (b, + czag)
o3 + a a; + «
as(cztis + d'ay) 016(‘12;1 + 1272‘12)]] ’ G0
and where the small term ¢ is given by:
aZ_bZ bZ__CZ CZ_aZ 2
1 (a?a, + ba, * Vo, + oy oy + azal)
N _Sabc a+ b B+ A+ a (300)
(azoq + bPa, b, + Fas oy + aza,)

the elliptic integrals a,, etc. are, as with the case for ellipsoids of revolution
(equation 28) given by Jeffery (1922), and also in a form appropriate to the
notation of equations 30 and 30b by Harding and Célfen (1995). Unlike for
ellipsoids of revolution however, the use of high-speed computers is mandatory
(rather than just highly useful) for the numerical solution of the elliptic integrals
for the general triaxial case, and we have found the NAG (1986) routine
DO1GAF again highly useful in this context.

The term ¢ on the RHS of equation 30 identically = 0 for spheres and
ellipsoids of revolution and asymptotically —0 for tapes (a > b > ¢). For other
values of (a, b, ¢) it contributes only ~1% at most to the total value of v
(Harding er al., 1981). The PC FORTRAN routine ELLIPS2 (Harding e al.,
1997b) has been set up to calculate v using the full form of equation 30 along
with other universal shape parameters such as P (from the frictional ratio), Uyeq
(from the exclusion volume), G (from the radius of gyration), 8,4 (from electro-
optic decay), for either a user specified (a, b, c) or, since all these are universal
functions which depend on shape only (and not size), just (a/b, b/c).
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1.4.6 Solving the uniqueness and hydration problems for ellipsoids

With both axisymmetic (ellipsoid of revolution) and triaxial ellipsoid modelling
there is a uniqueness problem. A value of v will specify two ellipsoids of
revolution axial ratios (one for a prolate the other for an oblate). For a triaxial
ellipsoid the situation is worse: there is a line solution of possible values of the
two ratios (a/b, b/c) for a given value of v or [7], as Figure 1.7 illustrates. A
further problem is that of the influence of associated solvent: to convert [#] to
the shape function v using equation 26 or 27 the swollen specific volume, v, or
the ‘hydration’ 6 is required. Although for globular proteins there appears to be
support for a value for  of between 0.3 and 0.4 (section 1.4.2 above) for other
macromolecules it is far less clear to define.

The uniqueness and hydration problems can both be addressed by the combi-
nation of v with other hydrodynamic parameters.

The earliest attempt to tackle the hydration problem for ellipsoids of revolu-
tion was by Oncley (1941) who suggested a graphical combination of v with the
shape contribution (called the Perrin or ‘P’ function) to the frictional ratio. This
was followed in 1953 with formulae given by Flory (1953) and Scheraga and
Mandelkern (1953) describing an analytical combination of v with P to yield a
function B, which, with [#] in ml/g is given by:

173 173 173
14
B EMZIJ [’_7_] -’70 3 - 213 p €2y
(1 — 0pe)100 (16200x°)"" P

Unfortunately the p-function proved very insensitive to shape change

(Figure 1.8a), however, further combinations of v with other universal shape

T T T T T

5k J
(3 E
2
0 .
te 15 26 25 30 35 4o
Figure 1.7 Line solution of possible values of (a/b, b/c) for a given value of v (=3.803). The line
solution for the Perrin translational frictional ratio function, P (=1.130) is also shown. This

combination is clearly not a good one because of the shallowness of the intersection and the

dependence on assumed hydration values for the two functions. It does form the basis though of

other related combinations of hydration independent functions involving [5), as explained in the text
(and Figure 1.13).
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parameters have proved more successful. These include the A, function
(Harding, 1980a):

Aw=(10 - [1] - M)I(N, - ksTt) = v/(1n/70) (32)

(Figure 1.8b) where 7, is the harmonic mean rotational relaxation time (from
steady state or time resolved fluorescence anisotropy decay measurements) and
Tw/To is another universal shape parameter, the ‘harmonic mean rotational
relaxation time ratio’, with 7o (=70Mv,/RT) the corresponding value for a
spherical particle of the same hydrated volume and #,, T, the solvent viscosity
and temperature of the anisotropy measurements. Similar hydration independent
shape functions, A; are available corresponding to the time resolved anisotropy
decay times 7; (i = 1-3 for ellipsoids of revolution, i = 1-5 for general par-
ticles) (Garcia de la Torre ef al., 1997; Harding et al., 1997b).

al 106 B (oblate)
R (oblate)
R
1 @""%j
3 9
(@) a/b
oblate
3
I1
prolate
2
3 9
(c) a/b

Figure 1.8 Hydration independent universal shape functions involving [#] for axisymmetric ellip-
soids. (a) £ and R. (b) A,. (c) IT.
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The II function (Harding, 1981a):
IT= 2BM/[n]} — {f(Z, /[0IM} = threa/v, (33)

(Figure 1.8¢c) with w4 the reduced excluded volume (Rallison and Harding,
1985), B (ml-mol-g ) the thermodynamic (or ‘osmotic pressure’) second virial
coefficient (from osmotic pressure, light scattering or sedimentation equilib-
rium), and f(Z, I is a function of the charge (valency), Z, on a macromolecule
and the ionic strength / (mol-ml™"). At sufficient ionic strengths, the f(Z, I') term
becomes negligible compared with 2BM?. Of course for uncharged molecules
and proteins at the isoelectric point, Z = 0, and /(Z, I) = 0.
The Wales—Van Holde (1954; Rowe, 1977) parameter:

R =kJ/[n] =201 + P)v, (34)

(Figure 1.8a) where k; is the concentration dependence parameter of the sed-
imentation coefficient sy, in the limiting relation s, = szoo‘w( 1 — k;¢) or
Uszow = {Ussou}(1 + ksc). Although the theory behind equation 34 is less
rigorous than that for IT, it does have a strong experimental basis (Creeth and
Knight, 1965; Rowe, 1977; 1992; Lavrenko et al., 1992) and appears to give the
correct value for spheres (Brady and Durlovsky, 1988). To apply &; in this way
it is important that charge contributions to k, are absent or if the macromolecule
is a polyelectrolyte, charge contributions are suppressed by working in a solvent
of sufficient ionic strength.

It can be seen form Figure 1.8(b) and (c) that both A and IT have the added
advantage that, except at low axial ratio (<2), a value of Ay, or IT will uniquely
specify a prolate or an oblate ellipsoid. Polynomial inversion formulae, similar
to equation 29, giving (a/b) for a specified value of 8, R, Ay or IT are available
in tabular form (Harding and Colfen, 1995) and have been directly built into the
PC algorithm ELLIPS1 (Harding et al., 1997b),

For triaxial ellipsoids there is no analytical or numerical combination of
(universal) shape functions that can uniquely specify a triaxial shape, via the two
axial ratios (a/b, b/c). Instead a graphical inversion procedure is necessary
involving a combination of two or more universal shape functions, and the
concept of this graphical combination of hydration independent universal shape
functions has been explored in detail by Harding and co-workers (Harding and
Rowe, 1982a,b; 1983; 1984; Harding, 1987, 1989; 1995; Harding et al.,
1997b). Whereas the PC routine ELLIPS2 evaluates the complete set of hydra-
tion dependent and hydration independent universal shape functions, for user
specified values of (a/b, b/c) or (a, b, c), the performance of the reverse proce-
dure, i.e. obtaining a unique value of (a/b, b/c) for a macromolecule from a
combination of universal shape parameters (using the graphical intersection
procedure) has been built into the program ELLIPS3 (combining for example,
A with R, or I, using the excluded volume worked out for triaxial ellipsoids by
Rallison and Harding (1985) with the radius of gyration based function G) or
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ELLIPS4 (combining electro-optic/viscosity-based shape functions (Harding
et al., 1997b)).

1.4.7 The hydrodynamic bead model approximation: the Bloomfield et al.
and Garcia de la Torre et al. approaches

This is potentially very useful for representing the solution conformation of
multi-subunit food proteins such as the soya and pea globulins, but in the past
there have been some difficulties with calculating the intrinsic viscosity of such
structures, difficulties which are now being resolved.

The pioneering work for representing the shapes of complex but quasi-rigid
macromolecules was done by Bloomfield et al. (1967a,b). Their idea was to
model a macromolecule as an array of spheres or ‘beads’ and from approximate
calculations based on the interaction tensor between these spheres the hydro-
dynamic properties of macromolecules of arbitrary shape could be approx-
imately calculated. The main restrictions of this early work were the
approximate nature of the interaction tensor used (the so-called Burgers—Oseen
tensor) and the limited computational power available at that time (bearing in
mind computation time ~N’ where N is the numbers of beads in a model).
Aided with the assistance of an improved interaction tensor and the huge
advances in computational capabilities, Bloomfield, Garcia de la Torre and their
co-workers (e.g. Garcia de la Torre and Bloomfield, 1978; Wilson and Bloom-
field, 1979a,b; Bloomfield et al., 1979; Garcia de la Torre and Bloomfield, 1981;
Garcia Bemal and Garcia de la Torre, 1980; Garcia de la Torre, 1989; Garcia de
la Torre et al., 1994; Garcia de la Torre et al., 1997) and others (e.g. McCam-
mon et al., 1975) have thence considerably extended the power of this method-
ology for the calculation of the intrinsic viscosity (and hence the viscosity
increment, v) and other related hydrodynamic shaped parameters based on
translational and rotational frictional properties. Spherical bead models and
their viscosity increments for a range of oligomeric structures are given in
Figure 1.9.

In common with rotational frictional coefficients the intrinsic viscosity is a
much more sensitive function of bead geometry than translational friction (from
sedimentation and translational diffusion measurements). However, also in
common with rotational frictional coefficients its calculation is more difficult
compared to the translational frictional property (Garcia de la Torre and Bloom-
field, 1981) because the calculation is origin sensitive: in the case of [#] the
so-called ‘viscosity centre’ of the particle (the point which gives the minimum
energy dissipation in the calculations — cf. section 1.4.5) has to be calculated
(Garcia Bernal and Garcia de la Torre, 1980). Furthermore, as with the deriva-
tion for ellipsoids (section 1.4.5) the calculation must be orientationally aver-
aged in terms of Euler angles (Nakajima and Wada, 1978; Garcia de la Torre
and Bloomfield, 1978), or other procedures (Yamakawa et al., 1977). A numer-
ical matrix inversion is required: this is a so-called ‘supermatrix’, Q containing
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N X N blocks (N = the number of beads) each of dimension 3 X 3. In the
inversion procedure, Garcia de la Torre and Bloomfield (1981) have shown that
the modified interaction tensor of Rotne and Prager (1969) and Yamakawa
(1970), later modified by Garcia de la Torre and Bloomfield (1977) for beads of
different size, need to be used rather than the original Oseen (1927) interaction
tensor (which fails to take into account the finite sizes of the beads) to avoid
singularities. The first expression, without singularities, for [#] and using the
modified Rotne-Prager—Yamakawa interaction tensor was given by Nakajima
and Wada (1978) which, after a small correction given by Garcia de la Torre and
Bloomfield (1981), and a volume correction, Ay subsequently added by Garcia
de la Torre (1989):

Na 1 e ol o
[”]zM_’]Oz;C:[E;(L U)S,, (xj U)
+§16ZZ<X?_U°’)S5“<xf—Uﬂ)_%zz(xg_va)sgﬁ(Rf_uﬂ)

a#p a¥p

+ izz <x;’ = u“) sy (x;-* - u“)} +Ay (al, =12, 3), 35)
20 G5
where {; = 6mn,0; is the Stoke’s law friction coefficient for a bead i of radius o;,
S;; are the elements of the inverse of the supermatrix Q, R; is the distance vector
between the viscosity centre of the particle and the centre of the ith bead, and x{
and v” are, respectively, the coordinates of bead i and the viscosity centre in a
body-fixed frame of reference. From the energy minimisation criterion referred
to above the position of the viscosity centre is obtained by imposing the
condition:

oln) _

= =0 («=1,2,3), (36)
av

which gives a set of three simultaneous linear equations with coefficients
combinations of the xj's and Sjs. Substitution into equation 35 then gives [7]. An
approximate form of this has been given by Garcia de la Torre and Bloomfield
(1981), again with a volume correction Ay subsequently added by Garcia de la
Torre (1989). The viscosity increment v simply (1/v,) = M/V N, times equation
35 (where V is the hydrated volume of the particle) and as we explained in
section 1.4.1, is dependent only on the shape and not the size of the particle or
model (i.e. it is a ‘universal’ shape function). The PC routine HYDRO (Garcia
de la Torre ef al., 1994), and a parallel routine BEAMS (Spotomno et al., 1997)
evaluates [77] for a given set of (absolute) bead co-ordinates, whereas the routine
SOLPRO (Garcia de la Torre ef al., 1997) evaluates v and other universal shape
parameters described in section 1.4.6 above (apart from u.q and I1 which are
not yet available for the bead approximation).
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(d)

0]

(h)

Figure 1.9 Bead models for various oligomeric structures with ~spherical subunits. (a) Monomer

sphere, v = 2.5 (b) Dimer, v =4.1 (c) Trimer-hnear, v = 5.3 (d) Trimer-triangle, v = 4.7 (e)
Tetramer-square, v = 5.1 (f) Tetramer-tctrahedron, v = 4.9 (g) Tetramer-linear, v = 6.6 (h) Penta-
mer-pentagon, v = 5.5 (i) Pentamer-bipiramid. v = 5.1 (j) Hexamer-hexagon. v = 6.0 (k) hexamer
octahedron, v = 5.1 (1) hexamer trigonal prism. v = 53 (m) hexamer lincar, v = 9.8 (n) octamer

cube, v = 5.5. Values for v are based on cquation 37 with the volume correction of equation 35. An
improved volume correction is currently being developed (Garcia de la Torre. 1997).
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Figure 1.9 (continued)

The volume correction term,

Av = (5/2) (NAVIM), (37)

with V' as before the (hydrated) volume of the particle, = v.M/N, =
(V+0/po)M/N4 on the RHS of equation 35, which had been inspired by a similar
correction for rotational coefficients (Garcia de la Torre and Rhodes, 1983), is
essential in models in which one or a few beads have a large fraction of the
particle size, for example, oligomeric protein structures consisting of two or
more approximately spherical subunits. Without this correction for example, for
a single sphere. a valuc of v = 0 is returned instead of the correct Einstein value
of (5/2). Garcia Bernal and Garcia de la Torre (1981) had earlier suggested that
each subunit should itself be represented as an array of eight smaller spheres
arranged as a cube. Lopez Martinez and Garcia de la Torre (1983) then showed
that bead model representations of prolate ellipsoids, with the central spherical
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bead replaced by such a cube, gave reasonable agreement with the exact values
known from the Simha formula (equation 28) (to no worse than ~12% for a
range of axial ratios a/b from 1 to 6): much better arrangement was found for
the translational frictional coefficient modelled in this way. The ‘eight-sphere
cube’ approach also gave similar results (but requiring dramatically less com-
puter time) to the ‘raspberry’ or ‘shell’ model approach of Swanson et al. (1980)
who modelled the surface of each subunit as an array of 126 small spherical
beads. For models with many beads of similar sizes (chain like structures) this
correction term is insignificant. Nonetheless, representations of known ellipsoi-
dal shapes are still not exact and usually lead to overestimations of v. An
improved method incorporating a better volume correction is currently being
developed (Garcia de la Torre, 1997).

Similar calculations have been performed for the translational and rotational
frictional properties (Garcia de la Torre, 1989).

1.5 General conformation and flexibility analysis

For many food biopolymers the rigid particle approach involving ellipsoid or
bead analysis is inapplicable. Both approaches require stringent assumptions
concerning the monodispersity of the macromolecular system being represented.
This discounts molecules like polysaccharides although for fairly rigid systems
thereof — for example, highly charged rod-shaped molecules like xanthan —
ellipsoidal axial ratios can still be applied in a ball-park sort of way. For
molecules where approximate rigidity in the overall molecular morphology
cannot be reasonably assumed such as these, we have to use intrinsic viscosity
and other hydrodynamic probes in a much more general sort of way. We can
however take advantage of molecular polydispersity — especially if it is of a
quasi-continuous type —and use relations describing the dependence on molec-
ular weight with intrinsic viscosity (and other hydrodynamic properties) known
as the Mark—-Houwink-Kuhn—Sakurada relations, together with the Wales—Van
Holde ratio, k,/[57] = R, to distinguish between classes of particle conformation
(for example, between the three extremes of compact sphere, rigid rod and
random-coil). The [#]-molecular weight dependency can then be further devel-
oped to give a more quantitative description of particle flexibility. As a very
approximate guide, the Huggins constant itself, Ky;, has been used as a rough
guide to the general conformation of a biopolymer: for solid uncharged spheres
it can be as high as ~2 (Guth and Gold, 1938; Tanford, 1961) with lower values
for more extended shapes, whereas for flexible biomolecules a value of ~0.35
can be expected, a value which is slightly higher in poor solvents.

1.5.1 Mark-Houwink—Kuhn-Sakurada and Wales—Van Holde relations

For molecules which can exist with a variety of molecular weights, the relation
between [#] and M is one of the most important properties (Tanford, 1961). The
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following relation was first suggested by Mark (1938) and independently by
Houwink (1940) as an empirical relation between the two parameters:

(7] = K'M", (38)

where K" and a both depend on the polymer conformation, with the latter more
easy to define. Similar relations exist for other hydrodynamic properties:

SZ()'W - K”Mb
Dzo_w = K'”M-c (39)
Ry = K"M".

These relations are collectively known as the ‘Mark-Houwink-Kuhn—Sakur-
ada’ relations (Mark, 1938; Houwink, 1940; Kuhn and Kuhn, 1945; Sakurada,
1940; 1941; see also Bohdanecky and Kovar, 1982) and the exponents a, b, c,
—¢ are known as the ‘Mark-Houwink-Kuhn-Sakurada’ exponents (or just
‘MHKS’ or ‘Mark-Houwink’ exponents) and can be obtained from simple
double-logarithmic representations. The values of the viscosity exponent a are 0,
0.5-0.8 and ~1.8 for spherical, random-coil and rod conformations respectively,
as described, for example, in the monographs of Tanford (1961), Smidsred and
Andresen (1979), Tsvetkov et al. (1971) and Bohdanecky and Kovar (1982).
Values for the other parameters are given in Table 1.1, along with the Wales—
Van Holde ratio (Wales and Van Holde, 1954; Creeth and Knight, 1965;
Lavrenko et al., 1992), R, of the concentration dependence parameter of the
sedimentation coefficient, k,, to [7].

It can be seen from Table 1.1 that the relation between b and & is trivial
(because of their common relation with the frictional coefficient):

b+e=1, (40)

(Elias et al., 1973). Relations between b or ¢ with a have also been proposed but
these are model dependent (e.g. non-draining random coils) and not universally
valid (Kurata and Stockmayer, 1963; Reddy et al., 1990).

It has also been pointed out (e.g. Manaresi et al., 1988; Guaita et al., 1991)
that the MHKS relation for viscosity (38) is only rigorous where each [5] value
corresponds to a monodisperse polymer. The same of course applies to the other
MHKS relations (39). Most of the biological macromolecules to which equa-
tions of the type 38 and 39 have been applied are themselves polydisperse —

Table 1.1 MHKS coefficients and the Wales~Van Holde ratio for general
conformation types

Conformation a b € c = k/[n]
Compact sphere 0 0.667 0.333 0.333 ~16
Rigid rod 1.8 0.15 0.85 1.0 ~0.2*
Random coil 05-0.8  04-05 0506 0506 ~1.6

* Depends on axial ratio.
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such as polysaccharides — and evaluation of the coefficients X’ and a would be
performed after prior fractionation of the sample: each fraction however is likely
to have a residual polydispersity so some caution needs to be expressed. This
feature of polydispersity is particularly important since equation 38 has
been used as a ‘relative’ method for obtaining molecular weight. A molecular
weight obtained from direct application 38 is often referred to as a ‘viscosity
average’ (Tanford, 1961), M,. For values of a <1 (Tsvetkov et al, 1971)
M, < M, < M,, where M, and M,, are the number and weight average molec-
ular weights respectively. For a > 1, M, > M,,. More recently, attempts have
been made to correlate [#] directly with M,, M,, M,, etc. (Dobkowski, 1981;
1984; Bareiss et al., 1982; Manaresi et al., 1988). For example, Manaresi et al.,
(1988) have proposed a relation:

[7] = K'My(M./M,) “(M, /M), 1)

which has been shown to work for synthetic polymers (polystyrenes in various
solvents) provided that the ratio M,/M,, is not too high (Guaita ef al., 1991).

For most practical purposes, equation 38 is taken to be a reasonable approx-
imation, with M taken as M, and is particularly popular with the use of
microviscometers coupled on-line to size-exclusion chromatography separation
systems, a concentration detector and an absolute molecular weight detection
system (multi-angle laser light scattering), as described in section 1.3.3 (Haney,
1985a,b; Dutta et al., 1991; Jackson et al., 1991): each volume ‘slice’ leaving
the column has its weight average molecular weight (by the light scattering
detector) and intrinsic viscosity (via the microviscometer and appropriate appli-
cation of equation 15) simultaneously determined. The exponent a thus found
along with the exponent ¢ from the R, relations of equation 39 (which can also,
within certain limitations, be obtained from the same set of measurements if the
light scattering detector is of the multi-angle type (Wyatt, 1992)) can be used to
specify the conformation either in terms of conformation type (Table 1.1) or the
use of the more refined models described in section 1.5.5 below. The inclusion
of the light scattering detector on-line also permits the testing of so-called
‘Universal calibration procedures’ for obtaining molecular weights from size
exclusion chromatography from use of an on-line viscometer and concentration
detector alone. The principle of Universal calibration (see Harding et al., 1991)
is that, for example, separation is based on a relation between ¥, and the product
[7] X M (where V. is the elution volume) rather than being used on just M
alone. Other refinements have been suggested (e.g. Horta et al., 1986).

1.5.2 Representations of conformation type

Various graphical ways of representing the relation between the three conforma-
tion extremes (sphere, rod, coil) have been presented. One, the Haug triangle
(seemingly popular only in Norway and Nottingham) places the extremes at the
three corners of a triangle — the conformation of given macromolecules can then
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be represented by a locus along the perimeter of the triangle (Smidsred and
Andresen, 1979). A more recent improved alternative has been given in terms of
‘Conformation Zones’ (Pavlov et al., 1997a,b) A-E, with A = extra rigid rod,
B = rigid rod, C = semi-flexible coil, D = random coil, E = compact sphere or
heavily branched macromolecule. The current assignment of a zone based on
sedimentation analysis alone (Pavlov et al., 1997a) is now being extended to a
complementary procedure based on measurement of [#] and M and mass per unit
length, M alone (Pavlov et al., 1997b).

Having established the conformation type (sphere, rod, coil or a confirmation
‘zone’ A-E) via simple application of the MHKS or Wales—Van Holde relations,
more detail about the conformation can be sought. For example, if it is rod-like,
its length and dimensions can be sought; if it is sphere-like, its radius; if it is a
coil, its flexibility; if its conformation is between a sphere and rod or disk (an
ellipsoid) its axial ratio.

1.5.3 Smidsred—Haug stiffness parameter, B

This is probably the simplest index for flexibility of a biopolymer, but applies
only to polyelectrolytes. For polyelectrolytes Pals and Hermans (1952) had
proposed the following relation between intrinsic viscosity and ionic strength.

7 = [n-+ (S- 17", (42)

where [#] is the intrinsic viscosity at infinite ionic strength and with S a
parameter which could be used as a comparative criterion of stiffness for
polymers, but only for those of the same molecular weight, M and solvent
counterion environment (Smidsred, 1970; Smidsred and Haug, 1971). To avoid
this restriction, Smidsred and Haug suggested the use of a modified parameter,
B (not to be confused with the second thermodynamic virial coefficient, B): by
comparing stiffnesses at a fixed ionic strength I (typically 0.1 M NaCl) the
necessity of comparing biopolymers of the same M and even the necessity of
knowing M is avoided. The ‘Smidsred’ stiffness parameter B is defined by:

S=B - ([nh=0)’ (43)

a relation which seems to fit the experimental data for glycopolymers and
nucleic acids very well (section 1.6) with the exponent v (also not to be
confused — this time with the viscosity increment of section 1.3) fitting within
the range (1.3 £ 0.1): B can thus be evaluated from measurement of S (via an
[7] versus  plot and equation 42) as well as [#],=0, and using a value of v = 1.3
in equation 43.

1.5.4  Polyelectrolyte behaviour at low ionic strength

For polyelectrolytes — such as a nucleic acid or a polyanionic polysaccharide in
a solution where the concentration of low molecular weight electrolyte (salt,
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etc.) is too small to suppress charge effects (section 1.4.3) the conventiona
reduced viscosity versus concentration plot can depart from its conventiona
positive slope characteristics (Figure 1.1) and the reduced viscosity can decreasc
with increase in polymer concentration c. A good representation of the behav-
iour is the Hess—Klein relation (Hess and Klein, 1983) which in simplified form
(Malovikova et al., 1994) is given by:

frea ~ €/l(cl) + e, 44)

where 1 is a function of the charge (valency) of the biopolymer and is consistent
with the appearance of a maximum observed in these plots for charged polysac-
charides. Both Rinaudo and co-workers (Malovikova et al., 1994; Roure et al.,
1996) and Antonietti and co-workers (Antonietti ef al., 1996) have recently
examined the nature of this maximum in some detail, the former for polysaccha-
rides, the latter for spherical synthetic macromolecules.

1.5.5 [n]-M dependencies and the flexibility of linear biopolymers

Early attempts on the representation of a linear coil were based on a so-called
‘free draining coil’ model (Debye, 1946; Kramers, 1946; Peterlin, 1948; 1950;
Hermans, 1949; Kuhn ef al., 1951) in which a macromolecule is represented by
a linear chain of interconnected beads acting essentially independently of each
other, followed by a summation of all their effects (Tsvetkov et al., 1971;
Yamakawa, 1971). This approach, which led to an estimate of a of ~1, was later
modified to incorporate hydrodynamic interaction (Brinkman, 1947a,b,c; Kirk-
wood and Riseman, 1948; 1949; Debye and Bueche, 1948; Kirkwood, 1967) and
led to a range of possible values for a of 0.5-1.0 a range which represents the
extremes of impenetrable coil (i.e. non-free draining where the solvent in the
interior of the coil moves with the biomolecule) and a completely permeable
free draining coil. Essentially the same result was obtained by Zimm (1956)
based on a bead-spring or sub-chain model which took into account Brownian
motion effects. Flory and co-workers (Flory and Krigbaum, 1950; Flory and
Fox, 1951; Krigbaum and Flory, 1953) questioned the interpretation of values of
a> 0.5 for a coil as due to partial or complete permeability, and proposed
instead an alternative explanation in terms of swelling or (intramolecular)
exclusion volume effects. Based on this theory the predicted range for a for coils
is 0.5 < a < 0.8, a range subsequently vindicated experimentally (Flory, 1953;
also Ahn et al., 1993). The concept of ‘theta’ solvents was also developed. In
opposition to intramolecular exclusion volume effects are attractive effects: a
‘good solvent’ is one in which solvent-biopolymer interaction are preferred over
interactions between different parts of the biopolymer, whereas in a ‘poor
solvent’ intrachain (and inter-chain) biopolymer interactions predominate: this
serves to effectively ‘shrink’ the molecule in opposition to the excluded volume
effect. Under certain solvent conditions, known as ‘f-temperature’ or ‘f-solvent’
conditions these effects can effectively cancel giving rise to pseudo-ideal
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behaviour. The intrinsic viscosity at these ‘theta conditions’ is represented by
the symbol [#]o.

Flory and co-workers (Flory and Krigbaum, 1950; Flory and Fox, 1951;
Flory, 1953) also provided the basis for estimating the characteristic ratio Cs of
a linear biopolymer which is a measure of the conformation restriction or
‘stiffness’:

C. = (K)/nl%, (45)

where (%) is the mean square end to end distance, n is the number of segments
in the chain and / the length of each segment or residue (e.g. for a polysaccharide
I would represent the saccharide residue length). C. = 1, with equality holding
only for a perfectly flexible chain. In practical terms, flexible coils appear to have
values of C. ~ 1-10 whereas very stiff polymers have C. = 25-400 (Lapasin
and Pricl, 1995). Following Stockmayer and Fixman (1963) C» can be estimated
from the intercept of a plot of [7]/M " versus M'"? together with knowledge of
the residue length / and the residue molecular weight (e.g. Robinson et al.,
1982).

Arguably a more useful representation of linear flexibility is in terms of the
persistence length of the equivalent worm-like chain, a representation first
proposed by Kratky and Porod (1949): also Ptitsyn and Eizner (1959); Peterlin
(1950; 1952; 1960) and more recently Bohdanecky and Kovar (1982) and Fujita
(1990). In this model, developed largely to give better representations of the
conformation of DNA, the polymer chain is taken as continuous: effectively the
segment length / = 0 and the number of segments n — . The persistence
length L,, is the principal parameter, defined (Tvetskov ef al., 1971; Yamakawa,
1971; Fujita, 1990; Freire and Garcia de la Torre, 1992) as the average
projection length along the initial direction of a chain of (contour) length L. and
in the limit of L. = o (Figure 1.10). Thus the limits L/L, = 0 and L/L, — %
correspond to a perfectly rigid rod and a perfectly random coil respectively.
Alternatively, just L, = 0 and L, — o correspond to a perfect coil and perfect
rod respectively. As Freire and Garcia de la Torre (1992) have said ‘apart from
its precise definition, the persistence length, L, gives an indication of the length
scale for which correlation between separate parts of the chain begin to dis-
appear - it takes a given value for a given macromolecule independent of chain

Lp, - s
L(
Lc—>oo

Figure 1.10 The persistence length L, and contour length L, of a linear macromolecule. L,
corresponds to the average projection (onto a line of the initial direction projected from one end of
the macromolecule) that L, would have in the hypothetical limit that Lc — .
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length or molecular weight’. An alternative but equivalent parameter (Tsvetko
et al., 1971; Fujita, 1990) is the ‘Kuhn statistical segment length’ 17'(= 2L,).

Hearst (1963, 1964) and Hearst and Tagami (1965) provided expressions fc
[#] for both extremes: for the random coil (L./L, — o):

[7] = 100 X 2.19 X 107 - (1/M) - (LA™")*? - {1 — 0.89[In(x/A"")
+ 2.431 — x/d] (L/A™Y)7" 7, (46,
and for the rigid rod (L/L, — 0):

[7] = 100 X [N LY(90M)] - [V{In(Lc/x) — 2.72 + 0.66(x/d)}
+ 3/{In(L/x) — 2.72 + 1.33(x/d)}], 47)

with [#] in ml/g and where d is the hydrodynamic diameter of a segment of
length x. More general relations have been given by Eizner and Ptitsyn (1962),
Ptitsyn and Eizner (1962) and Sharp and Bloomfield (1968).

Such worm-like modelling is referred to as ‘two parameter’ representations of
flexibility — that is to say in terms of the contour length L. and the persistence
length L,. The desire to represent a wider range of conformations and flexibil-
ities — particularly helical structures — was noted by Yamakawa (1971) and in
response to this the helical worm-like coil model, was developed by Yamakawa
and co-workers (Yamakawa and Fujii, 1976; Yamakawa, 1977; Yamakawa,
1984; Yamakawa and Yoshizaki, 1980). The helical worm-like coil model
involves five conformation parameters: the contour length L., a bending force
constant, a twisting force constant, and two parameters representing the centroid
helix. Extraction of so many parameters, however, provides a considerable strain
on the experimental data. Consequently limiting cases with a reduced number of
parameters have been developed. For example, Bohdanecky (1983) gave an
approximate form in terms of three conformation parametcrs L. (or the mass per
unit length My = M/L.), ™" {or 2L,: use of either ™! or L, seems to be one of
personal preference (Fujita, 1990)} and the hydrodynam1c diameter of the
cylinder or chain, d. In simplified form, the Bohdanecky (1983) relation is:

(M?*/[n)o)'” = 4, + B,M"?, (48)
where
Ay = AoM D, (49)
and
B, = Bo® 5, (R)/M):"", (50)

and with the parameter ;. = 2.86 X 10>, A, and B, are tabulated functions of
d/2~" (Bohdanecky, 1983) Thus a plot of (M*/[7])'"” vs. M'? provides the basis
for obtaining M, , 27" and d. The mass per unit length M; can either be used as
a variable parameter in the analyses or used as a fixed parameter on the basis of
other measurements such as from ‘static’ (i.e. classical or ‘total intensity’) light
scattering or from electron microscopy (Stokke and Elgsaeter, 1994). Table 1.2
lists some useful values of M, .
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Table 1.2 Mass per unit length M, for various polysaccharides

ML Da
Biopolymer Biopolymer type nm~'  Method Reference
pullulan single chain polysaccharide 340 a Kawahara er al. (1984)
methyl single chain polysaccharide 360
cellulose
amylose single chain polysaccharide 790-1400 ab,c Yamakawa and Yoshizaki (1980)
Stokke er al. (1987)
xanthan double helical 1700-2000 a,b,c Sato er al. (1984)
polysaccharide Coviello et al. (1986)
Stokke ef al. (1989a,b)
Kitamura et al. (1991)
schizophyllan triple helical 1900-2100 a,b  Bohdanecky (1983)
polysaccharide Yanaki er al. (1980)

* Non-aqueous solvent
a: Viscometry or sedimentation analysis. b: Light scattering. ¢: Electron microscopy.

An even simpler version of equation 50 has been proposed by Bohdanecky
and Netopilik (1993), and using this type of treatment Bohdanecky in a very
recent paper (Bohdanecky, 1996) addressed an anomaly raised by Fujita (1988;
1990) as to why under theta solvent conditions, it is observed experimentally for
many polymers that the MHKS coefficient a remains constant at ~0.5 (i.e. the
non-draining coil limit) over a broad range of molecular weights, instead of
increasing from 0.5 to 1 as the chain length decreases.

Close to the rod limit, Freire and Garcia de la Torre (1992) have highlighted
the limitations of the worm-like coil theories and provided the motivation for the
elucidation of theories for rigid cylinders. The most recent equation is that of
Garcia-Molina et al. (1990):

(7= Q- Na-MY{M(In M — In M —In d)}, (51

with No Avogadro’s number and the coefficient Q@ = 0.015 ([#] in ml/g; My in
Da nm™").

1.5.6 Critical overlap concentration, c*: the dilute solution limit

In connection with the behaviour of coil-shaped molecules, the critical overlap
concentration c¢* has been used as a parameter representing the upper limit of
dilute solution behaviour. Above this concentration the influence of overlapping
molecular domains becomes significant. Vidakovic et al. (1982) have proposed
the approximation:

c* ~ x/[nl, (52)

with y = 0.58. Launay et al. (1986) based on polysaccharides and Papana-
gopoulos and Dondos (1995) for polystyrene in ethyl acetate gave the same
formulae differing only relatively slightly in the value of y (0.33 and 0.5
respectively). This formula seems also to be valid for stiffer structures. For
example, it accurately predicts a discontinuity at ¢ ~ 0.4-0.8 mg/ml in the
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Figure 1.11 Reduced viscosity versus concentration, c, plots for xanthan (Keltrol RD) (a) in

dilute solution (¢ = 0 — 0.35 mg/ml) and (b) in the region c =0 - 0.9 mg/ml. From (a),

[7] = (7500 + 2700) ml/g. Predicted c* from equation 52 = 0.4-0.8 mg/ml. Reproduced with
permission from Dhami ef al. (1995).

Huggins plot for the bacterial polysaccharide xanthan (Figure 1.11). Discon-
tinuities for this substance. were observed at the same approximate concentration
in plots of the sedimentation coefficient and apparent molecular weight versus

concentration.

1.6 Applications to food biopolymers

Table 1.3 gives a list of the intrinsic viscosities of food and seed proteins with a
clearly defined molecular weight. The table also includes collagen sonicates
(again of different molecular weight).

1.6.1 General conformation studies

Table 1.3 illustrates the principles concerning [#]-general conformation rela-
tionships discussed in section 1.5 quite well, and in Table 1.4 we have collected
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together data for an homologous series of proteins and polypeptides and their
corresponding Mark-Houwink—Kuhn—Sakurada (MHKS) a (and K') coefficients
(equation 38). From Table 1.3, globular proteins are seen to have relatively
small [7]s in the range 2.5-6 ml/g with little dependence on molecular weight
(corresponding to an MHKS exponent a = 0 of Table 1.4). Sonicates of the
triple-helical protein collagen (Nishihara and Doty, 1958) yield an a of ~1.8
(from a plot of log [#] versus log M), consistent with a rigid rod conformation,
whereas the protein in its gelatin state adopts a random coil configuration with
a = 0.45-0.88 (Veis, 1964). Gelatin intrinsic viscosity has been the subject of a
recent thorough investigation for a range of different preparations and tem-
peratures (Krasovskii ef al., 1993).

Data collected for globular food proteins denatured by 8M urea or 6 M
guanidine hydrochloride (Tanford et al., 1967; Van Kleef et al., 1978) yield an
a ~ 0.68, consistent with a random coil conformation, as shown earlier by Yang
(1958a,b). Tanford (1968) suggested the following relation for proteins in the
random coil state:

[7] (ml/g) = 0.716 n®%7, (53)

where n is the number of amino acids in the protein.

1.6.2  Ellipsoid modelling studies

The earlier modelling of macromolecular conformation of proteins from
measurement of [7] was largely based on simple ellipsoids of revolution
and using v directly from equations 26 and 27 with equation 28 or approxi-
mate forms thereof together with an assumed value for the hydration J of
~0.2-0.35 g/g (Tanford, 1961). Garrigos et al. (1983), for example, have
examined the conformation of the S1 heads of myosin using a prolate ellipsoid
model and showed that the (7], along with the sedimentation coefficient could be
represented by the extremes of axial ratio (a/b) of ~2.5 (hydration 0 = 1.24)
and ~1.0 (0 = 2.02). These workers have attempted to combine this information
with images of ‘pear-shaped molecules’ from electron microscopy and with
solution X-ray scattering data to propose a prolate ellipsoidal molecule with the
hydration unevenly distributed into a hole at one end.

Use of the hydration independent shape functions that avoid & through the
combination of [#] with another hydrodynamic parameters has involved the R,
[T and A, (section 1.4.6) rather than the B-function because of the latter’s
insensitivity to shape. Table 1.5 shows a number of proteins whose shapes have
been determined using the R-function.

Since we know from the MHKS a exponent (= 1.8) that collegen is ~ a rigid
rod we can model the molecule as a rigid prolate ellipsoid of large axial ratio,
and use the known dependence of R on axial ratio (a/b) to evaluate the change
of (a/b) with molecular weight and Figure 1.12 shows the increase of axial ratio
ts ~ linear with molecular weight for M < 260 000.
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Table 1.4 MHKS parameters for food proteins

10* X K’
(for [n]
Protein Conditions/Comments in ml/g) a Reference
Collagen 1.8 Nishihara and Doty
(1958)
Gelatin 0.45-0.88  Veis (1964)
Water at the isoelectric 1600 0.885 Pouradier and Venet
point (1950)
Globular proteins = 0
Denatured proteins 6 M GuHCI or 8 M 7160* 0.67 Tanford (1967)
urea, +0.1 M 0.64 Van Kleef et al. (1978)
B-mercaptoethanol
Poly-L-glutamate 0.2 M NaCl, pH 4.3-7.3 1.0 Morcellet and Loucheux
(1976)

* This equation is given in the form [5] = K'n®, where n is the number of amino acid residues.

Table 1.6 shows the axial ratios (a/b) of three proteins worked out by the IT
function (Harding, 1981a). It is particularly interesting to note that the overall
shape of the ovalbumin molecule from both the R- and Il-functions found in
1981 (Harding, 1981b) is almost exactly as found some ten years later by X-ray
crystallography (Stein et al., 1991) (Figure 1.6).

The ellipsoid of revolution approximation to hydrodynamic structure assumes
a protein can be reasonably modelled by a three-dimensional shape with two of
the perpendicular axes equal axes (length 2b) and the final perpendicular longer
axis (length 2a), a shape specified by a single axial ratio (a/b). As noted in
section 1.4.3, a much better representation of molecular shape can be obtained if
the restriction of two equal axes is removed to give a general triaxial ellipsoid of

Table 1.5 Axial ratios of food proteins from k, and intrinsic viscosity [7] measurements

k, R axial ratio
Protein (mVg) [7] (ml/g) {=k/[n]} (a/b)* Reference
ovalbumin 5.45 3.49 1.56 1.5 ab,c
bovine serum albumin 54 39 1.38 23 de
B-lactoglobulin (B) {dimer} 4.6 2.86 1.61 1.0 fg
collagen (374 kDa) 265 1250 0.212 >100 h,i
sonicates: 336 kDa 250 1075 0.232 100 h
297 kDa 227 865 0.262 70 h
250 kDa 202 625 0.323 43 h
217 kDa 182 495 0.368 33 h
192 kDa 166 400 0415 25 h
170 kDa 154 325 0.474 18 h
149 kDa 142 245 0.580 14 h

* Of the equivalent prolate ellipsoid. k, values are normally corrected for ‘radial dilution’ and to
‘solution density’ (see Rowe, 1977; Harding and Johnson, 1985).

a: Miller and Golder (1952); b: Holt (1970); c: Harding (1981b); d: Baldwin, (1957); e: Tanford and
Buzzell, (1956); f: Advani er al. (1957); g: Townend er al. (1960); h: Nishihara and Doty (1958);
i Creeth and Knight (1965).



T Aty ey

DILUTE SOLUTION VISCOMETRY OF FOOD BIOPOLYMERS 37

120 S — U S —
100+ o
801 4
60- ]

40—‘ ./' i

20 — i

axial ratio (a/b)

— S 1 — .
140 180 250 260 300 340
Molar mass (kg/mol)

Figure 1.12 Axial ratio of collagen sonicates estimated from the Wales—Van Holde ratio, R as a
function of molecular weight (Harding, 1995).

semi-axes @ = b = ¢ and 2 axial ratios (a/b, b/c). As an example Harding (1987)
has used the intersection of IT with the radius of gyration shape function G to
show that despite the segmental flexibility of myosin (dimers) the overall
conformation of a rod of axial ratio (a/b, b/c) ~ (80, 1) is faithfully reproduced
(Figure 1.13).

1.6.3 Bead modelling

Although it is encouraging that general ellipsoid modelling reproduces the
overall rod-shape conformation of the myosin molecule, it does not provide any
information about the nature of any kinks or bends in the rod and nothing about
possible flexible regions in the macromolecule: myosin is in fact a good example
where bead modelling can be successfully applied to viscosity data and is indeed
more appropriate for representing molecular flexibility compared with rigid
triaxial ellipsoids (Byron, 1995), with two potential regions of flexibility (Garcia
de la Torre, 1989). There is however considerable disagreement in terms of the

Table 1.6 Axial ratios of three food proteins form the IT function

Axial ratio
Protein I (a/b)* Reference
haemoglobin 3.20 1.0 Tanford and Buzzell (1956)
ovalbumin 3.18 1.0-2.0 Harding (1981b)
myosin 0.47 80 Harding (1987)

* Of the equivalent prolate ellipsoid
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Pi-G Intersection Plot for Myosin

Figure 1.13 Use of the intrinsic viscosity based I1-G intersection plot (allowing for experimental

error) to uniquely fix the overall triaxial shape of a particle in terms of (a/b, b/c). Based on data for

myosin (from Harding, 1987). Computer output from the PC routine ELLIPS3. Predicted axial
ratios: (a/b, b/c) ~ (80, 1).

extent of flexibility, with some works suggesting there may be large flexibility
within the rod (Highsmith et al., 1982; Cardinaud and Bernengo, 1985; Iniesta
et al., 1988), whereas others indicate that the rod is nearly rigid (Hvidt ef al.,
1982; Curry and Krause, 1991). There is also uncertainty as to whether the
flexibility — if present — is largely localized to one or two flexible joints or
whether it is more evenly distributed as a worm-like cylinder (section 1.5.5).
Garcia de la Torre (1994) has given three sources for uncertainty:

(a) The length of the rod is a sensitive parameter needed for the modelling, and
values ranging from 144 to 156 nm have been assumed.

(b) Large discrepancies with relaxation times from rotational frictional meas-
urements (birefringence or fluorescence anisotropy).

(c) The existence of two different theoretical approaches (the ‘rigid body’ and
‘Wegener’ (1985) approaches of section 1.4.7) and some confusion as to

notation.

In an attempt to reconcile these difficulties, Garcia de la Torre (1994) has
examined data from [#] and R, for which there is general acceptance (unlike the
rotational data) and shown that the flexibility parameter Q for the myosin rod is
~0.50 and the optimum rod (contour) length, L. is indeed 144 nm.

However, it is probably fair to say that bead modelling has yet to fulfil its
potential, particularly in the area of the modelling of multi-subunit proteins such
as the soya bean and related globulins. As noted in section 1.4.7, the viscosity
parameters v and [7] are particularly difficult to calculate compared to other
hydrodynamic parameters and a simple representation of 1 sphere = 1 subunit
does not yield optimal results. However, in work to be published shortly
Carrasco ef al. (1998) have shown that the arrangement of the subunits of 12S
globulins from the sunflower protein can be successfully represented if each
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subunit is represented by either a cubic array of smaller beads or the surface of
each subunit is represented by a shell of smaller beads.

1.6.4 Food polysaccharides

The most fundamental experimental parameter describing the general conforma-
tion of food polysaccharides is the MHKS a exponent and Table 1.7 gives a
comprehensive list for a range of polysaccharides (although some, like chitosan,
are not yet universally food grade approved). The parameter K’ is included as
well since the MHKS expression is often used to obtain molecular weights from
measured intrinsic viscosities.

[t can be seen that the bulk of the polysaccharides represented in Table 1.7 have
MHKS a values in the random coil range (0.5-0.8). Low values of a (<0.5) tend
to indicate significant branching or an approach to the compact sphere limit of
a = 0 for the glycopolymers of Table 1.7. There are very few reported values
significantly below the lower limit for completely random coils (a = 0.5), two
exceptions being hydroxyethyl starch (a = 0.35) and DIT- (di-iodotyrosine)
dextran: with the latter, the effect of incorporation of the label appeared to make
the molecule effectively more compact by accentuating the effect of branching of
the native dextran. At the other end of the scale a number of charged and
particularly helical saccharides have a values >1, particularly succinoglycan,
xanthan and the triple-helical schizophyllan. With the latter, the a value illustrates
the effect of chain length on the overall conformation, with the ‘extra-rigid rod’
characteristics at lower chain length (M,, < 50 000), with a = 1.7, reverting to a
more flexible rod at larger molecular weights (a = 1.2). Similar behaviour has
been observed for xanthan (Milas et al., 1985; Liu and Norisuye, 1988).

In support of conclusions on molecular structure based around the MHKS a
coefficient, other MHKS coefficients can be used such as the sedimentation b
coefficient (reviewed in Harding, 1995) and the Wales—Van Holde parameter
R (=k/[n]), as described in section 1.5.1, with values of ~1.6 signifying a
spheroidal domain (either a compact sphere or random coil) and low values
(—0.2) indicating a rigid rod conformation. Table 1.8 summarizes some findings.

Once the general conformation has been sorted out for a glycopolymer by
MHKS and/or the Wales—Van Holde treatments, more sophisticated analyses
can then be applied. If the glycopolymer is a rigid rod-like structure (such as
schizophyllan or xanthan) then the rigid particle ellipsoid or bead theories of
section 1.4, although derived mainly for protein work, can be applied. For
example, in a recent study on xanthan by Dhami et al. (1995) a rod of aspect
ratio ~70 : 1 was inferred on the basis of both the [1- (equation 33) and the R-
functions (equation 34). Or in the case of more coiled structures, more detailed
information about the flexibility of the molecule in terms of the characterisitc
ratio, Cx, the persistence length L, (or the Kuhn statistical segment length, A7
for a worm-like coil, the helical parameters from the Yamakawa-Fujii helical
worm-like coil model or the polyelectrolyte stiffness parameter B can be sought,
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Table 1.7 MHKS parameters for polysaccharides

10X XK'
(for [7]
Glycopolymer Conditions/Comments inml/g) a Reference
Agar 0.1 M KCl, 65°C 875 0.68 Tashiro et al. (1996)
Alginate 0.01 M NaCl, 20 °C 48 1.15 Smidsred (1970)
(manA/gulA* = 1.8) 0.1 M NaCl, 20°C 20 1.0 Smidsred (1970)
1M NaCl, 20 °C 91 0.87 Smidsred (1970)
I -, 20°C 120 0.84 Smidsred (1970)
Amylose 132 0.68 Burchard (1963)
0.2 N KOH 69.2 0.78 Banks and
Greenwood (1969)
0.33 M KCI 1150 0.50 Banks and
Greenwood (1968)
0.33 M KCl1 1120 0.50 Banks and
Greenwood (1975)
0.5 M KCI 550 0.53 Cowie (1963)
Carboxymethylamylose 37.5 °C 252 0.64 Patel et al. (1967)
Carboxymethylcellulose 0.005 M NaCl 72 0.95 Brown and
(Na®) Henley (1964)
0.2 M NaCl 430 0.74 Brown and
Henley (1964)
0.01 M NaCl 0.92 Brown et al. (1964)
0.05 M NaCl 190 0.82 Morris and
Ross-Murphy (1981)
| g 1900 0.60 Morris and
Ross-Murphy (1981)
Chitosan® 0.2 M CH;COOH/ 1.14  Ermington et al.
CH;COONa, DD =58%, 25 °C (1993)
0.2 M CH;COOH/0.1 M 1.04 1.12 Wang et al. (1991)
CH;COONa, DD=69%, 30 °C
0.2 M CH;COOH/0.1 M 14.24 0.96 Wang et al. (1991)
CH3;COONa, DD =84%, 30 °C
0.2 M CH;COOH/0.1 M 65.89 0.88 Wang et al. (1991)
CH;COONa, DD=91%, 30 °C
0.2 M CH;COOH/0.1 M 168 0.81 Wang et al. (1991)
CH;COONa, DD=100%, 30 °C
0.2 M CH;COOH/0.1 M 0.71 Muzzarelli (1977)

NaCl 4 M urea
0.2 M CH;COOH/0.2 M NaCl 18.1 0.93 Roberts and
Domszy (1982)

CF;COOH 0.3 Berkovich ef al.
(1980)

1% CH;COOH/2.8% NaCl 0.15 Berkovich et al.
(1980)

1% CH;COOH/2% LiCl 0.19 Berkovich et al.
(1980)

Dextran 0.87 0.50 Neely (1963)
0.51 Senti et al. (1955)

continued
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Table 1.7 Continued

10° X K’
(for [n]
Glycopolymer Conditions/Comments inml/g) a Reference
Galactomannans 0.168 0.98 Doublier and
Launay (1976)
20°C 670 0.80 Sharman et al.
(1978)
0.98  Doublier and
Launay (1981)
Gellan (deesterified) 0.025 M 74.8 0.91 Dreveton et al.
tetramethylammonium- (1996)
chlonde, 25 °C
Guar gum 7.76  0.98 Doublier and
Launay (1976, 1981)
380 0.723 Robinson et al.
(1982)
Hydroxyethylcellulose 10 000 0.70  Brown (1961);
95.4 0.87 Uda and Meyerhoff
(1961); Brown et al.
(1963); Savage
(1965); Wirick
(1988); Hodges et al.
(1979);
Hydroxyethylstarch 2910 0.35 Granath et al. (1969)
Hydroxypropylmethyl- pH 6.5, / = 0.10, 25 °C 0.50  Jumel er al. (1996)
cellulose water, 25 °C 0.41  Jumel et al. (1996)
Locust bean gum mannose/galactose ratio = 1 80.2 0.79  Sabater de Sabates
(1979)
Methylcellulose 2800 0.63 Brown (1961);
Uda and Meyerhoff
(1961); Brown et al.
(1963); Savage
(1965); Wirick
(1988); Hodges er al.
(1979);
3160 0.55 Senti er al. (1955)
Pectins DM? 70% in H,0 216 0.79 Berth et al. (1977)
DM 30-72%, 0.1 M NaCl 0.8 Axelos et al. (1989)
Pullulan pH 638,/=0.10 235 0.659 Clarke and
Harding (1997)
236 0.658 Kawahara et al.
(1984)
258 0.646 Buliga and
Brant (1987)
Schizophyllan M. < 50000 0.0013 1.7 Yanaki et al.
(1980)
M., > 50000 092 1.2 Yanaki et al.
(1980)
in DMSO* 2230 0.69  Yanaki et al.
(1980)

continued
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Table 1.7 Continued

10'x K’
(for [
Glycopolymer Conditions/Comments inml/g) a Reference
Succinoglycan M, < 10°- 0.1 M NaCl 65 14 Gravanis ef al.
(1987)
Xantan M., > 310000 - 0.1 M NaCl 170 1.14 Milas er al. (1985)
M,, > 150 000 - 0.01 M NaCl 1.2 Liu and
Norisuye (1988)

M, > 150 000 - 0.01 M NaCl 63 1.32 Liu and
Norisuye (1988)

M. > 150 000 - 0.01 M NaCl 0.95 Liu and
Norisuye (1988)
0.5% NaCl 0.93 Muller er al. (1984)

Data partly taken from Lapasin and Pricl (1995).
a: ManA — mannuronic acid, GulA - guluronic acid; b: not yet FDA approved;
c: DD -~ degree of deacetylation; d: DM — degree of methoxylation; e: dimethylsulphoxide.

as described in section 1.5.4. The least popularly applied appears to have been
the characteristic ratio, C, and measurements have largely been based on radius
of gyration rather than from intrinsic viscosity measurements (section 1.4.5). For
example, for uncharged polysaccharides C for the randomly coiled pullulan has
been shown to be ~4 (Buliga and Brant, 1987), whereas the stiffer guar was
shown to have a value of ~13 (Robinson et al., 1982); corresponding a values
are ~0.65 and ~1 (Table 1.7). For polyelectrolytes the Smidsred stiffness
parameter, B, has had popular application (Lapasin and Pricl, 1995), with low
values of B indicating a stiff backbone and vice versa. Use of B has demon-
strated, for example, the variable effect of degree of substitution of charged
groups on a glycopolymer chain. For example, the extent or ‘degree’ of
substitution (DS) by CH;COO™ groups had little effect on carboxymethylcellu-
lose (B ~ 0.045-0.065) for DS values 0.5—1.0, whereas for pectin the chain
became considerably stiffer as DS changed from 0.58—0.89 with B decreasing
from 0.052—0.005 (Smidsred and Haug, 1971). By far however the most
popular parameter representing chain flexibility has been the persistence length,
L,, with the theoretical limits of 0 for a completely random chain and = for a

Table 1.8 Gross conformation of food polysacharides from the Wales-Van
Holde relation

Glycopolymer R (=kn)) Conformation Reference
Alginates 0.6 Extended Ball (1989)

B-glucans 0.4 Extended Woodward et al. (1983)
Chitosan 0.2 Rigid rod Errington et al. (1993)
x-carrageenan 0.9 Extended coil Harding et al. (1997a)
Mannan (yeast) 13 Random coil Pavlov et al. (1994)
Pullulans 1.4 Random coil Kawahara et al. (1994)

Xanthan 0.3 Rigid rod Dhami er al. (1995)
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Table 1.9 Persistence lengths L, for food polysaccharides

Glycopolymer L, (nm) Reference
Pullulan 1.2-19 Muroga et al. (1987)
Amylose 2.8 Ring et al. (1985)
Cellulose* 7.0 Whittington and Glover (1972)
Pectin (DE = 0.69) 30 Plaschina et al. (1985)
Pectin (DE = 0) 34 Plaschina et al. (1985)
Xanthan 40 Muller et al. (1986)
(M =1.8 X 10°Da, = 0.1 M)
Xanthan 210 Muller et al. (1986)
(M = 1.8 X 10°Da, I = 107° m)
Schizophyllan 115-200 Plaschina et al. (1985);
Yanaki et al. (1981);
Richardson and

Ross-Murphy (1987);
Carriere et al. (1985);
Norisuye et al. (1980);
Yanaki et al. (1980);
Scleroglucan 180 + 30 Biver et al. (1986)

* In cadoxen; DE: degree of esterification (of COO~ groups); /: ionic strength.

completely rigid rod (practically the range goes from ~1-200 nm). Table 1.9
gives the L, for a collection of glycopolymers ranging from the randomly coiled
pullulan (L, ~ 1.2-1.9 nm) to the extra-rigid triple-helical schizophyllan
(L, ~ 185-200 nm). In an extensive study on the latter, Yanaki et al. (1980)
showed that the polysaccharides schizophyllan and scleroglucan have essentially
the same triple-helical structure in solution. In an extensive study using intrinsic
viscosity with electron microscopy data Stokke et al. (1998) showed that the L,
for xanthan was only consistent with a double-helical structure (see also Stokke
and Elgsaeter, 1994).

Finally, using the simplified ‘three-parameter’ representation for worm-like
cylinders, Bohdanecky (1983) has applied equations 48-50 and the plot of
(M/[n))'” vs M to data for the rod-shaped molecule schizophyllan (Yanaki
et al., 1980).
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