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DIFFUSION
S. E. HARDING

Diffusion is the movement of molecules within a liquid driven
by thermal fluctuations. It is important for most biological pro-
cesses; indeed, the diffusion together of two reactants can be
the limiting factor for many processes. when the reaction is
said to be diffusion-controlled.

There are two types of diffusional motion: (1) translational
diffusion, where a molecule moves its relative position within a
three-dimensional system;‘and (2 rotational diffusion. where
a molecule spins or rotates about one or more of its axes. The
rates at which molecules undergo both tvpes of diffusion are
measured by their respective diffusion coefficients. D). and
D,. The SI unit for D, is the “Fick.” or m¥s, but for historical
and other reasons, biologists tend to use the cgs (Centigrade—
gram-second) system unit of em¥s. These measurements can
give important information about the sizes, structures, and
physical properties of the molecules. At room temperature
and in dilute solution, a small protein of molecula: welght
approximately 20,000 will have D, of about 107% cm*/s: a large
virus between 1077 to 107 cm?/s; a bacterial spore about
1072 ecm?/s. Some representative values are given in Table 1.

TRANSLATIONAL DIFFUSION

The translational diffusion coefficient, D,, describes the ten-
dency of a molecule to move (translational motion) under the
influence of either (1) a concentration gradient or (2) Brownian
motion.

The movement of molecules in a gradient in which their
concentration varies, de/dx, where ¢ is the concentration (in
grams per milliliter) at each point x, is given by Fick’s first law:

J = —D,(dc/dx) (D
where o/ is the mass of particles crossing a 1-cm? cross section

per second.
The same D, characterizes the Brownian diffusion of the

molecule:
(x?) = 2D,t 2)



Table 1. Translational Diffusion Coefficients and Derived Pa-
rameters of Some Molecules, Macromolecules and Biomolecu-
lar Assemblies

Molecular 10" X D3, 10% x £,
Substance Weight em?/s ru, A g/s
Water 18 230 — —
Sucrose 342 46.0 4.7 0.88
Ribonuclease 13,700 11.1 19.3 3.64
Ovalbumin 45,000 7.8 27.5 5.18
Fibrinogen 330,000 2.0 107 20.2
Dyneine® 2.5 x 108 1.1% 195 36.7
Turnip yellow
mosaic virus 5.7 x 108 1.4 152 28.9

* Although the molecular weight of dynein is smaller than that of turnip yellow
mosaic virus, its diffusion coefficient is smaller because it is more asymmetric.
Values of D3y, and molecular weight M. for dynein are also strongly dependent
on salt concentration.

where ¢ is the time and (x?) is the average of the square of the
distance the particle has moved.

The value of D, depends not only on the intrinsic size and
shape of the molecule but also on the viscosity and temperature
of the medium in which it is suspended. The value of D, must
therefore be normalized to standard conditions; the standard
conditions normally used are those of water at 20.0°C. The
D, corresponding to these conditions is normally designated
Doyye. It can be calculated from the value actually measured
at absolute temperature T and in buffer “b.” Dy,. with the

equation
293.15 Th

where 7y, is the viscosity (in cgs units) of the buffer at temper-
ature T'and 0.01 is the viscosity of water at 20.0°C.

The value of D., . can also depend on the concentration of
the molecule in the solution. due to thermodynamic nonideality
resulting primarily from the finite size of the molecule and
its electric charge. This nonideality is represented (1) by the
parameter k, (in units of milliliters per gram) in the equation

Dgo_u- = D;”_M(l 5 }"'LZ'C) (4)

D3y is the value of Dy, at zero concentration of the molecule:
its value can be estimated with equation 4 by measuring D,
at several different concentrations. For diffusion measure-
ments, the non-ideality term is often negligible and can be
neglected.

The value of D, can be measured either by following the rate
of disappearance of a concentration gradient or by dynamic
light scattering. The former is the traditional method of
measuring D, (2,3). The principle is to determine how the
concentration changes with time at the boundary between
two solutions, one containing the molecule of interest and the
other, just the buffer or dialyzate. A special diffusion cell can
be used with an appropriate optical system for recording either
the concentration, ¢, or the concentration gradient, dc/dx, as a
function of distance, x, from the center of the boundary. Alter-
natively, the optical system of an analytical ultracentrifuge
can be used to measure the boundary spreading in a synthetic
boundary cell. A speed is chosen to be sufficiently small that
sedimentation of the molecule is negligible. The Schlieren
optical system is very useful, as it gives the value of de¢/dx as a
function of x. The value of D, can be determined by measuring
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the variation in the height of the boundary, specifically, the
maximum value of de/dx, with time, ¢:

2
< %) = 47Dt (5)
where A is the area under the curve of de/dx versus x. A plot of
(A/H) versus time will yield D, from the slope; an example is
given in Figure 1.

Equation 5 assumes that there is no loss of material from
the boundary, that is, that the area A remains constant. This
assumption is reasonable for homogeneous protein prepara-
tions but may not be valid for polydisperse materials such as
mucus glycoproteins and polysaccharides.

These methods have also generally been superseded by dy-
namic light scattering. Nevertheless, the classical measure-
ments are preferable with nonglobular macromolecules, with
asymmetric shapes.

INTERPRETATION OF THE TRANSLATIONAL DIFFUSION
COEFFICIENT

The value of Dy, or D3y, obtained by either dynamic light
scattering or boundary spreading can be used to provide a
number of useful characteristics about a macromolecule.

Hydrodynamic Radius

The simplest deduction that cafi be made from the D3, . is the
size of the molecule as represented by its equivalent hydrody-
namic radius, rgy, which is also known as the Stokes radius.
The ry; is the radius of the equivalent sphere that would have
the same D3, .. The two parameters are related by the Stokes -
Einstein equation:

kgT
ry = o
bTI—Y]ZU.U.DEO.M'
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Figure 1. Measurement of the translational diffusion coeffi-
cient, D,, for ovalbumin by the boundary spreading technique
(4). As in Equation 5 of the text, the square of the ratio of area
(A) to the height (H) of the boundary is plotted as a function of
time.



676 DIFFUSION

where kp is the Boltzmann constant (1.379 X 10716 erg/K),
T is the temperature (293.15 K at 20.0°C), and 720w 1s the
viscosity of water (0.01 P at 20.0°C). If the value of D, is not
corrected to standard conditions, the appropriate values for T'
and 7 must be used. Table 1 gives the values of ry for several
macromolecules.

Frictional Coefficient, f

The frictional coefficient is inversely related to the diffusion
coefficient, giving a measure of the resistance to movement due
to both its size and shape. It can be calculated directly from
D;O,w:
e = Bk @)
NADZO,w DQO,w

where R is the gas constant (8.314 X 1077 erg mol K1) and
N, is Avogadro’s number (6.02 X 10%%). Values of f calculated
from Dgj ,, are given in Table 1.

It is often more informative to use the frictional ratio, f/
f,, which is the dimensionless ratio of the observed frictional
coefficient to that of an equivalent spherical molecule of the
same anhydrous mass and density.

Molecular Weight (M,)

The molecular weight of a molecule can be calculated from the
combination of its diffusion coefficient and its sedimentation
coefficient, sy, when corrected to standard conditions. The
equation analogous to (7) for the sedimentation coefficient is
_ Mr(l B ‘7,020.11.') (8)
ZVAS;O.M*
where ¥ is the partial specific volume of the macromolecule
and p2o. is the density of the standard solvent, water at 20°C.
Elimination of f between equations 7 and 8 yields the well-
known Svedberg equation: ,
M. = 8200-“' _@__
Dag (1 - Tp2ow)
Equation 9, of course, makes it possible to calculate Dgg,, if
both s30,, and M, are known.

It is possible, in principle, to measure both D3, and s3,,
simultaneously from analysis of the shape of the boundary
in sedimentation velocity analytical ultracentrifugation,
although in practice this requires data of high quality and a
totally homogeneous sample.

If the general shape of the macromolecule is known to a first
approximation, it is possible to estimate its molecular weight
from only its diffusion coefficient, just as in the case of the sed-
imentation coefficient. The power-law relation between M.
and D, is also known as a Mark—Houwink—Kuhn-Sakurada
relation:

(9)

D, = KM™* (10)

where e = 0.333 for a sphere, 0.85 for a rod, and 0.5-0.6 for
random coil polymers. The appropriate value of the constant
K is obtained from a collection of standard molecules of known
D. and M, (5). Of course, the shape of the macromolecule will
normally be known only approximately, so any molecular
weight calculated in this way must be considered only an
estimate.

Shape

The translational frictional coefficient, f, or the frictional ratio,
f/fo, can be used directly to provide information about the

shape of the molecule. The function defining the shape and
flexibility of a macromolecule is the Perrin translational
frictional function, P:

; 5 1/3
p=L(——2
f0<v + (5/P0)>

where &8 is the amount of bound solvent, relative to the mass of
the molecule, and p, is the density of the bound solvent. For a
molecule that is fairly rigid over a time-averaged period, the
gross shape can be specified using P in terms of the axial ratio
of the equivalent hydrodynamic ellipsoid or in terms of
an arrangement of spheres, in hydrodynamic bead models
(Figure 2). Computer programs are available for both types
of modeling (6,7). Especially with the latter approach, the
diffusion coefficient should be used in conjunction with other
hydrodynamic measurements, such as sy, to obtain a unique
solution to the modeling.

(11)

ROTATIONAL DIFFUSION

Rotational diffusion coefficients, which result from the tum-
bling motion of a macromolecule about an axis or axes, are very
sensitive functions of the shape of the molecule and permit the
inference of some parameters of the overall shape. Unfortu-
nately, this sensitivity comes at a severe price: measurement of
rotational diffusion is usually considerably more difficult than
translational diffusion.

There are two principal methods for measuring rotational
diffusion. One is based on fluorescence measurements and is
called fluorescence anisotropy decay. The other is based on elec-
trooptical measurements and is. termed electric birefringence
(or the related electric dichroism) decay.

Fluorescence Anisotropy Decay

Tryptophan residues provide intrinsic fluorescent chro-
mophores in many proteins (ie, the ability to reradiate electro-
magnetic energy at a wavelength longer than that absorbed).

(a)

Figure 2. Use of diffusion measurements to represent the
shapes of biomolecular assemblies using the hydrodynamic
bead model approach: (a) from translational diffusion mea-
surements: bead models of the slow “s” (tails out) and fast “f”
(tails retracted) forms of a T-even bacteriophage (19); (b)
from rotational (electric dichroism) relaxation measurements:
bead models of the complex formed from a DNA fragment of
203 bp with two specific sites and two catabolite activator
protein dimers (12).



If the incident monochromatic light is plane-polarized, the
reradiated radiation will not only be at a longer wavelength
but will also be wholly or partially depolarized depending
(among other factors) on the extent of rotational Brownian
motion of the macromolecule. If the macromolecule is not a pro-
tein and does not have an intrinsic fluorescent chromophore,
or is a protein-containing insufficient tryptophan residues, a
chromophore can be attached synthetically.

The emitted polarization is measured by two detectors, one
normal to, and the other perpendicular to, the plane of po-
larization; the extent or “anisotropy” of polarization, r(¢), is
recorded as a function of time, ¢:

r(t) = Li-1

I|| + 21,
where I; is the emitted intensity in a plane parallel to the
polarization of the incident light and I, is in a plane perpendic-
ular. In time-resolved fluorescence depolarization anisotropy,
this rapid decay in anisotropy of polarization in response to
a pulse of incident radiation is recorded and averaged over
many pulses (in some ways, the situation is analogous to the
measurement of translational diffusion using dynamic light
scattering). Allowance has to be made for the decay in in-
tensity of the chromophore itself, specifically. the decay of the
intrinsic fluorescence intensity has to be deconvoluted from
the anisotropy decay function. The decay in r(¢) with time can
then be analyzed in terms of the rotational relaxation times of
the molecule. There will be one relaxation time for a spherical
particle, three for a particle with an axis of symmetry. For
a general asymmetric molecule, there will be five relaxation
times that need resolving:

(12)

r(t) = cip expl—=t/71) + ¢y exp(—t/72) + ¢y expl—t/73)
+cy expl—t/7y) + c5 expl—t rs5) (13)
or, more simply r(¢) = Z?=1 c, exp(—¢/7,) where ¢t = 1-5. In

practice, at least two pairs of relaxation times are similar;
hence the problem is one of resolving three decay constants
(this will be particularly true for macromolecules with an axis
of symmetry). Once resolved, these can be related to macro-
molecular shape and hydration (6,7) using relations similar
to Equation (11). However, extraction of decay constants from
a “multiexponential decay”—of which equation (13) is an
example—is what the mathematicians call “an ill-conditioned
problem” and is not easy, especially if the relaxation times are
relatively similar. A further problem is that the chromophore
most not relative to the rest of the macromolecule.

A much simpler procedure is to measure fluorescence depo-
larization or anisotropy decay in the steady state, where the
light source is continuous rather than pulsed (8). It can be used
to obtain the harmonic mean rotational relaxation time, 7h. 71,
and 1/7,_5 can all be related to the shape and hydration of the
macromolecule (7,9). A study of fibrinogen provides a good ex-
ample of the application of both time-resolved and steady-state
fluorescence measurements (10,11).

Electric Birefringence Decay

Solutions of macromolecules oriented in an electric field will
be birefringent, having different refractive indices for light
polarized parallel to and perpendicular to the electric field.
This is known as electric birefringence. A related phenomenon,
for macromolecules with absorbing chromophore, is electric
dichroism, where a solution of macromolecules oriented in an
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electric field exhibits different extinction coefficients parallel
to and perpendicular to the electric field.

When the electric field is switched off, the birefringence
(or difference in refractive indices) An will decay because of
rotational motions of the macromolecule:

5
An(t) = > ¢, exp(—t/7;) (14)

i=1
where [ = 1-5. However, there will be just two relaxation
times for molecules that can be approximated by homogeneous
ellipsoidal shapes, and just one for a homogeneous ellipsoid
with an axis of symmetry. An electrically homogenous spheri-
cal particle exhibits no birefringence.

Like fluorescence anisotropy decay measurements, the re-
laxation times 7; can be related to molecular shape and hydra-
tion (Fig. 2) (12), but there are also practical problems to be
overcome. The main problem has been that of local overheat-
ing in the solution caused by the large orienting electric fields.
This has meant in the past that experiments have been limited
to solutions of low ionic strength. With significant advances in
charge shielding in modern instrumentation, however, physio-
logical ionic strengths are now a reality (13).

Diffusion of Small Molecules through Biomolecular Systems

Although most attention is given to diffusion phenomena
in macromolecules, the importance of the diffusion through
biopolymer matrices of small molecules and ions, even water
molecules themselves, cannot be ignored; indeed, many physi-
ological processes involve passive or active transport of water
and other low-molecular-weight species through cellular and
other matrices. As a direct comparison with macromolecular
diffusion, Table 1 also gives the self-diffusion coefficient at
20.0°C of water (2.3 X 1075 c¢cm?/s) and a small sugar molecule,

-sucrose (~ 4.6 X 107% em?/s); the diffusion rates are orders of

magnitude greater than those for more bulky macromolecules.

Arguably the best method for measuring diffusion of water
and other small molecules is pulsed field gradient spin echo
NMR (14). Spinning charged particles, such as atomic nuclei,
will have an associated magnetic dipole moment, which gener-
ates a magnetic energy when placed within a magnetic field.
Quantum-mechanical considerations restrict the energies
to a limited number of discrete values. Transitions between
levels—whose spacing depends on the external magnetic
field —correspond to radiofrequency (RF) radiation, so the nu-
cleus will interact or “resonate” with certain radiofrequencies
if the external magnetic field is varied; this is known as nu-
clear magnetic resonance. These frequencies, and the strength
and breadth of the resonances, depend on the particular
atomic nuclei that are being examined and on the environment
in which they find themselves. It is therefore possible to “home
In” on a particular nuclear species; for example, such nuclei
could be the hydrogen atoms in a water molecule.

With the pulsed field gradient technique, an excitation
pulse of RF radiation is applied across a sample—in this case
a biomolecular matrix—causing alignment of spins and the
generation of an NMR signal; this signal subsequently decays
as a result of diffusion. If a second RF pulse is applied after an
interval 7, the decay processes are reversed and a refocused
“echo” signal is obtained at a time 27 after application of
the first pulse. This recovery process can be interrupted as
follows. A pair of matched magnetic field gradient pulses that
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vary linearly across the sample are also applied; the first is
applied between the RF pulses and the second, after the second
RF pulse. The echo only has no net effect if there has been no
diffusive movement of the molecules: any movement will result
In an attenuation of the echo. Analysis of this attenuation can
be used to determine the diffusion coefficient.
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