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Modelling the Gross Conformation of Assemblies
using Hydrodynamics: The Whole Body Approach

By S. E. Harding
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SUTTON BONINGTON, LEI2 §RD, U.K.

1. INTRODUCTION

There are two basic approaches to modelling macromolecular conforma-
tion using hydrodynamic techniques. One, pioneered by Bloomfield, Gar-
cia de la Torre and co-workers involves modelling the particles as arrays of
spheres that interact in a way described by the Burgers-Oseen tensor: such
advances have been described by Garcia de la Torre! earlier in this volume.
In this Chapter I will describe the progress made over the last few years using
the alternative ‘whole body approach’ in terms of general triaxial ellipsoids:
viz. ellipsoids with three unequal axes. This extends the classical ‘ellipsoid
of revolution’ approach of Perrin, Simha, Scheraga, Mandelkern and others
to a model which allows a much greater variety of gross conformations. The
experimental options available include various combinations of viscosity, sedi-
mentation and rotational diffusional parameters together with measurements
of radii of gyrations and molecular covolumes. I will discuss the problems of
macromolecular solvation or “hydration” and the general approximation of
a macromolecule to an ellipsoid.

2. WHY THE ‘WHOLE BODY’ APPROACH?

It is possible now to predict a number of hydrodynamic shape parame-
ters for many complex structures - including flexible ones - by representing
such structures as arrays of spheres that interact in a way described by the
Burgers-Oseen (or modifications thereof) tensor. It is possible to predict from
a model for such structures the sedimentation coefficient, intrinsic viscosity
and rotational diffusional parameters, and by successively refining the model
satisfactory agreement with experimental data can in general be achieved!.
This type of modelling has had many interesting applications, and its major
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use has been in facilitating the choice between possible models based on prior
information about the molecule (from e.g. x-ray crystallography). Specific
examples have been given elsewhere in this volume by J. Garcia de la Torre!,
D. Porschke & J. Antosiewicz? (DNA-protein assemblies) and S. Perkins®
(the immunological complement system).

With the undoubted power of the ‘multiple sphere’ or ‘bead model’ ap-
proach it could be questioned whether the alternative ‘whole body’ approach
was now of value. By ‘whole body’ approach I mean starting off with just
assuming a single general model - namely an ellipsoid - and then calculating
the form of this ‘equivalent’ ellipsoid directly from one, two or three types of
hydrodynamic measurement.

The usefulness of this latter ‘whole body approach’ lies in the following:
Firstly there are two inherent limitations of the bead model approach. One
is the ‘uniqueness’ problem where, although by successive refinement, an ac-
curate fit to the observed experimental data can in general be obtained for
a given hydrodynamic model, then depending on the complexity of the as-
sumed model, there could be a large number of other models of comparable
complexity which give an equally good fit to the data. The other limitation
of the bead model approach is that important assumptions have to be made
about macromolecular solvation or “hydration”. This is normally an elusive
parameter to measure (see, e.g. ref. 4) with the result that somewhat unsat-
isfactory - or at best very difficult - estimates have to be made: indeed, some
hydrodynamic shape functions are a more sensitive function to “hydration”
than to shape.

The second reason supporting the utility of the whole-body approach
derives from the so-called ‘biotech boom’. That is with the large amount
of newly engineered macromolecules now being produced, a relatively quick
estimate of their properties in solution compared to non-engineered macro-
molecules is highly desirable - and obviously this includes the ability to model
the gross conformation of the macromolecule without any prior clues as to
what this shape could be. Moreover the ‘whole-body’ approach - using gen-
eral triaxial ellipsoids - can be employed without any need to ‘assume’ a
hydration - by using hydration independent functions - other than it is as-
sumed similar for two to three types of measurement.

I want to now consider the recent advances in the whole-body approach
involving ellipsoidal shapes with 3 degrees of freedom - the general tri-axial
ellipsoid - but before I do so it would be useful to briefly review the earlier
‘ellipsoid of revolution’ approach (Fig. 1).
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Figure 1 The Ellipsoid of Revolution
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3. EARLY MODELS: THE SPHERE AND ELLIPSOID OF REVOLU-
TION

For over 80 years hydrodynamic (Greek: ‘water moving’) measurements
have provided a valuable and relatively rapid way of estimating the dimen-
sions of macromolecules - both synthetic and natural - in solution. The earlier
calculations were based on spherical particles in terms of their frictional flow
properties (sedimentation or diffusion) through a solution® and on their ef-
fect on the bulk viscous flow properties of the solution®”8, The advent of the
analytical ultracentrifuge in the 1920’s allowed the measurement of particle
frictional ratios and the use of Perrin’s® solutions in terms of ellipsoids, the
latter being an extension of Stokes’s solution® for spheres. Unfortunately,
because of the complexity of the elliptic integral involved®, macromolecules
could only be modelled in terms of prolate or oblate ‘ellipsoids of revolution’
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Table 1  Hydrodynamic Shape Parameters for Ellipsoids of Revolution [semi-
axes a,b,c and a>b=c (prolate) or a=b>c (oblate)]

Shape Parameter Related Experimental Ref
(as function of a/b) Parameter

1. Bulk Solution Properties
Viscosity increment, v Intrinsic viscosity, (7] 10,12,14

Reduced excluded volume, u.q Thermodynamic 2nd virial 18,19
coefficient, B (from
light scattering,
sedimentation equilibrium,

2. Translational Frictional Property
Perrin function, P Sedimentation coefficient, 9,14
s; Translational diffusion

coeflicient, D

3. Rotational Frictional Property?®

‘Reduced’ birefringence decay bElectric birefringence 21
constant, §7€¢ decay constant, 8

Harmonic mean rotational Harmonic mean rotational 22
relaxation time ratio, relaxation times (from

Th/To steady state fluorescence

depolarisation studies), T,

Fluorescence anisotropy depolarisation °Fluorescence anisotropy 23
rotational relaxation timne ratios, depolarisation relaxation
/7o (1= 1-3) times, 7;

a. All use Perrin’s?® solutions for the rotational frictional ratios for ellipsoids.

b. There are two if optical axis does not coincide with geometric axis of ellipsoid
of revolution. Therc are also two () for general ellipsoids (see below).

c. Three for cllipsoids of revolution, five for general ellipsoids.
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Table 2 Hydration of Proteins Calculated from the Frictional Ratio, f/f,.
Axial ratios estimated from crystallographic dimensions of the proteins. From
Squire & Himmel'® & references cited thercin.

Protein Dimensions a/l* P(a/b) Lf',; Hydration®
(4)

Basic trypsin 29x19x19 1.53  1.016  1.447 0.86

inhibitor

Cytochrome C 25x25x37  1.48 1.014 1.116 0.24

Ribonuclease-A 38x28x22 1.52  1.016 1.290 0.73

Lysosyme 45x30x30  1.50 1.015 1.240 0.57

Myoglobin 44x44x25 1.76  1.028 1.170 0.35

Adenylate kinase 40x40x30 1.33 1.007  1.167 0.41

Trypsin 50x40x40  1.25 1.004 1.187 0.47

Bence-Jones 40x43x28 1.48 1.013 1.156 0.35

protein REI

Chymotryp- 50x40x40 1.25 1.004 1.262 0.71

sinogen A

Elastase 55x40x38 1.41 1.010 1.214 0.53

Subtilisin 48x44x40  1.14 1.002 1.181 0.47

Carbonic 47x41x41 1.15 1.002 1.053 0.12

anhydrase B

Superoxide 72x40x38 1.85 1.034 1.132 0.23

dismutase

Carboxy- 50x42x38  1.25 1.004 1.063 0.14

peptidase A

Pliosphoglycerate  70x45x35 1.75  1.028 1.377 1.04

kinase

Concanavalin A 80x45x30 2.13  1.053  1.299 0.64

Hemoglobin, oxy 70x55x55 1.22 1.005  1.263 0.74

Bovine serum 140x40x40 3.5 1.147  1.308 0.35

albutnin

Malate 64x64x45 142 1.011 1.344 1.00

dehydrogenase

Alcohol 45x55x110 2.2 1.058  1.208 0.37

dehydrogenase

Lactate 84xT74x74 1.20 1.003 1.273 0.77

dehydrogenase

a. For the equivalent prolate or oblate ellipsoid. b. f, in its use here corresponds
to the frictional coefficient of an anhydrous spherical particle having the same
mass and partial specific volume (¥) as the protein under consideration. In this
definition f/f, = P.(f/fn), where P is the Perrin function or ‘frictional ratio due
to shape’®® and (f/fs) a term due to hydration. c. Hydration, w (g solvent /g
protein) = [(£/4)%]%p, where p, is the solvent density.
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+ and not general ellipsoids (3 unequal axes). Simhal® extended Jeffrey’s'!
earlier treatment for the viscous flow of solutions of ellipsoids of revolution
to include the case of Brownian motion and gave an explicit relationship for
the viscosity increment v in terms of the semi-axes a, b of these ellipsoids.
Saito'? independently obtained the same result, suggesting that Simha had
made an incorrect assumption (particles rotating with zero angular velocity)
but had arrived at the correct result by making an ‘error in calculation’, a
discrepancy resolved some 30 years later!3.

4. THE “HYDRATION” OR SOLVATION PROBLEM

An important problem in using the viscosity increment v or the Perrin
frictional ratio, P, is the experimental requirement of a value for the volume,
V, of the macromolecule in solution, or equivalently protein “hydration”, w4,
[Strictly speaking the term “solvation” should be used instead because other
solvent species as well as water molecules can be trapped or bound to the
macromolecule. However, since the term “hydration” has been used almost
ubiqui tously for several decades* we will hitherto follow the convention of
using it to represent “associated solvent”]. Both functions are still commonly
used direct, by using “assumed” hydration values. For example a hydration
level, of 0.2-0.35 g water/g protein could be taken as typical for many globular
proteins, although this value is still very arbitrary (see for example refs. 14,
15 for a discussion on this). Use of the other shape functions summarised in
Table 1 also requires ‘assumed hydrations’.

Unfortunately as we have mentioned above, hydration is a notoriously
difficult parameter to measure with any meaningful precision. On the other
hand if a reasonable estimate for the axial ratio of the molecule were known
(from e.g. x-ray crystallography) then a hydration level could be calculated:
Table 2 gives a summary of calculations performed by Squire & Himmels
to estimate protein hydration levels by using measured frictional ratios and
estimated axial ratios from x-ray crystallography with the assumption that
the protein has the same shape in solution as in crystallized form.

5. HYDRATION INDEPENDENT HYDRODYNAMIC SHAPE FUNC-
TIONS

The idea of combining analytically hydrodynamic shape functions dates
back as long ago as 1953, with Scheraga & Mandelkern!® who combined the
relations of Perrin & Simha to give the well-used “B-function” (Table 2),
extending the original ‘graphical’ approach of Oncley!’. The 8- function has
proved however very insensitive to shape and has had most use as a quasi-
constant shape parameter for determining molecular weights from intrinsic
viscosity & sedimentation data.

Rotational diffusional phenomena provide in general parameters which
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Table3 ‘Compound’ Hydration Indcpendent Hydrodynamic Shape Parame-
ters

Shape Parameter® Comment Ref
(as function of a/b)

B(v, P) Very poor sensitivity to axial ratio and 16
high sensitivity to experimental error

¥(h/ 70, P) Very poor sensitivity to axial ratio and 34
high sensitivity to experimental error

V’("red’ P) Very poor sensitivity to axial ratio and 27
high sensitivity to experimental error

R(v, P) Sensitive function at low axial ratio 30

A(Th/7o,v) Very sensitive function, except at 35

very low axial ratio (a/b < 2.0)

I(uyeq, v) Very sensitive function, except at 28
very low axial ratio (a/b < 2.0)

a: Source hydration dependent parameters are shown in parentheses.

are more sensitive functions of shape than the corresponding translational
ones (Table 1): the hydration problem can also be accounted for by combi-
nation with appropriate translational parameters (either v, or, P). This extra
sensitivity comes however at a price: the two techniques commonly used, elec-
tric birefringence and fluorescence anisotropy depolarisation decay have some
important practical limitations. In the case of electric birefringence, this is
principally the requirement of having to use very low ionic strength solvents
(due to conductivity problems)?*; in the case of fluorescence depolarisation,
the principal limitation is of internal rotation of chromophores or domains of
the macromolecule relative to other parts®. Both techniques have difficul-
ties of deconvolution of light source functions®2°, and perhaps more seriously
for asymmetric scatterers, both suffer from difficulties of resolution of multi-
exponential decay terms and we will discuss this further below. A more
recent development has been the use of a compound hydration-independent
function (A) involving the harmonic mean rotational relaxation time3® which
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largely avoids these problems and appears a sensitive function of axial ratio
(Fig. 2).

Another recent development has been the use of compound shape func-
tions involving molecular excluded volumes?%2°. The molar covolume, U
(ml.mol ™) for a system of macromolecules can be obtained from the ther-
modynamic second virial coefficient, B (after correction for - or suppression
of - charge effects). This covolume function is both a function of shape and
hydration, but can be ‘reduced’ to give a function (u,eq) of shape alone?®. To
experimentally determine it, a value for the hydration is still required, but
again, the latter can be eliminated by combination with either the Perrin fric-
tional ratio to give the hydration independent parameter 9 (ref. 27) or with
the viscosity increment v to give the hydration independent II function?8.
Although the 9 function is very insensitive to shape - and rather disappoint-
ingly so, - the II - function is on the other hand quite sensitive, and appears
to be the most useful of the ‘hydration independent’ ellipsoid of revolution
shape functions available.

Another ‘hydration independent’ parameter is the ratio R= k,/ [n] where
k, is the sedimentation concentration dependence regression parameter and
[] the intrinsic viscosity. It is known empirically®3132 that R ~ 1.6 for
spheroidal particles (nb. after correction of sedimentation coefficients for
solution density3! - a higher value is obtained for coefficients corrected for
solvent density) and < 1.6 for more asymmetric particles; after a number of
assumptions and approximations a simple relation between R, v and P has
also been provided33.

6. LIMITATIONS OF ELLIPSOIDS OF REVOLUTION. THE GEN-
ERAL ELLIPSOID

For many macromolecules the ellipsoid of revolution model can appar-
ently give a reasonable representation of the gross conformation of macro-
molecules in solution. Indeed further examination of Table 2 will reveal that
for many proteins, two of the three axial dimensions (derived from x-ray
crystallographic data) are approximately equal. The disadvantages however
of having to use a model with two axes equal are clear:

1. A decision has to be made a priori between the two types of ellipsoid
of revolution (viz. prolate and oblate): virtually all of the usable hydration
independent shape functions do not distinguish between the two (viz. they
are not single-valued).

2. There are many classes of macromolecule which lie intermediate be-
tween a prolate shape (one long axis, two short) and an oblate (two long
axes, one short).

As a result, hydrodynamicists have for a long time recognised the advan-
tages of having a ‘whole-body’ model which does not have this restriction of
two equal axes: the general triaxial ellipsoid (semi-axes a>b>c). This caters
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Figure 2 Relative sensitivities of hydration independent shape functions
Broken line indicates minimum value this sensitivity must have if an axial ratio
precise to & 20% is to be retrieved from the measured function, assumed precise
to £ 3%. v and ¥ not shown (very insensitive - close to baseline).

R

A
n—

8”10

Oblate 5 . I ) 5 Prolate
Axial ratio

for a much wider range of shapes, from discs (a=b>>c), rods (a >>b=c),
tapes (a>>b>>c) and all intermediary shapes (Fig. 3).

The difficulty has been that the relation between the shape functions and
the two axial ratios which characterise a general ellipsoid had either not been
worked out (e.g. v, Ueq) or Where computationally unavailable (satisfactory
numerical routines for the evaluation of the elliptic integrals involved with
many of the shape functions - notably the Perrin translational and rotational
frictional ratio functions - and associated convergence problems). Over the
last 15 years both of these problems have largely been addressed. Small &
Isenberg®® demonstrated that the Perrin elliptic integrals could be solved nu-
merically using fast computers to evaluate the rotational and translational
frictional ratio functions. The subsequent availability of the viscosity in-
crement v both numerically®” and analytically®® together with the reduced
excluded volume® u,.4 for general ‘tri-axial’ ellipsoids, has now meant that
a virtually complete set of hydration independent triaxial shape parameters
are now available. A FORTRAN routine is available® for evaluating the set
of hydrodynamic parameters for a particle for any given value of its axial
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Figure 4  Plots of constant values for v and P in the (a/b, b/c) plane
corresponding to an (a/b, b/c) = (2.0, 2.0)
From ref. 41

dimensions.

7. LINE SOLUTIONS: THE GRAPHICAL INTERSECTION METHOD

All the triaxial ellipsoid shape functions share the common property of
having a line solution of possible values for the axial ratios (a/b, b/c) for
any given value of the hydrodynamic function. A unique solution for these
two axial ratios may be found from the intersection of two or more of these
“line solutions” (Figs 4-10). Fig 4 illustrates two line solutions for v and P
for a hypothetical ellipsoid particle of (a/b, b/c) = (2.0, 2.0). Evidently this
represents a very poor combination of functions, because of the shallowness
of the intersection and their dependence on assumed values for hydration.
To use the triaxial ellipsoid we have to find two suitable shape functions that
are

1. hydration independent
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Table 4 Hydration Independent Hydrodynamic Shape Parameters for Tri-
axial Ellipsoids: Nature of Graphical Intersection

A® G? [ RY
I Poor Good inter-  Good inter- NE
inter- section section
section at high axial at high axial
ratios ratios
A Good inter- NE Good inter-
section section
at all axial at all axial
ratios ratios
G Good inter- NE
section
at low axial
ratios
b4 Good inter-
section

at low ratios

a:  assumes no internal rotation of chromophore or segmental rotation

b:  from radius of gyration measurements (x-ray scattering or light scattering)
¢ involves resolution of a two-term exponential decay

d: some approximations concerning concentration dependence of sedimenta-
tion coefficient

NE: not examined

2. experimentally measurable to a reasonable precision

3. are sensitive to shape (and insensitive to experimental error) and

4. give a reasonable intersection (i.e. as orthogonal as possible)

These criteria are quite restrictive, and in Table 4 we have summarised the
intersection properties between the most useful functions. Formal definitions
of these are given in the Appendix in the form of explicit relations in terms
of the semi-axes a,b,c via the source parameters (v, P, 1, de and Ueq), and
also the corresponding experimental parameters.

Choice of shape function

In choosing two suitable hydration independent functions we try to avoid
where possible those involving measurement of rotational diffusional or relax-
ational parameters. This is because almost always (except for those involving
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the measurement of the harmonic mean relaxation time from steady state flu-
orescence depolarisation)?, a step involving resolution of multi-exponential
decay data is required. For example for general homogeneous ellipsoidal
particles without an axis of symmetry there are two electric birefringence de-
cay constants*?~** and five fluorescence anisotropy depolarisation relaxation
times?35. Further, if solutions of macromolecules are not monodisperse, or
if there is some self-association, there will be further exponential compo-
nents. For example, two component electric birefringence relaxation data for
haemocyanin solutions have been interpreted either as a polydisperse system
of ellipsoids of revolution or as a monodisperse system of ellipsoids®.

With electric birefringence there is the added complication of designing
an instrument to have an adequate response time, deconvoluting the finite
time to switch off the orienting field and problems of having to work at very
low ionic strengths to avoid serious heating effects caused by the high electric
fields used®t. With fluorescence anisotropy depolarisation decay, besides hav-
ing a formidable number of decay times to contend with (although in practice
two-three are very similar) there is also a problem of deconvoluting the light
source function from the decay data®, together with the assumption of no
significant internal rotation of the chromophore(s) or segmental rotation of
parts of a given macromolecule relative to other regions of the same. A good
demonstration of the segmental rotation problem has been given by Johnson
& Mihalyi® for fibrinogen. The problems of multi-exponential resolution are
not unique to macromolecular modelling and considerable attention has been
paid and progress made as described elsewhere in this volume?748,

Despite the difficulties of rotational measurements an early attempt at
modelling the triaxial conformation of (scallop) myosin light chains was made
by Stafford & Szent-Gyorgi**: these workers made the approximation that of
the five fluorescence anisotropy decay times, four similar ‘fast’ ones could be
represented by a single harmonic mean, 7;,, which could be resolved from the
‘slower’ decay time 7. Although the ratio 7, /74 is hydration independent,
at that time other hydration independent functions were not available, and
so it was only possible to give limits for the axial ratios using a graphical
combination of 7, /74 with the Perrin translational frictional function P, values
for the latter evaluated using assumed values for the hydration. Although the
intersection given for the case of ‘no hydration’ (Fig. 5) is rather meaningless,
for more realistic values the intersection would appear to suggest an extended
prolate shape of axial ratio between 5 and 6 to 1.

Use of hydration independent functions

Fortunately, shape function combinations are now available which largely
avoid the difficulties referred to above, and a good example is the combination
of the IT and G functions®. The availability of explicit relations between
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Figure 5 Plots of constant values for 74/7, and P in the (a/b, b/c) plane
for scallop myosin light chains.
P is given for 3 assumed values for the hydration, w(g H,O/g protein). Re-

drawn from ref. 49.
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axial ratio (a/b, b/c) with the viscosity increment v and reduced excluded
volume, u,eq for triaxial ellipsoids has enabled the II function to be defined
also®™. Asstated above II can be obtained experimentally from measurements
of intrinsic viscosity, and the thermodynamic 2nd virial coefficient (from
e.g. light scattering, or sedimentation equilibrium - see, for example, the
procedure described by Jeffrey et al?) after correction for Donnan effects.
The G-function has also been defined for triaxial ellipsoids®® and can be
obtained from the radius of gyration, again for example from light scattering
or from low-angle x-ray scattering measurements. The G function is a very
sensitive function to axial ratio, and an illustration of its use in conjunction
with the II function for a macromolecule of high axial ratio is given in Fig. 6
for myosin. In this particular example an attempt to model the gross confor-
mation of the myosin molecule without prior assumptions about molecular
hydration or using prior information from electron microscopy was made.
Despite the extra degree of freedom the general ellipsoid gives, the myosin
molecule appears as a prolate ellipsoid of (a/b, b/c) ~ (80, 1). Nonewith-
standing the difficulties of modelling an ellipsoid to a particle that in reality
has a “lop- sided” end, this result is in good agreement with predicted results
from electron microscopy, and would appear to suggest that local variations
in particle shape (principally in the case of myosin the S1 heads) or flexibility
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Figure 6 (a) Plots of constant values for II and G in the (a/b, b/c) plane
for myosin. From ref. 50
(b) Gross conformation predicted
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(the HMM/LMM interface) do not seriously distort estimates for the gross
conformation of the molecule using the triaxial ellipsoid in this way.

For the modelling of globular particles of low axial ratio (one axial ratio
< 5) the intersection of G with IT is poor (largely through insensitivity of
the II function in this region) and it is necessary to consider the use of other
combinations of hydration independent shape functions. A combination not
hitherto suggested, and which appears useful (Fig. 7) is the G - A combina-
tion. A%+? requires the measurement of intrinsic viscosity and the harmonic
mean rotation relaxation time, 7,, a parameter which can be obtained from
steady state fluorescence depolarisation measurements without the need for
multi-exponential resolution. The G-A combination has, as yet not had any
practical application. The A function has however been combined® with the
R function, obtained from the ratio of the concentration dependence of the
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Figure 7 Plots of constant values for G and A in the (a/b, b/c) plane
corresponding to an (a/b, b/c) = (2.0, 2.0)
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sedimentation coefficient, k,, to the intrinsic viscosity, []. This provides a
similarly sensitive intersection at low axial ratio and this combination of line
solutions has been used to provide us with an indication of the likely mode of
association of monomers of the neural protein neurophysin into dimers (Fig.
8)%3. Again, as for myosin, despite the extra degree of freedom the general
ellipsoid allows, the monomer still appears as a prolate model with two axes
approximately equal (a/b, b/c) ~ (4.0, 1.0). For the dimer this reduces to an
overall (a/b, b/c) of ~ (2.8, 2.5), and the data therefore supports observa-
tions made earlier using ellipsoid of revolution models®* that the association
process is of a side-by-side rather than an end-to-end type.

In some applications the use of steady state fluorescence depolarisation
functions can be limited, with the result that recourse to a function involving
rotational diffusion is required. The &4 are two such hydration independent
functions obtained experimentally from the ratio of the (reduced) electric
birefringence decay constants 9§§d to the intrinsic viscosity, [7]. These func-
tions also provide useful intersections with the G, Il and R functions 1%

and Fig. 9 gives an example.
These ‘useful intersections’ however come at a price, namely the require-
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Fg e 8 Plots of constant va, Iu for R and A in the (a/b, b/c) plane for
neurophysin monome ( ) and dimers (b). From ref. 53.
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Figure 9 Plots of constant values of G, §, and é_ in the (a/b, b/c) plane
corresponding to an (a/b, b/c) = (2.0, 2.0)

(2.0,2.0)

11.8 1.5 28 25 30 35 4.0

ment of extraction of the two exponential decay constants characterising
general ellipsoids. We tried a whole series of procedures (non-linear least
squares, Laplace transforms, method of moments etc.) on synthetic data
with random error®* but found the only reliable method for capturing the
constants for data of “real” experimental precision were constrained least
squares procedures, whereby estimates for the decay constants 64 during an
iteration process are constrained so that their corresponding values for §4
in the (a/b, b/c) plane lie on a curve defined by another line solution (for
example, G, II or R). Fig. 10 gives an example of the “band” of allowed
axial ratios (a/b, b/c) satisfactorily obtained in this way*! for synthetic bire-
fringence data with random expected ‘experimental’ noise. The limits of the
band depend on the experimental precision of the constraining line solution
and the birefringence data.

8. BEAD MODELS OR WHOLE-BODY MODELS?

Amongst the number of hydration independent shape functions now avail-
able, summarised in Table 4 and defined explicitly in the Appendix below it
is hoped that there is at least one combination of functions suitable for mod-
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Figure 10 Constrained non-linear least squares fit of electric birefringence
decay data. The plots are of constant Rin the (a/b, b/c) plane corresponding
to an (a/b, b/c) of (1.5, 1.5). Shaded area corresponds to allowed band of
axial ratios obtained by constraining the estimates for the 64 and é_ functions
to lie on the R curves. Simulated data, true (a/b, b/c) = (1.5, 1.5); 0.1 deg.
random standard error on the birefringence decay data.
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elling the gross conformation of a given macromolecular system. It is also
hoped that the ‘bead model approach’ for macromolecular modelling de-
scribed by Garcia de la Torre elsewhere in this volume and the ‘whole body’
approach described here using triaxial ellipsoid shape functions prove com-
plementary methods; the first, when close starting estimates for the structure
are available from other sources and where the ‘hydration’ is known reason-
ably accurately, thereby facilitating a complex model; the second, when no
prior shape information is available, and only the gross dimensions of the
macromolecule in solution are required.

APPENDIX

Table 5 gives the formulation and relation to experimental parameters of
the principal hydration dependent (i.e. requiring knowledge of the volume
V of a particle, including associated solvent or ‘hydration’) and hydration
independent shape functions for general triaxial ellipsoids of semi-axes (a >
b > c). In these formulae:

1. In the equation for v (the viscosity increment), § is a small term (5
1% of the other term) given by

a?—-b? -2 2 —a? 2
1 l(azax+b2; + Paz+cias + c2a3+a7a;) }

- aZ+b2 b2 42 Z+a?
5abc ( + Partcia; + )

aZay +b%ay Zaz+alay

2. In the equation for the reduced excluded volume, Upoq) the R and S
are double integrals given by

92 /2 pw)2 b
R:—/ / cos u du dv —ai+—+—c— N?
37 Jo 0 bc  ac ab

1 IN1/b a
2 2 PN T Y
sin” v cos® v cos‘u A (a"’ b2> p (a b)

cos? v N sinfv 1
a? b2 c?

1 bcoszv+asin2v +c b a
“fe a b ab ac be

—sin? u cos?u A4 (
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Table 5 Shape functions for General Triaxial Ellipsoids
Function Formulation Relation to Ref.
Experimental
Parameters
w e | Wmmrasrigay [(1-Me/(V.NA) 38,42
+5§ ety 46,52
azta
taartaTan)
o+
+ a6
*P 2/{(abc)} /oo } (WM:)/(VNLI(f/fo)  9,35,52
*ULog 2+ (5222)R.S, 7 = v 39
[2BM2-£(2.1))
*TR [T, 1/[a%ey + b2a; + clay) (kT1h)/(3n,V) 52,53
d a
*07e Bel(E+&+d)  (/kT).Ves 43,44,
+ (51‘!+5‘-.,1+ 1) 52,40
(za + o
1
*t3; )] *}
8 (N4"° /1620022)173, Nas[n)/*n,/ 41,51,52
(w173 /P) [M(1 - 9p,)1003]
In ured/" U/([T]].M,-) 50
= [2BM/[n]]-
1))
G (1/5)[(a® + b2 + ¢?) [(47N4)/(BYM)R. 50
/(abc)?/3) R;
A v/(Th/T5) (3no[n]M,)/(NakT7)) 53
R 21+ P/ ko[ a1
b 607¢dy (670/NAKT).[n). M,.05 41

* : hydration dependent
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x/2 prx/2 b
S=§/ / cosududv{(—c+c—a+ib~)A
3Jo 0 a b c

b a 1 1
. 2 2 2 3
—sin® v cos® v cos‘ u A c((—z-—-z) (&E_b_?)

and

a? b2 2
[ (b cos?v a sin? U) ab] }
. le + - —
a b c

cos® ucos®v  cos?usin®u  sinlu

-2
A= a? b c?

3. In the equation for the reduced decay constants 87°, the terms Q,, Q,
and Q. are given by

2 - 2
. cos“v  sin‘wv 1
—sin?u cos?u A® (— +— - )

where

P+ c? +a? a? + b?
= b o= ¢ ——
bay + c2aj’ c2az + a%a;’ a2a; + b%a,

Qa

4. The elliptic integrals @; — a)o are given by

N _/°° dX o __/°° dX o _/m dA
b @FNaT T BrNA T T b (@A

o __/°° dA & _/°° AdA
Th @PENEFNATT T BENE+NA

o _/oo dX o /°° AdA
*~h @+ 0@+ NA" (2 + ) (a2 +A)A

o _/°° dX . _/°° AdA
Tl @+ NBFNATT T b @F N+ NA

_[™dA .2 2 2 1/2
a0 _/[; = where A = [(a® + A)(b* + A)(c* + A))

and A is a dummy variable

These integrals can be solved numerically using standard computational
packages without convergence problems - see e.g. ref 40 for a simple FOR-
TRAN program illustrating their use.
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5. The following experimental parameters are:

[7]  Intrinsic viscosity (ml/g)

M. Molecular weight (g/mol)

Vv Particle volume (including associated solvent or ‘hydration’) (ml)
N4  Avogadro’s number (mol~!)

v Partial specific volume (ml/g)

(f/fo) Frictional ratio. Following the most popular convention (ref 14), f,
refers to the frictional coefficient of a spherical particle of the same mass
and anhydrous volume as the macromolecule whose frictional coefficient
is f. This differs from our previous usage, which is that of Scheraga and
Mandelkern!® where f, refers to a sphere of the same hydrated volume.

U Molar covolume (ml/ mol)
B Thermodynamic second virial coefficient (ml.mol.g~2)

f(Z,I) Function of macromolecular charge Z and solution ionic strength, I;

f= 0 at the isoelectric PH for proteins, and — 0 as I is increased
k Boltzmann constant (erg. K1)
T Absolute temperature (K)
T Harmonic mean rotational relaxation time (sec)
Mo  Solvent viscosity (Poise)

04,6_ Electric birefringence decay constants (2 for monodisperse solution
of triaxial ellipsoids) (sec™!)

s Sedimentation coefficient (sec)
R,  Radius of Gyration (cm)

k,  Concentration dependence sedimentation regression coefficient (ml/g)
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