MODELLING BIOLOGICAL MACROMOLECULES IN SOLUTION:

THE GENERAL TRI-AXIAL ELLIPSOID

bу

STEPHEN ERNEST HARDING, M.A. (Oxon), M.Sc.

A thesis submitted in partial fulfilment of the regulations governing the Ph.D. degree at the University of Leicester.

Department of Biochemistry,
School of Biological Sciences,
Adrian Building,
University of Leicester,
University Road,
Leicester, LE1 7RH

June, 1980

To Anne

'... God, in the beginning form'd Matter in solid,
massy, hard, impenetrable, moveable particles . . .'

Newton, Opticks, 1717, Query 31.

Abstract

Hydrodynamic shape functions for modelling biological macromolecules in solution in terms of an ellipsoid of revolution model are reviewed. Several new, hitherto unpublished shape functions whose experimental determination does not require knowledge of the swollen molecular volume in solution, are given. The limitations and inadequacies of this model are explained. The viscosity increment ν for a dilute dispersion of triaxial ellipsoids of semi-axes a> b> c, under dominant Brownian motion is derived and an explicit expression in terms of a, b and c is given. Knowledge of the viscosity increment alone is not sufficient to uniquely determine the axial ratios (a/b, b/c) because (i) in order to determine ν, knowledge of the swollen volume in solution is required and (ii) a particular value for v has a line solution of possible values for (a/b, b/c). (i) is dealt with by combining v with the tri-axial frictional ratio function P to give the tri-axial R function and (ii) by combining graphically the R line solution with δ_+ and δ_- swelling independent line solutions. The experimental determination of δ_{\perp} and δ_{\perp} requires the resolution of a 2-term electric birefringence decay into its component relaxation times; current data analysis techniques are however not satisfactory for resolving close relaxation times (as for globular proteins) with the current experimental precision. It is however shown by exhaustive computer simulation that using a new R-constrained nonlinear least squares iterative analysis this is now possible. thus concluded that the general tri-axial ellipsoid as a model for the gross conformation of biological macromolecules in solution can now be employed.

CONTENTS

		Page
Abstract	t	iii
List of	Tables	ix
List of	Figures	xii
Preface		1
Chapter	The Mass, Size and Shape of Macromolecules in	
	Solution: The Ellipsoid of Revolution Model	
1.1.	Macromolecular Structure in Solution	4
1.1.1.	Mass	5
1.1.2.	Size	6
1.1.3.	Shape	7
1.2.	The Hydrodynamic Properties of a Macromolecular Solution	8
1.3.	The Viscosity Property of a Macromolecular Solution	8
1.4.	The Translational Frictional Property of Macromolecular	13
	Solutes	
1.4.1.	Translational Diffusion	15
1.4.2.	Sedimentation Velocity	16
1.5.	The Rotational Frictional Property of Macromolecular Solutes	17
1.5.1.	Dielectric Dispersion	22
1.5.2.	Electric Birefringence	24
1.5.3.	Flow Birefringence	25
1.5.4.	Fluorescence Depolarization	26
1.6.	Scattering	30
1.7.	The Problem of Swelling due to Solvation	33
171	Hydrodynamic non-ideality: the R function	40

		(v)
	<u> </u>	age
1.8.	Comment	43
Chapter	The Viscosity Increment for a Dilute Newtonian	
	Suspension of Triaxial Ellipsoids	
2.1.	Hydrodynamic Forces and Brownian Motion	69
2.2.	The Simha Model of Overwhelming Brownian Motion	71
2.3.	The Viscosity Increment	72
2.4.	The Flow Velocity and Pressure	73
2.5.	The Dissipation of Energy	75
2.6.	The Particle Rotation	77
2.7.	The Calculation of ν	79
2.8.	Discussion	81
Chapter	3 Numerical Inversion Procedures: The Problem of the	
	Line Solution	
3.1.	Solution of the Elliptic Integrals	91
3.2.	Application to the Crystallographic Dimensions of	92
	Myoglobin: Numerical Inversion	
3.3.	Other Tri-axial Line Solutions	94
3.3.1.	The Translational Frictional Ratio; the $oldsymbol{eta}$ and R Functions	94
3.3.2.	The Rotational Frictional, Diffusion and Relaxation Line	95
	Solutions	
3.3.3.	Electric Birefringence Decay: the δ_+ and δ Functions	98
Chapter	<u>Determination of a Stable, Unique Solution by Combining</u>	
	Results from Viscosity, Sedimentation and Electric	
	Birefringence	
4.1.	Methods for Analyzing the Decay Curve	120
4.1.1.	Graphical Peeling Analysis	120
4.1.2.	Non-Linear Least Squares Iterative Analysis	121

			(vi)
			Ра	ge
	4.1.3.	ourier Transform Solution of the Laplac	e Integral 1	22
		quation		
	4.1.4.	ther Methods of Analysis, Previously Us	ed for 1	25
		econvoluting Fluorescence Decay Curves		
	4.2.	hoosing the best algorithm: computer si	mulation 1	26
	4.3.	on-Linear Least Squares Iterative Metho	d 1	27
	4.4.	ourier Transform Solution of the Laplac	e Integral 1	28
		quation Method		
	4.4.1.	ut-off Errors	1	28
	4.4.2.	umerical Integration	1	28
	4.4.3.	esults	1	30
	4.5.	new R-Constrained Non-Linear Least Squ	ares Algorithm 1	31
	4.6.	ome Practical Points	1	34
	Chapter	Concluding Remarks	1	68
	Appendix	I Elliptic Integrals Used In This Stu	dy 1	74
	Appendix	$oxed{ ext{II}}$ $oxed{ ext{Illustration of Use of the Λ functi$	on (equation 50) 1	75
		by Application to Data Available fo	r the Tryptic	
		Subfragments of Fibrinogen		
	Appendix	$_{ m III}$ $_{ m Illustration}$ of Use of the Π functi	on (equation 57) 1	78
		by Application to Data for Hemoglob	<u>in</u>	
	Appendix	IV Viscous Flow and Sedimentation of C	oncentrated 1	81
		Dispersions of Particles		

Use of M_{r} , \overline{v} and s to determine k_{s}

Appendix VI

240

Appendix VII Comparison of the Radius of Gyration for a sphere 241

of uniform mass with that for a sphere of the same mass but with a spherical cavity

Bibliography 242

LIST OF TABLES

No.		Title	Page
1.		Values of Λ , ϵ_a , ϵ_b , κ_1 , κ_2 , κ_3 , ξ_1 , ξ_2 , ξ_3 and Π for	45
		prolate and oblate ellipsoids of revolution	
2.		Use of the R function to predict the conformation of	46
		various macromolecules in solution in terms of an	
		ellipsoid of revolution model	
3.		Crystallographic dimensions of some globular proteins	47
4.	÷	The relation between the notation used in this study and	85
		that used by Jeffrey (1922)	
5.		ν for an ellipsoid of revolution calculated from the Simha—	86
		Saito equation and the Batchelor - Jeffrey equation	
6.		Extension of Tanford's Tables ("Physical Chemistry of Macro-	87
		molecules", 1963, Wiley & Sons, p 359 and 395) to compare	
		the axial ratios predicted by the Simha - Saito equation and	
		the Batchelor - Jeffrey equation.	
7.		Values of v as a function of $(a/b, b/c)$ for a general	88
		tri - axial ellipsoid (a>b>c)	

No.	<u>Title</u>	Page
8.	Values of reduced specific viscosity for various	102
	concentrations of sperm whale myoglobin	
9.	Values of P as a function of (a/b, b/c) for a general	103
	tri-axial ellipsoid	
10.	Values of $\beta \times 10^{-6}$ as a function of (a/b, b/c) for a	104
	general tri-axial ellipsoid	
44	Walter as B as a supplier as (a/b b/a) san a seneral	105
11.	Values of R as a function of (a/b, b/c) for a general	105
	tri—axial ellipsoid	
12.	Values of δ_{\perp} as a function of (a/b, b/c) for a general	106
	tri—axial ellipsoid	
13.	Values of δ as a function of (a/b, b/c) for a general	107
1 4 2 2	tri-axial ellipsoid	
14.	Assumed and derived characteristics of three hypothetical	137
	globular proteins	
15.	Retrieved decay constants for varying values of $\boldsymbol{\mu}_{\boldsymbol{Q}}$	138
16.	Determination of the optimum cut-off time for Protein 1	139
17.	Determination of the optimum cut-off time for Protein 2	142

No.	<u>Title</u>	Page
18.	Determination of the optimum cut-off time for Protein 3	145
19.	Mean values for the retrieved axial ratios compared with	148
	the real values	
bar Barana		
20.	Effect of experimental errors in the intrinsic viscosity	149
	and molecular weight	
21.	Effect of using different intially assumed values for the	150
	pre-exponential factors A +	
22.	Comparison of model dependent estimates for V with the	151
	real values	
23.	Hydrodynamic parameters and axial ratios for the tryptic	177
	subfragments of fibrinogen	
24.	Various theoretical estimates and a practical estimate for	186
	k ₂ , the second coefficient in the expansion for n in	
	terms of Φ (volume fraction)	

LIST OF FIGURES

No.	<u>Title</u>	Page
1.	A macromolecule in solution is generally swollen due to	48
	solvent association	
2.	Mathematical models for macromolecules in solution	48
3.	Shearing of a Newtonian fluid between parallel plates	48
4.	Plot of the viscosity increment as a function of axial	49
	ratio for ellipsoids of revolution	
5.	Plot of the translational frictional ratio (the "Perrin	50
	Function") as a function of axial ratio for ellipsoids of	
	revolution	
6.	Plot of the rotational diffusion coefficient ratios and	51
	rotational relaxation time ratios as a function of axial	
	ratio for ellipsoids of revolution	
7.	Dielectric dispersion curves for prolate ellipsoids of	52
	revolution	
8.	Plot of the harmonic mean rotational relaxation time ratio	53
	as a function of axial ratio for ellipsoids of revolution	

Plot of Λ as a function of axial ratio for ellipsoids of

62

17.

revolution

No.	<u>Title</u>	Page
18.	Plot of ϵ and ϵ as functions of axial ratio for ellipsoids	63
	of revolution	
19.	Plot of κ_1 , κ_2 and κ_3 as functions of axial ratio for	64
	ellipsoids of revolution	
20.	Plot of ξ_1 , ξ_2 and ξ_3 as functions of axial ratio for	65
	ellipsoids of revolution	
21.	Plot of γ as a function of axial ratio for ellipsoids of	66
	revolution	
22.	Plot of α as a function of axial ratio for ellipsoids of	66
	revolution	
23.	Plot of ψ as a function of axial ratio for ellipsoids of	67
	revolution	
24.	Plot of ${\mathbb I}$ as a function of axial ratio for ellipsoids of	68
•	revolution	
25.	A comparison of the values of ν as a function of axial ratio	89
	predicted by the Simha-Saito and Batchelor-Jeffrey equations	
	for ellipsoids of revolution	

No.	<u>Title</u>	Page
26.	Plot of v as a function of a/b when b/c = 10.0 (a>b>c)	90
	determined from equation (88)	
27.	Plot of reduced specific viscosity <u>versus</u> concentration	108
	for sperm whale myoglobin	
28.	Photograph of the apparatus used for determining solution	109
	densities and viscosities	
29.	Contour diagram showing curves of constant ν as a function	110
	of the semi-axial ratios a/b, b/c on the basis of equation (88)
30.	Plots of constant ν and P in the (a/b, b/c) plane corres-	111
	ponding to $a/b = 1.5$, $b/c = 1.5$	
31.	Plots of constant ν , P, β and R, allowing for \pm 1% error in	112
	their measured values, in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5	
32.	Plots of constant R and the rotational relaxation time ratios	113
	in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5	
33.	Plots of constant fluorescence anisotropy relaxation time	114
	ratios in the a/b, b/c plane corresponding to a/b = 1.5, b/c	
	= 1.5	

Plots of constant R, Ψ and Λ in the a/b, b/c plane correspond-

ing to a/b = 1.5, b/c = 1.5

34.

- 35. Plots of constant R, Ψ and Λ , allowing for \pm 1% error in 116 their measured values, in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5
- 36. Plots of constant R, θ_{+}^{red} and θ_{-}^{red} , allowing for \pm 1 % error 117 in their measured values, in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5
- 37. Plots of constant R, δ_{+} and δ_{-} , allowing for $\stackrel{+}{=}$ 1% measured 118 error in R and $\stackrel{+}{=}$ 2% measured error in δ_{\pm} , in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5
- 38. Plots of constant R, γ_{+} and γ_{-} , allowing for \pm 1% measured 119 error in R and \pm 2% measured error in γ_{\pm} , in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5
- 39. Birefringence decay (expressed in radians) in <u>Helix Pomatia</u> 152 hemocyanin solutions
- 40. Synthetic two-term exponential electric birefringence decay 153 curve assuming a standard error of ± 0.1° on each data point
- 41. Plot of the R, δ_+ and δ_- values obtained from the non-linear 154 least squares analysis assuming birefringence data of machine accuracy

Hydrodynamic data for BSA fitted using the new general

equation for transport at all solute concentrations

58.

193