Now where did I leave my car — and how do I get back there? How the brain translates memory into action.

16 Apr 2009 09:29:00.000

PA 104/09

When we emerge from a supermarket laden down with bags and faced with a sea of vehicles, how do we remember where we’ve parked our car and translate the memory into the correct action to get back there? Scientists have identified the part of the brain responsible for solving this everyday problem — and the results could have implications for understanding the functional significance of a prominent brain abnormality observed in neuropsychiatric diseases such as schizophrenia.


Different types of memory are formed in different parts of the brain. The repetitive car drive to work, back home or to the supermarket requires well-learnt place memory and involves different brain mechanisms than returning to your car in a car park which requires rapidly-learnt memory of a novel place.


In a study published in PLoS Biology, Tobias Bast of The University of Nottingham’s School of Psychology worked with Iain Wilson and Richard Morris at the University of Edinburgh’s Centre for Cognitive and Neural Systems and with Menno Witter at the Centre for the Biology of Memory at the Norwegian University for Science and Technology to investigate how such rapid place learning is translated into appropriate behaviour. 

Click here for full story

They focused on the hippocampus, an elongated, banana-shaped structure beneath the brain’s temporal lobe. The hippocampus contributes to conscious memory — so-called declarative memory. And it is especially important for the rapid learning of the ever-changing aspects of our everyday experiences — such as the place where we park our car on a specific occasion. How the hippocampus mediates such rapid learning has received a lot of attention. For example, a much-studied property of hippocampal neurons in rats is their striking place-specific firing. When rats move about in an environment, electrophysiological recordings from the hippocampus show that, within seconds to minutes, many hippocampal neurons come to fire when — and only when — the animal passes a specific place. This means that the hippocampus rapidly ‘learns’ and then codes for specific places. But, until now, the way this rapid place learning is translated into behaviour has received less attention.


In the new study, the researchers identified the part of the hippocampus that is responsible for this learning-behaviour translation. They found the critical part is the ‘intermediate’ or middle part of the hippocampus, which combines links to accurate visuo-spatial information — like the position of a car in a car park — with links to behavioural control necessary for returning to that car after a period of time.


To do this the researchers tested rats in a water maze experiment. The rats located and then returned to a platform in the water, with the platform location changing every day, mimicking car park conditions. Different parts of the rat’s hippocampus were selectively ‘lesioned’, or disabled, using a neurotoxin. The effects on the rats’ behaviour were then measured.


The study found that if roughly 30-40 per cent of neuronal tissue in the middle of the hippocampus — the intermediate region — was spared by the neurotoxin lesions, the rats could carry out the task with similar efficiency as with a fully intact hippocampus. But when the intermediate hippocampus, or a substantial part of it, was disabled, sparing 30-40 per cent of tissue at the two ends of the hippocampus — the so-called ‘septal’ and ‘temporal’ hippocampus — the rats struggled with the task.


The researchers also found that the septal end of the hippocampus, featuring links to precise visuo-spatial information, can still rapidly form an accurate place memory — as reflected by the place-related firing of neurons in this region after the rest of the hippocampus was disabled. However, it cannot translate this memory into behaviour as without the intermediate hippocampus it lacks the relevant links to behavioural control.


Dr Bast plans to expand on the discoveries with research into how aberrant hippocampal activity that characterises many neuropsychiatric conditions, such as schizophrenia, contributes to symptoms.


“People often focus on memory deficits when thinking about the significance of aberrant hippocampal function,” he said. “But our new findings highlight the important hippocampal links to behavioural control. We plan to build on these findings and examine the possibility that aberrant hippocampal function — depending on where in the structure it occurs and to which extent — may give rise to selective memory deficits, as well as to more profound disruptions of behavioural control. “


The research was funded by the Caledonian Research Foundation, The Royal Society (London), The Royal Society of Edinburgh and the Medical Research Council. The publication of the study is supported by the Open-Access Publishing Fund of The University of Nottingham.


— Ends —


Notes to editors: The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.


More than 90 per cent of research at The University of Nottingham is of international quality, according to RAE 2008, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranks the University 7th in the UK by research power. In 27 subject areas, the University features in the UK Top Ten, with 14 of those in the Top Five.


The University provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's “only truly global university”, it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named ‘Entrepreneurial University of the Year’ at the Times Higher Education Awards 2008.


Nottingham was designated as a Science City in 2005 in recognition of its rich scientific heritage, industrial base and role as a leading research centre. Nottingham has since embarked on a wide range of business, property, knowledge transfer and educational initiatives ( in order to build on its growing reputation as an international centre of scientific excellence. The University of Nottingham is a partner in Nottingham: the Science City.

Story credits

More information is available from Dr Tobias Bast on +44 (0)115 846 7438,
Tara De Cozar

Tara De Cozar - Internal Communications Manager

Email: Phone: +44 (0)115 846 8560 Location: University Park

Additional resources

No additional resources for this article

Related articles

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798