Triangle Skip to content
Exit nav

Course overview

Civil engineering problems require the application of analytical, decision making and critical thinking skills; this course will provide you with the technical knowledge and experience needed to develop these skills. It will also equip you with a range of transferable skills; an ideal combination for a leading career in civil engineering.

This course is also taught at the University of Nottingham's Malaysia Campus.

Why choose this course?

Accredited

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer for candidates who have already acquired a partial CEng accredited undergraduate degree.

3rd

in the UK for research power

REF 2014

2nd

highest in the UK for female engineering graduate earnings, five years after graduation.

2nd

highest in the Midlands for male engineering graduate earnings, 5 years after graduation

Modules

Civil Engineering Research Project (summer) 60 credits

This is the major research project element for selected MSc plans in the Department of Civil Engineering. It will normally take the form of a scientific investigation, whether it involves experimentation or an extensive review of work already completed by others. Typically, but not exclusively, it will include the following:

  • Project definition and aim
  • Literature review
  • Practical experimentation / investigation
  • Presentation of results
  • Critical analysis of findings

The detailed technical content of the module will depend on the specific area under examination.

The project area is flexible and will be supervised by an academic member of staff.

Previous research projects have included:

  • Weather impact on construction schedules
  • Predicted future climate change trends
  • The use and abuse of GPS in current UK survey practices
  • The utilization of laser scanning system for examination and monitoring of tunnel deformation and structural integrity
  • Life cycle assessment of the M25 highway widening scheme

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 3 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Dissertation 100.00 10,000-20,000 words
Research Methods and Project Proposal (spring) 10 credits

This is a compulsory module for all students studying an MSc in the Department of Civil Engineering. The module facilitates the development of skills that can be applied within a research project, including a literature review and writing skills, development of technical research skills, initiating a review of literature generally relating to the design/research project which they will undertake in the summer research project, and developing a proposal for the activities to be conducted in the summer research project.

The module will incorporate a mixture of learning environments/resources, including a Nottingham Open Online Course (NOOC) relating to technical writing and literature review techniques, formative feedback provided by academic staff and other students, 2-week technical workshops organised within the Department of Civil Engineering which will provide technical training in areas of interest to the student or of specific benefit to the proposed project (two workshops to be completed, selected from a number of options), and interaction with an individual supervisor who will be a member of staff specialising in an area related to the student’s project.

  1. A report containing a literature review related to the subject area chosen by the student and a reflective commentary on how formative feedback was used in developing their writing
  2. Submissions required as part of the technical workshops
  3. A presentation and viva which details the preliminary aims, objectives, methodology, programme of activities, resource plan, and project-level risk assessment for their summer project
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Thursday 18 March 2021.
Geotechnical Modelling (autumn) 20 credits

This module will reinforce and advance some of the principles of soil mechanics previously learnt, and describe the principles of Critical State Soil Mechanics (CSSM), a model used to predict the behaviour of soils.

It includes revision of previous concepts, shear box and triaxial tests data analysis, critical state line, elasticity and plasticity, development of an elasto-plastic soil model, and constitutive model application in numerical simulations.

Students will learn about and conduct their own triaxial tests on soil samples within the laboratory such that they can obtain constitutive model parameters for the soil. Students will learn to use a finite element method (FEM) software package that is popular for geotechnical analyses as well as the principles of physical modelling using a geotechnical centrifuge. The coursework element will require students to use constitutive model parameters obtained from triaxial testing within FEM analyses.

The FEM analyses will include

  1. the replication of the triaxial tests and verification of results against analytical predictions (using CSSM), and
  2. simulation of a boundary value problem (e.g. vertical loading of a foundation), for which they will compare numerical predictions against a centrifuge test data set provided to them.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Computing 3 weeks 3 weeks 2 hours
Lecture 8 weeks 3 weeks 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 50.00 Experimental and Numerical Analysis Report
Exam 50.00 Two hour examination
Advanced Structural Design (autumn) 20 credits

This module will look into the design of specialised structural systems such as composite beams and floors, portal frames, tubular trusses, and pre-stressed concrete beams and slabs.

It will also look into connection behaviour, the design of steel moment connections and sway stability of buildings. A major group design exercise will illustrate the approach to the design of complete structures.

Method and Frequency of Class:

Activity Number of weeks Number of sessions Duration of a session
Lecture 11 weeks 2 weeks 3 hours

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 35.00 Group Design Coursework: 60 pages max plus drawings and group presentation
Exam 1 65.00  3 hour exam
Coastal Engineering (autumn) 20 credits

This module provides an introduction to coastal engineering. This includes:

  • Waves, tides, and wave-generated and tidal currents
  • Beaches and sediments
  • Tidal energy

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 3 hours
Lecture 11 weeks 1 week 3 hours

Assessment method

Assessment Type Weight Requirements
Coursework 1 15.00  
Coursework 2 10.00  
Exam 75.00 Three hour examination
Advanced Structural Analysis (autumn) 20 credits

The module will introduce concepts of linear and nonlinear finite element theory for structural engineering.

Content will involve finite element formulation, i.e. bar, beam, plane stress, plane strain and plate/ shell elements as well as their implementation within the direct stiffness method. Aspects of material and geometrical nonlinearities will be examined and the particular cases of concentrated and distributed plasticity beam element formulations for skeletal structures will introduced.

Load, displacement, and general control nonlinear static analysis schemes will also be examined and implemented for the solution of finite element problems. Concepts will be practiced through two individual pieces of coursework on linear and non-linear finite element theory respectively. Coursework will involve both a theory implementation and an analysis aspect using software.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 2 week 2 hours
Workshop 11 weeks 1 week 2 hours

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 - Finite Element 15.00  
Coursework 2- Non-linear analysis 15.00  
3 hr exam 70.00
Dynamics and Wind Engineering (autumn) 20 credits

For efficiency and clarity, the module will have complementary themes running in parallel at times, as shown below:

Wind Engineering Theme

Dynamics Theme

Basic meteorology

Global circulation; subtropical cyclones; gradient winds

Single degree of freedom (SDOF) systems

Equation of motion; damping cases; free and forced vibration

Wind characteristics

Wind spectra; parent winds; turbulence; atmospheric boundary layer

Multiple degrees of freedom (MDOF) systems

 

Bluff body aerodynamics

Flow around cylinders and buildings; pressure coefficients

Continuous systems

 

Wind Engineering Tools

Eurocode; wind tunnel modelling; computational wind engineering

Wind-structure interaction

Buffeting; vortex-induced vibration; galloping; flutter

The module will involve two pieces of individual courseworks in wind loading and buffeting.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 3 week 2 hours

 Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 15.00 Individual project using Eurocde to predict forces on a low-rise structure.
Coursework 2 15.00 Individual project using Matlab coding to model the dynamic response of a building to wind excitation.
Exam 70.00 Three hour examination.
Managing Infrastructure and Systems 10 credits

This module considers some of the most commonly-used system reliability assessment techniques applied to support system management.

It covers the construction of reliability models that use basic component failure information to describe specific system failure modes, the qualitative and quantitative analyses of these models, and the critical evaluation of systems using the analytical results. The models will be discussed in the context of their application to engineering systems and infrastructure assets.

The module aims to provide students with:

  • an understanding of the basic statistical, probabilistic and mathematical concepts required to predict the reliability of components and systems.
  • a detailed knowledge of the most commonly used system reliability assessment techniques.
  • the ability to critically evaluate systems and assets using mathematical models.

Assessment method

This module will be assessed by an in-class test (20%) and an exam (80%).

Railway Technology (autumn) 10 credits

This module will introduce the components of railway track structures, conventional and otherwise. It will include analysis of forces on a railway track and consequent deflections, stresses, alignment design principles, and an overview of the railway as a total system including operational issues, signalling and control.

Assessment method

This module is assessed by individual and group coursework (40%) and an exam (60%).

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Lecture 11 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 1 20.00 Track maintenance group coursework - 4 spreadsheet returns at approx. 2 hours.
Coursework 2 20.00 Track design individual coursework - 1,000 word report
Exam 60.00 One 2 hour exam
Highway and Pavement Design (autumn) 10 credits

This module covers the design of highway alignments, including curvatures, gradients, number of lanes, junction design and drainage. It also includes analysis and design of pavement structures and surfaces using different techniques and materials together with the deterioration mechanisms involved.

It module aims to:

  • embed the ability to design sensible and functional highway alignments
  • introduce the design of pavement structures
  • give understanding of the roles and design of different pavement surfaces

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Lecture 11 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 1 20.00 Highway design exercise
Coursework 2 20.00 Pavement design exercise
Exam 60.00 2 hour exam
Sustainable Construction and Life Cycle Assessment 10 credits

This module is designed to deliver an understanding of sustainability principles and how, in particular, transport infrastructure engineering as well as the wider construction industry can contribute to sustainable development.

The module will include the following themes:

  • Sustainability: an introduction to sustainability, sustainable development; sustainable construction; and how transport infrastructure engineering can contribute to sustainable construction.
  • Environmental impacts of infrastructure construction: a review of the positive and negative environmental impacts of construction including resources and waste and energy and climate change.
  • Social impacts of infrastructure construction: a review of the positive and negative social impacts of construction including; corporate social responsibility, responsible sourcing, poverty reduction and sustainable development goals.
  • Assessment: indicators, assessment systems, environmental life-cycle assessment, life-cycle cost analysis.

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 11 weeks 1 week 2 hours
Workshop 11 weeks 1 week 1 hour

Assessment method

Assessment Type Weight Requirements
Coursework 100.00 2 hour exam
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Thursday 18 March 2021.
Engineering and Deformation Surveying and Practical (spring) 20 credits

This module is a combination of theoretical and practical aspects of selected areas of advanced engineering and deformation surveying and their applications.

For the practical aspects the students work in small groups on three projects, which are related on surveying by using advanced geodetic instrumentation and deformation monitoring projects.

The projects involves the design, planning and carrying out of measurements, processing and analysis of surveying/monitoring sensors data and finally topographic map for the surveying project and the determination of deformation for the monitoring projects. Subjects covered include:

  • Analysis of errors of geodetic measurements
  • Metrology and industrial measurement.
  • Terrestrial laser scanning
  • Surveying and techniques for deformation monitoring
  • Analysis of geodetic time-series
  • Monitoring of civil engineering structures (tall-buildings, bridges)
  • Monitoring of underground structures
  • Engineering and crustal deformation monitoring
  • Applications of deformation monitoring of geohazards

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 3 hours
Practicum 12 weeks 1 week 3 hours

3 hour morning block and 3 hour afternoon block.

Method of Assessment:

Assessment Type Weight Requirements
coursework 1 15.00 Individual submission of poster of the topographic map (size A0)
coursework 2 15.00 Individual submission of report for the deformation monitoring problems (1000-1500 words)
coursework 3 20.00 Two group presentations (20 and 35 minutes, respectively)
Exam 1 50.00 written examination (unseen)
Infrastructure Asset Management (spring) 10 credits

This module considers the use of system reliability assessment techniques to support asset management decision making. It covers the analysis of asset failure data, how to construct and analyse asset degradation models and how to use optimisation techniques to enable the selection of optimal maintenance strategies.

The techniques will be discussed in the context of their application to asset infrastructures.

Assessment method

This module will be assessed by a class test (20%) and an exam (80%).

Delivery

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 1 week 1 hour
Lecture 12 weeks 1 week 2 hours

Assessment method

Assessment Type Weight Requirements
Coursework 20.00 Class test
Exam 80.00  
Bridge Engineering (spring) 20 credits

The module will look into the analysis and design of bridge structures, including definition of loading, structural analysis methods for deck and piers, and design of deck, piers and foundations of steel and concrete bridges.

A group project consists of the conceptual design of a bridge and the detailed design of key structural elements.

Method and Frequency of Class: 

Activity Number of Weeks Number of sessions Duration of a session
Lecture 12 weeks 2 week 3 hours

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 30.00 Group design project
Presentation 1 5.00 Group presentation of design, 20 mins
Exam 1 - 3 hr exam 65.00  
Tall Building Group Design Project (spring) 10 credits

This module will use the design of a tall building as a platform for students to practise and apply the skills that they have developed through the modules in the Autumn Semester. Students will work in groups to tackle a tall building design problem based on an architect’s brief and an identified site.

Detailed models of the proposed solution will be developed and evaluated using design and analysis software.

The scope of the project will cover:

  • the social and engineering context of the proposed tall building
  • the principal structural system
  • evaluation of loading
  • outline design of foundations, and
  • presentation of the design.

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Lecture 1 week 2 week 2 hours
Workshop 11 weeks 2 week 4 hours

Lectures are only held at the start of the project and will not continue throughout the semester.

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 - Group Interim design submission 20.00 Written report (1500 words)
Coursework 2 - Group Final Design Submission 30.00 Written report (3000 words)
Presentation - Group Presentation of Design 20.00 20 min for Group Presentation
VIVA 30.00 Individual VIVA on project and individual diary of activities throughout the semester.15 min VIVA and diary (1000 words)
Computational Fluid Dynamics (autumn) 20 credits

This module consists of:

  • Introduction
  • Fundamental CFD theory
  • Turbulence
  • Multiphase
  • Reactive Flow
  • Quality Assurance

Method and Frequency of Class:

Activity Number of Weeks Number of sessions Duration of a session
Computing 8 weeks 1 week 2 hours
Lecture 11 weeks 2 week 1 hour
Un Assign 5 weeks 1 week 2 hours

Activities may take place every teaching week of the Semester or only in specified weeks. It is usually specified above if an activity only takes place in some weeks of a Semester.

Method of Assessment:

Assessment Type Weight Requirements
Coursework 1 50.00 Individual project up to 4000 words
Exam 1 50.00 2-hour written examination
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Thursday 18 March 2021.

Learning and assessment

How you will learn

  • Lectures
  • Seminars
  • Lab sessions
  • Self-study

Our MSc Civil Engineering course is studied over 12 months. Sixty credits of modules are studied in each of the Autumn and Spring Semesters. Any digression from this (for example 50:70 credit split) can only be with agreement of the course director. A research project is undertaken in the summer period.

The compulsory Research Methods and Project Proposal module taken on this course is designed to give a strong foundation in the skills and methodology necessary to successfully complete your research project over the summer period.

In addition, you will be able to choose from a number of optional modules to create a more generalised path of study for the award of MSc Civil Engineering or to augment your degree with a specific theme.

Over the summer period, you will be required to complete a 60-credit dissertation/research project. The research project is a chance to carry out a major piece of independent research under the supervision of a suitable member of academic staff.

How you will be assessed

  • Examinations
  • Coursework
  • Presentation
  • Dissertation

A range of assessment methods are adopted, with a pass mark of 50%. To attain the accredited MSc degree, students must pass 100 credits of their taught modules (comprising 120 credits) and have a weighted average of at least 50%. The Research Methods and Project Proposal module and the Civil Engineering Research Project module must be passed to attain the MSc degree.

Contact time and study hours

Teaching on this course takes place throughout the week during term-time, with a 10-credit taught module usually having 3 hours of lecture time per week (6 hours for a 20-credit module). Self-guided learning is an expectation on the course, with an expectation that students nominally dedicate approximately 10 hours of work per credit over the course of the term. Each student will work closely with a member of academic staff who will provide general guidance and support as well as specific instruction related to the student's chosen area for the summer research project. 

Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2021 entry.

Undergraduate degree2:1 in relevant subject. Applicants need to have studied multiple courses in Structures, Geotechnics and Fluids.

Applying

Our step-by-step guide covers everything you need to know about applying.

How to apply

Fees

Qualification MSc
Home / UK £10,500
International £25,000

If you are a student from the EU, EEA or Switzerland starting your course in the 2021/22 academic year, you will pay international tuition fees.

This does not apply to Irish students, who will be charged tuition fees at the same rate as UK students. UK nationals living in the EU, EEA and Switzerland will also continue to be eligible for ‘home’ fee status at UK universities until 31 December 2027.

For further guidance, check our Brexit information for future students.

Additional costs

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies or more specific titles.

Funding

There are many ways to fund your postgraduate course, from scholarships to government loans.

We also offer a range of international masters scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

Check our guide to find out more about funding your postgraduate degree.

Postgraduate funding

Careers

We offer individual careers support for all postgraduate students.

Expert staff can help you research career options and job vacancies, build your CV or résumé, develop your interview skills and meet employers.

More than 1,500 employers advertise graduate jobs and internships through our online vacancy service. We host regular careers fairs, including specialist fairs for different sectors.

Graduate destinations

The blend of academic study and development of practical and professional skills that the course provides is an ideal preparation for the future challenges of working in a multidisciplinary environment. Graduates of this course are highly sought-after and enter a range of careers related to the field of civil engineering.

Joint Board of Moderators

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Institution of Civil Engineers (ICE)

Institution of Structural Engineers

  • This degree is accredited by the Joint Board of Moderators of the ICEIStructECIHT and IHE.

The Chartered Institution of Highways and Transportation (CIHT)

Institute of Highway Engineers (IHE)

Chartered Engineer (CEng)

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See www.jbm.org.uk for further information.

Two masters graduates proudly holding their certificates

Related courses

The University has been awarded Gold for outstanding teaching and learning (2017/18). Our teaching is of the highest quality found in the UK.

The Teaching Excellence Framework (TEF) is a national grading system, introduced by the government in England. It assesses the quality of teaching at universities and how well they ensure excellent outcomes for their students in terms of graduate-level employment or further study.

This content was last updated on Thursday 18 March 2021. Every effort has been made to ensure that this information is accurate, but changes are likely to occur given the interval between the date of publishing and course start date. It is therefore very important to check this website for any updates before you apply.