Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 1: Preliminaries (Classical)




QFT What is QFT?

A framework for building theories that are
Lorentz invariant, local, causal

» Basic idea: Fields are fundamental, quantization of ripples in field are
‘particles’

— Field for each fundamental particle (electrons, quarks, gluons, Higgs etc)
» Promote classical degrees of freedom (DOF) to operators

— In quantum mechanics DOFs promoted to operators acting on Hilbert
space

— QFT is quantization of classical fields. Fields promoted to operator
valued function

* Infinite number of degrees of freedom! Can cause problems

* In this course will consider canonical quantization (more transparent starting
from classical picture)



QFT Why QFT?

* Need consistent formalism to deal with
multi-particle states
— Special relativity and QM imply
particle number is not conserved

— Cannot be reconciled with wave
function description

 All particles are identical - those in the
lab and those on cosmological scales

 Fields generally provide local
description of physics - e.g. field
equations of Maxwell and Einstein




QFT Course Outline
Lecture Topic
1 Preliminaries - Classical mechanics, Classical Field Theory
2 Preliminaries - Canonical Quantization, Harmonic Oscillator
3-4 Free Fields - Canonical Quantization, Vacuum State, Particle
States, Causality, Feynman Propagator
5-6 Interacting Fields - S-Matrix, Wick’s Theorem, Feynman
Diagrams
V4 Spinors - Lorentz Group, Spinor representation
8 Dirac Equation
9-10 Quantization of Dirac Equation - Fermions, Feynman Rules

Units: h=c=1




QFT Classical Mechanics - Lagrangian

Consider particle in 1-D with potential V(x). Define Lagrangian in
terms of kinetic and potential energy T and V by
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Define action functional by S = dt L(z, )
to
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Variation of action 5S = / dt 5338_1’ 4+ 5338_L
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Principle of least action §S = 0 leads to Euler-Lagrange equations
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QFT Hamiltonian Formalism

« Lagrangian formalism makes symmetries and their physical
consequences explicit

* For canonical quantization need another equivalent treatment

0L
0T
+ Define Hamiltonian ~ H (x,p) = pt — L(x, )

« Define conjugate momentum

« (Can derive Hamilton’s equations
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 e.g. particle in 1-D potential H = im:i:Q +V=T4+V




QFT Classical Field Theory

A field is a quantity defined at every point in space and
time

In 1-D have following analogy to classical mechanics with
infinite degrees of freedom:

zi(t) — ¢(z, 1)
&i(t) — ¢(x,1)
I —> X Z — /dw
L(x;, &) — L[¢, ¢] |
. Easily generalized to 3-D  ¢(x,1) | Z —>/d3x

« Position has been relegated from a dyﬁamical variable in

particle mechanics to a label in field theory
7



QFT Lorentz Invariance

* Would like theory to be Lorentz invariant
* Four vectors transform under

(QZ'/)'U _ A’LLVZEV A'uanUTAVT _ nw/

where n*¥ = diag(+1, -1, -1, —1) is the Minkowski metric
. Lorentz scalar same in all inertial frames ¢'(z') = ¢(x)
NB: = = (x,t) Active: ¢(z) — ¢'(z) = p(A™ ')

* Lorentz vector transforms as V'#(z') = A*, V" (2)

VH(xz) = V() = A» VY (A 1)
E.g. Derivative of scalar
_ 0¢(z)

transforms as vector 0,¢(z) = oy ,




QFT Action for Scalar Field

Will consider Lagrangians dependingon ¢, ®, Vo

. Define action S and Lagrangian density [

S = / d*z L(¢,0,0) L= / &’z L(¢, 0,9)

: : : 4
« Invariance of integration measure d~x ensures
theory is Lorentz invariant as long as L is

« NB: Lagrangian density often termed Lagrangian

« Check following Lagrangian for real scalar is Lorentz
Invariant 1

1
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QFT Equations of Motion

* Follow same procedure as in classical mechanics and
vary action

oL oL
o5 = [ {Ma_qs ’ 5@%@@}

o5 = [ata{ 55— (8(2‘5@) fao+, (8(%@ )

 Principle of least action leads to Euler-Lagrange
equations

0L oL oL oL \
9 (6’(8#@5)) =0 = 5, O (8(%%)) =0

General
number of
fields 10




QFT Hamiltonian

« Similarly define momentum conjugate = (z) = —

« Hamiltonian density ‘H
H(p,7) = n(z)d(z) — L(z) H = /deH( T

 Hamilton’s equations
: OH , oOH
¢(x) — 87’(’(33) 9 7T($) — _a¢(aj)

« Straightforward generalization to multiple fields
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QFT Klein-Gordon Equation

1 1
Consider Lagrangian £ = in””augbﬁygb — §m2q§2
N : oL oL
D fL 0L _ 2 pe
erivatives of Lagrangian - m2é 5.9 0"

Euler-Lagrange equation then gives Klein-Gordon
equation 5 5
0,0"p +m ¢:( +m )qb:()
NB Minkowski: ¢ = ¢ — V2¢
1
Hamiltonian H = 5 /d333 %+ (Vo) + m?¢?]
Interpret Hamiltonian as total energy

. . 1
Easy to generalize to other potential not V(¢) = 5m’¢”




QFT Plane Wave Solution

» Consider real solutions to KG equation. Plane wave ansatz:

@) = [ gz [Pk 4 pr(R)etie] hw =k e

. Substitute into KG equation. Find (k%)% — k* = m?

- |dentify energy as positive branch E(k) = Vk2 + m?

- Existence of negative energy states - interpretation of ¢(x)
as quantum field gives rise to anti-particles

. Integrate out k" dependence

o) = [ sy 7096 +allge ]
*

Lorentz invariant 13
measure




QFT Symmetries

« Symmetries play an important role in particle physics and field
theory

 Noether’s theorem: Invariance of the action under continuous
symmetry transformation gives rise to a conserved current 7" ()

such that
Ot =

« Conserved current implies conserved charge associated with
this symmetry

o d
sz/d%yo %:—/d%v-j:—/j-ds
V 1% A

« Charge is conserved locally
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QFT Noether's Theorem

for translational invariance

Consider infinitesimal translation x“ — gt + e

oL
Change in Lagrangianis oL = — d(0
g grang ¢ ¢ 5(0.0) (0n.9)
Euler-Lagrange equations give §L = 0 ( oL 5q§)
"\ 9(0,9)

Under translation o(z) — o(x) — €0, 0(x)
L(x) = L(z)— "0, L(x)

NB Lagrangian has no explicit coordinate dependence
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QFT Noether’'s Theorem
for translational invariance

- For invariance of action for general ¢" find 4 conserved
currents
oL

(j'u)z/ — 8(8qu)

« TH  is the energy-momentum tensor which satisfies
0,TH", =0
« Translation symmetry gives rise to conservation of
energy-momentum

« Other symmetries give other conserved currents - e.g.
Lorentz transformation and angular momentum

o, —obL=T",
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