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Lecture 1: Preliminaries (Classical)



QFT What is QFT?

• Basic idea: Fields are fundamental, quantization of ripples in field are 
‘particles’  

– Field for each fundamental particle (electrons, quarks, gluons, Higgs etc) 
• Promote classical degrees of freedom (DOF) to operators  

– In quantum mechanics DOFs promoted to operators acting on Hilbert 
space 

– QFT is quantization of classical fields. Fields promoted to operator 
valued function 

• Infinite number of degrees of freedom! Can cause problems 
• In this course will consider canonical quantization (more transparent starting 

from classical picture)
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A framework for building theories that are  
                                      Lorentz invariant, local, causal



QFT Why QFT?

• Need consistent formalism to deal with 
multi-particle states 

– Special relativity and QM imply 
particle number is not conserved 

– Cannot be reconciled with wave 
function description 

• All particles are identical - those in the 
lab and those on cosmological scales 

• Fields generally provide local 
description of physics - e.g. field 
equations of Maxwell and Einstein 
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QFT Course Outline

Lecture Topic
1 Preliminaries - Classical mechanics, Classical Field Theory

2 Preliminaries - Canonical Quantization, Harmonic Oscillator

3-4 Free Fields - Canonical Quantization, Vacuum State, Particle 
States, Causality, Feynman Propagator 

5-6 Interacting Fields - S-Matrix, Wick’s Theorem, Feynman 
Diagrams

7 Spinors - Lorentz Group, Spinor representation  

8 Dirac Equation

9-10 Quantization of Dirac Equation - Fermions, Feynman Rules 

~ = c = 1Units:



• Consider particle in 1-D with potential V(x). Define Lagrangian in 
terms of kinetic and potential energy T and V by 

• Define action functional by 

• Variation of action  

• Principle of least action                 leads to Euler-Lagrange equations 
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QFT Classical Mechanics - Lagrangian
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�S = 0

�S =

Z t1

t0

dt

⇢
�x

@L

@x
+ �ẋ
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General coordinates

• For particle in 1-D potential 
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H =
1

2
mẋ
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QFT Hamiltonian Formalism
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• Lagrangian formalism makes symmetries and their physical 
consequences explicit  

• For canonical quantization need another equivalent treatment 

• Define conjugate momentum 

• Define Hamiltonian 

• Can derive Hamilton’s equations  

General coordinates

• e.g. particle in 1-D potential 



QFT Classical Field Theory

• A field is a quantity defined at every point in space and 
time  

• In 1-D have following analogy to classical mechanics with 
infinite degrees of freedom:  
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• Easily generalized to 3-D                ,   
• Position has been relegated from a dynamical variable in 

particle mechanics to a label in field theory 
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E.g. Derivative of scalar  
transforms as vector 

     where                                      is the Minkowski metric 
• Lorentz scalar same in all inertial frames 
    NB:                                    Active: 
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QFT Lorentz Invariance

• Would like theory to be Lorentz invariant  
• Four vectors transform under 
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• Lorentz vector transforms as  

�(x) ! �0(x) = �(⇤�1x)

V µ(x) ! V 0µ(x) = ⇤µ
⌫V

⌫(⇤�1x)



• Invariance of integration measure           ensures 
theory is Lorentz invariant as long as      is 

• NB: Lagrangian density often termed Lagrangian 
• Check following Lagrangian for real scalar is Lorentz 

invariant 
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QFT Action for Scalar Field

• Will consider Lagrangians depending on 
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• Define action S and Lagrangian density  

L
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QFT Equations of Motion

• Follow same procedure as in classical mechanics and 
vary action
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• Principle of least action leads to Euler-Lagrange 
equations

General 
number of 

fields
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QFT Hamiltonian

• Similarly define momentum conjugate
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• Hamiltonian density H

• Hamilton’s equations 

• Straightforward generalization to multiple fields
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QFT Klein-Gordon Equation

• Consider Lagrangian
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• Derivatives of Lagrangian

• Euler-Lagrange equation then gives Klein-Gordon 
equation

• NB Minkowski: ⇤� = �̈�r2�

• Hamiltonian 

• Interpret Hamiltonian as total energy 
• Easy to generalize to other potential not  



• Identify energy as positive branch 
• Existence of negative energy states - interpretation of        

as quantum field gives rise to anti-particles 
• Integrate out       dependence

• Consider real solutions to KG equation. Plane wave ansatz: 
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QFT Plane Wave Solution
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E(k) =
p
k2 +m2

• Substitute into KG equation. Find  

k0

Lorentz invariant 
measure



• Symmetries play an important role in particle physics and field 
theory 

• Noether’s theorem: Invariance of the action under continuous 
symmetry transformation gives rise to a conserved current              
such that
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QFT Symmetries
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• Conserved current implies conserved charge associated with 
this symmetry

• Charge is conserved locally
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QFT Noether’s Theorem

• Consider infinitesimal translation

!15

xµ ! xµ + ✏µ

�L = @µ

✓
@L

@(@µ�)
��

◆
• Change in Lagrangian is 

• Euler-Lagrange equations give  

• Under translation   �(x) ! �(x)� ✏µ@µ�(x)

NB Lagrangian has no explicit coordinate dependence   

for translational invariance
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QFT
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Noether’s Theorem

• For invariance of action for general       find 4 conserved 
currents 

✏µ

•         is the energy-momentum tensor which satisfiesTµ
⌫

• Translation symmetry gives rise to conservation of 
energy-momentum 

• Other symmetries give other conserved currents - e.g. 
Lorentz transformation and angular momentum

for translational invariance


