QFT

Lecture10: Interacting Dirac Field Feynman Diagrams

Nucleon-Anti-Nucleon Scattering

- $\psi \bar{\psi} \rightarrow \psi \bar{\psi}$: Initial and final state contains a nucleon-antinucleon pair $|i\rangle=b^{s_{1} \dagger}\left(\mathbf{p}_{1}\right) c^{s_{2} \dagger}\left(\mathbf{p}_{2}\right)|0\rangle,|f\rangle=b^{r_{1} \dagger}\left(\mathbf{q}_{1}\right) c^{r_{2} \dagger}\left(\mathbf{q}_{2}\right)|0\rangle$
- Contribution to S-matrix at $O\left(g^{2}\right)$

$$
\frac{(-i g)^{2}}{2}\langle 0| \int d^{4} x d^{4} y c^{r^{2}}\left(\mathbf{q}_{2}\right) b^{r_{1}}\left(\mathbf{q}_{1}\right) T\{\bar{\psi}(x) \psi(x) \phi(x) \bar{\psi}(y) \psi(y) \phi(y)\} b^{s_{1} \dagger}\left(\mathbf{p}_{1}\right) c^{s_{2} \dagger}\left(\mathbf{p}_{2}\right)|0\rangle
$$

- As in bosonic case only term which contributes in timeordered product is

$$
: \bar{\psi}(x) \psi(x) \bar{\psi}(y) \psi(y): \Delta_{F}^{\phi}(x-y)
$$

- Have to be careful with spinor indices - calculation is quite tedious (try it!)

Feynman Rules

- Draw an external line for each particle in the initial and final state (as before will choose dotted lines for mesons, solid lines for nucleons)
- Add an arrow to nucleons to denote charge (incoming arrow for ψ in initial state)
- Join lines by trivalent vertices
- Associate spinors with external fermions

- For incoming nucleon $u^{s}(\mathbf{k})$
- For outgoing nucleon $\bar{u}^{s}(\mathbf{k})$
- For incoming anti-nucleon $\bar{v}^{s}(\mathbf{k})$
- For outgoing anti-nucleon $v^{s}(\mathbf{k})$

Feynman Rules

- For each vertex $(-i g)(2 \pi)^{4} \delta^{4}\left(\sum_{i} k_{i}\right)$ where momenta
are into vertex
- For each internal line integrate the propagator

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon}
$$

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i\left(\gamma^{\mu} k_{\mu}+M\right)}{k^{2}-M^{2}+i \epsilon}
$$

- Nucleon propagator is now a 4×4 matrix
- Spinor indices are contracted at each vertex
- Add minus signs for statistics

QFT Nucleon-Anti-Nucleon Scattering

$\psi \bar{\psi} \rightarrow \psi \bar{\psi}$

- Define amplitude by $\langle f| S-1|i\rangle=i \mathcal{A}(2 \pi)^{4} \delta^{4}\left(k_{F}-k_{I}\right)$

$$
\begin{gathered}
\mathcal{A}=(-i g)^{2}\left[\frac{\left[\bar{v}^{r_{2}}\left(\mathbf{p}_{2}\right) \cdot u^{r_{1}}\left(\mathbf{p}_{1}\right)\right]\left[\bar{u}^{s_{2}}\left(\mathbf{q}_{2}\right) \cdot v^{s_{1}}\left(\mathbf{q}_{1}\right)\right]}{s-m^{2}+i \epsilon}-\frac{\left[\bar{u}^{s_{1}}\left(\mathbf{q}_{1}\right) \cdot u^{r_{1}}\left(\mathbf{p}_{1}\right)\right]\left[\bar{v}^{r_{2}}\left(\mathbf{p}_{2}\right) \cdot v^{s_{2}}\left(\mathbf{q}_{2}\right)\right]}{t-m^{2}+\hat{k}}\right] \\
\left.t=\left(p_{1}-q_{1}\right)^{2}=\left(p_{2}-q_{2}\right)^{2} \quad u=\left(p_{1}-q_{2}\right)^{2}=\left(p_{2}-q_{1}\right)^{2}\right] \\
s=\left(p_{1}+p_{2}\right)^{2}=\left(q_{1}+q_{2}\right)^{2}
\end{gathered}
$$

- If $m>2 M$ the s-channel term can again diverge. However, the meson is unstable for this mass

QFT
 Nucleon-Anti-Nucleon Scattering

- The minus signs can be a little tricky to get right
- Safest thing to do is to go back to the calculation of the Smatrix element using Wick's theorem
- For the s-channel of nucleon-anti-nucleon scattering this is given (very) schematically by

$$
\begin{aligned}
& \langle f|: \bar{\psi} \psi \bar{\psi} \psi:|i\rangle=\langle 0| c b: \bar{v} c u b \bar{u} b^{\dagger} v c^{\dagger}: b^{\dagger} c^{\dagger}|0\rangle \\
& =+\langle 0| c b b^{\dagger} c^{\dagger}[\bar{v} u][\bar{u} v] c b b^{\dagger} c^{\dagger}|0\rangle=+[\bar{v} u][\bar{u} v]
\end{aligned}
$$

- The t-channel term is

$$
\begin{aligned}
& \langle f|: \bar{\psi} \psi \bar{\psi} \psi:|i\rangle=\langle 0| c b: \bar{v} c v c^{\dagger} \bar{u} b^{\dagger} u b: b^{\dagger} c^{\dagger}|0\rangle \\
& =+\langle 0| c b c^{\dagger} b^{\dagger}[\bar{v} v][\bar{u} u] c b b^{\dagger} c^{\dagger}|0\rangle=-[\bar{v} v][\bar{u} u]
\end{aligned}
$$

QFT

Nucleon Scattering

$$
\psi \psi \rightarrow \psi \psi
$$

$$
\mathcal{A}=(-i g)^{2}\left[\frac{\left[\bar{u}^{s_{1}}\left(\mathbf{q}_{1}\right) \cdot u^{r_{1}}\left(\mathbf{p}_{1}\right)\right]\left[\bar{u}^{s_{2}}\left(\mathbf{q}_{2}\right) \cdot u^{r_{2}}\left(\mathbf{p}_{2}\right)\right]}{t-m^{2}+\not \chi €}-\frac{\left[\bar{u}^{s_{2}}\left(\mathbf{q}_{2}\right) \cdot u^{r_{1}}\left(\mathbf{p}_{1}\right)\right]\left[\bar{u}^{s_{1}}\left(\mathbf{q}_{1}\right) \cdot u^{r_{2}}\left(\mathbf{p}_{2}\right)\right]}{u-m^{2}+\not \nless}\right]
$$

- Notice relative minus sign
(cf. scalar Yukawa theory result in lecture 6)

QFT
 Nucleon-Meson Scattering

$\psi \bar{\psi} \rightarrow \phi \phi$

$$
\mathcal{A}=(-i g)^{2}\left[\frac{\bar{v}^{r_{2}}\left(\mathbf{p}_{2}\right)\left[\gamma \cdot\left(p_{1}-q_{1}\right)+M\right] u^{r_{1}}\left(\mathbf{p}_{1}\right)}{t-M^{2}+\chi<}+\frac{\bar{v}^{r_{2}}\left(\mathbf{p}_{2}\right)\left[\gamma \cdot\left(p_{1}-q_{2}\right)+M\right] u^{r_{1}}\left(\mathbf{p}_{1}\right)}{\left.u-M^{2}+\right\rangle}\right]
$$

- Here exchange particle is nucleon rather than meson
- Final states are mesons: no relative minus sign
(cf. scalar Yukawa theory result in lecture 6)

The photon field and QED

- In this course we have not quantised the vector field A_{μ} whose excitations are photons (quantisation proceeds in a similar way, but there are new subtleties)
- Its coupling to matter is determined by symmetry: demand that the global $\mathrm{U}(1)$ symmetry of our fermion Lagrangian survives for spacetime-dependent parameter

Find that this can be maintained if we change our partial derivative to a covariant derivative, linear in a vector field that is subject to gauge transformations

- Studied in the QED course

QFT Glimpse at vector field quantisation

- Canonical quantisation of vector field is subtle due to gauge invariance (easier to perform functional quantisation)
- Consider Maxwell equations
and note:

$$
\partial_{[\lambda} F_{\mu \nu]}=0 \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

- No time derivative in A_{0}
- Gauge invariance $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \lambda(x)$
- Expect 4-2 degrees of freedom (2 polarisations for photons)
- However, it's quite subtle to obtain in quantum theory:
- In Coulomb gauge, subtlety is in modified Poisson brackets due to constraint. D.o.f. manifest but no Lorentz invariance.
- Let's have a quick look at quantisation in Lorentz gauge.

Subtlety is in how to impose the gauge to identify d.o.f.

- Work in Lorentz gauge $\partial_{\mu} A^{\mu}=0$ were e.o.m. reads $\partial_{\mu} \partial^{\mu} A^{\nu}=0$
- Cheat by modifying action as:
giving the above e.o.m.

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

(Note wrong sign kinetic term for A^{0})

- Quantise and impose gauge condition later
- This leads to 4 polarisations $\varepsilon^{\lambda}(\mathbf{p})$ that can be chosen such that: $\varepsilon^{\kappa} \cdot \varepsilon^{\lambda}=\eta^{\kappa \lambda}$
(1 timelike +3 spacelike)
- For momentum $p \propto(1,0,0,1)$ choose:

$$
\begin{array}{ll}
\varepsilon^{0}=(1,0,0,0)^{T} & \varepsilon^{2}=(0,0,1,0)^{T} \\
\varepsilon^{1}=(0,1,0,0)^{T} & \varepsilon^{3}=(0,0,0,1)^{T}
\end{array}
$$

Physical polarisations are $\varepsilon^{1}, \varepsilon^{2}$. The others must somehow decouple.

- In fact, there is a serious problem with the timelike polarisation ε^{0}
Commutation relations

$$
\left[a^{\kappa}(\mathbf{p}), a^{\lambda \dagger}(\mathbf{q})\right]=-\eta^{\kappa \lambda}(2 \pi)^{3} \delta^{(3)}(\mathbf{p}-\mathbf{q})
$$

Notice - sign for $\kappa=\lambda=0$, so the state
$a^{0 \dagger}(\mathbf{q})|0\rangle$ has negative norm!

- At this point impose Lorentz gauge condition.

QFT Glimpse at vector field quantisation

But how to impose Lorentz gauge? It appears problematic:

- Cannot impose as an operator equation $\partial_{\mu} A^{\mu}=0$ (It's too strong: it violates the commutation relation for A^{0}, π^{0})
- Cannot impose on physical states as $\partial_{\mu} A^{\mu}|\Psi\rangle=0$ (Too strong: not even satisfied by the vacuum state!)
- Solution (Gupta-Bleuler) is to impose weaker condition on physical states:

$$
\partial^{\mu} A_{\mu}^{+}|\Psi\rangle=0
$$

(+ sign refers to the +ve freq part of A_{μ})
Implies $\left(a^{3}(\mathbf{p})-a^{0}(\mathbf{p})\right)|\phi\rangle=0$

- The unwanted timelike and longitudinal states combine into a null state of zero norm that decouples from the theory!

Take home message

- Developed picture in which particles arise naturally from perturbing quantum fields.
- QFT is not a theory, but a framework for constructing theories (that are local, causal and Lorentz invariant)
- However, it does have a handful of generic predictions:
- There are 2 types of particles: bosons and fermions
- All particles have their anti-particle
- Couplings run with energy scale
(renormalisation, not covered in this course)
- Forces are of the Yukawa/Coulomb type (take non-relativistic limit of propagator and interpret as a potential in non-rel QM)

In this course we have not covered:

- Quantization of vector field \& QED (see QED course)
- Path Integral Formulation of QFT
- Renormalization
- Non-abelian Gauge Theories

Related courses: QED \& the Standard Model Higgs Boson Physics

