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Lecture 2: Preliminaries (Quantum)
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QFT Noether’s Theorem

• Symmetry: transformation                    such that
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• Change in Lagrangian is 

• Euler-Lagrange equations give  

�� = X(�)

�L = @µF (�) (total derivative)

(for any variation, including                  )�� = X(�)

• Thus, there is conserved current:  
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QFT Noether’s Theorem

• Consider infinitesimal translation
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xµ ! xµ + ✏µ

�L = @µ

✓
@L

@(@µ�)
��

◆
• Change in Lagrangian is 

• Euler-Lagrange equations give  

• Under translation   �(x) ! �(x)� ✏µ@µ�(x)

NB Lagrangian has no explicit coordinate dependence   

for translational invariance

L(x) ! L(x)� ✏µ@µL(x)
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Noether’s Theorem

• For invariance of action for general       find 4 conserved 
currents 

✏µ

•         is the energy-momentum tensor which satisfiesTµ
⌫

• Translation symmetry gives rise to conservation of 
energy-momentum 

• Other symmetries give other conserved currents - e.g. 
Lorentz transformation and angular momentum

for translational invariance
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QFT Energy-Momentum Tensor

• For scalar field theory with 
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• Energy-momentum tensor

• 4 conserved quantities - energy and total momentum of 
field

• Find conserved energy and momentum 

• Identify            as the Hamiltonian density



• In quantum mechanics canonical quantization takes 
Hamiltonian formalism of classical mechanics to quantum 
theory 

– Dynamical variables such as position       and 
momentum       are promoted to operators 

– Poisson bracket structure of classical mechanics 
morphs into commutation relations 
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QFT Canonical Quantization
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• Recall Hamilton’s equations
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[x̂i, x̂j ] = [p̂i, p̂j ] = 0 [x̂i, p̂
j ] = i�ji
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Canonical Quantization

• In field theory will do the same for field            and 
momentum conjugate 

• Will first do this in the Schrödinger picture. In Heisenberg 
picture these will be equal time commutation relations 

�(x)
⇡(x)

• For observable

• Poisson bracket 

• Classical to quantum

• Commutation relations



• Physical states are encoded in state vector          in 
Hilbert space  H

hAi = h |Â| i
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State Vectors 

| i

• Probability to go from state 1 to state 2 

• Measurable quantities given by  expectation value of 
Hermitian operators 

• Hermiticity ensures expectation values are real 

• Eigenstates of an operator defined by 

• Eigenstates form a complete orthonormal basis - can 
expand arbitrary state vector in set of eigenstates 
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QFT Schrödinger Picture

• State vectors are functions of time, while operators are 
time independent 

• Time evolution described by Schrödinger equation
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• Time dependent state vector 
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ÔH , Ĥ
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QFT Heisenberg Picture
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• State vectors regarded as constant and operators carry 
time dependence  

• State vector defined as  

• Transformation should leave expectation values invariant  
• Define Heisenberg operator   

• Heisenberg equation of motion for operators   



• Split up Hamiltonian 
  

• Useful when we have small perturbations to a well-
understood Hamiltonian (later        will be Hamiltonian of 
free field theory) 

• Time dependence of operators governed by        and time 
dependence of states by 
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�iĤ0(t�t0)
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QFT Interaction Picture
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Ĥ = Ĥ0 + Ĥint

Ĥ0
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• Define
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iĤ0(t�t0)(Ĥint)Se
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Interaction Picture

• Interaction Hamiltonian in interaction picture

• Schrödinger equation for states 

• Later we will solve this equation but will have to deal with 
ordering issues 
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QFT Harmonic Oscillator

• General solution to Klein-Gordon equation is linear 
superposition of HOs, as we will see. Recall Quantum HO: 
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• Introduce new operators  

• Hamiltonian given by

• Find commutation relations  



• Rewrite Hamiltonian as  

• Excited states: repeated application of       on ground state
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QFT Harmonic Oscillator
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• Can construct complete basis of energy eigenstates 

• Using commutation relations

• Creation and annihilation operators, raising/lowering energy   

• Define ground state by â|0i = 0

• Zero-point energy Ĥ|0i = !

2
|0i



QFT Klein-Gordon Equation
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• Recall Lagrangian
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• Euler-Lagrange equation then gives Klein-Gordon 
equation

• Infinite number of HO’s with frequency                             
(labelled by    )       

E(k) =
p
k2 +m2

• Expand in Fourier modes                                           
and notice             satisfies:    
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QFT Canonical Quantization

• Analogous to quantum mechanics promote canonical 
variables to be operators acting on states 
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• Impose commutation relations (from Poisson brackets)

• 3 dimensional    -function as we are using fields

�(x) ! �̂(x) ⇡(x) ! ⇡̂(x)
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• Note we are in the Schrödinger picture: operators depend 
only on space, all time dependence is in the states 


