QFT

Dr Tasos Avgoustidis

(Notes based on Dr A. Moss' lectures)

Lecture 2: Preliminaries (Quantum)

Noether's Theorem

- Symmetry: transformation $\delta \phi=X(\phi)$ such that

$$
\delta \mathcal{L}=\partial_{\mu} F(\phi) \text { (total derivative) }
$$

- Change in Lagrangian is $\quad \delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)$
- Euler-Lagrange equations give $\delta \mathcal{L}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right)$ (for any variation, including $\delta \phi=X(\phi)$)
- Thus, there is conserved current:

$$
\partial_{\mu} j^{\mu}=0 \quad j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} X(\phi)-F^{\mu}(\phi)
$$

Noether's Theorem

- Consider infinitesimal translation $\quad x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}$
- Change in Lagrangian is $\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)$
- Euler-Lagrange equations give $\delta \mathcal{L}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right)$
- Under translation

$$
\begin{aligned}
& \phi(x) \rightarrow \phi(x)-\epsilon^{\mu} \partial_{\mu} \phi(x) \\
& \mathcal{L}(x) \rightarrow \mathcal{L}(x)-\epsilon^{\mu} \partial_{\mu} \mathcal{L}(x)
\end{aligned}
$$

NB Lagrangian has no explicit coordinate dependence

Noether's Theorem

for translational invariance

- For invariance of action for general ϵ^{μ} find 4 conserved currents

$$
\left(j^{\mu}\right)_{\nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi-\delta_{\nu}^{\mu} \mathcal{L} \equiv T_{\nu}^{\mu}
$$

- $T^{\mu}{ }_{\nu}$ is the energy-momentum tensor which satisfies

$$
\partial_{\mu} T_{\nu}^{\mu}=0
$$

- Translation symmetry gives rise to conservation of energy-momentum
- Other symmetries give other conserved currents - e.g. Lorentz transformation and angular momentum

QFT
 Energy-Momentum Tensor

- 4 conserved quantities - energy and total momentum of field

$$
E=\int d^{3} x T^{00} \quad P^{i}=\int d^{3} x T^{0 i}
$$

- Identify T^{00} as the Hamiltonian density
- For scalar field theory with $\mathcal{L}=\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}$
- Energy-momentum tensor $T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi-\eta^{\mu \nu} \mathcal{L}$
- Find conserved energy and momentum

$$
E=\frac{1}{2} \int d^{3} x\left[\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right] \quad P^{i}=\int d^{3} x \dot{\phi} \partial^{i} \phi
$$

Canonical Quantization

- In quantum mechanics canonical quantization takes Hamiltonian formalism of classical mechanics to quantum theory
- Dynamical variables such as position x_{i} and momentum p_{i} are promoted to operators
- Poisson bracket structure of classical mechanics morphs into commutation relations
- Recall Hamilton's equations $\frac{\partial H}{\partial x_{i}}=-\dot{p}^{i}, \quad \frac{\partial H}{\partial p^{i}}=\dot{x_{i}}$

Canonical Quantization

- For observable $\dot{\mathcal{O}}(x, p)=\frac{\partial \mathcal{O}}{\partial x_{i}} \frac{\partial H}{\partial p^{i}}-\frac{\partial \mathcal{O}}{\partial p^{i}} \frac{\partial H}{\partial x_{i}}=\{\mathcal{O}, H\}$
- Poisson bracket $\left\{x_{i}, x_{j}\right\}=\left\{p^{i}, p^{j}\right\}=0 \quad\left\{x_{i}, p^{j}\right\}=\delta_{i}^{j}$
- Classical to quantum $\{,\}_{\text {classical }} \rightarrow-i[,]_{\text {quantum }}$
- Commutation relations

$$
\left[\hat{x}_{i}, \hat{x}_{j}\right]=\left[\hat{p}^{i}, \hat{p}^{j}\right]=0 \quad\left[\hat{x}_{i}, \hat{p}^{j}\right]=i \delta_{i}^{j}
$$

- In field theory will do the same for field $\phi(x)$ and momentum conjugate $\pi(x)$
- Will first do this in the Schrödinger picture. In Heisenberg picture these will be equal time commutation relations

State Vectors

- Physical states are encoded in state vector $|\psi\rangle$ in Hilbert space \mathcal{H}
- Eigenstates of an operator defined by $\hat{A}|\psi\rangle=a|\psi\rangle$
- Measurable quantities given by expectation value of Hermitian operators

$$
\langle A\rangle=\langle\psi| \hat{A}|\psi\rangle
$$

- Hermiticity ensures expectation values are real
- Probability to go from state 1 to state $2\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}$
- Eigenstates form a complete orthonormal basis - can expand arbitrary state vector in set of eigenstates

Schrödinger Picture

- State vectors are functions of time, while operators are time independent
- Time evolution described by Schrödinger equation

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

- Time dependent state vector

$$
|\psi(t)\rangle=e^{-i \hat{H}\left(t-t_{0}\right)}\left|\psi\left(t_{0}\right)\right\rangle
$$

Heisenberg Picture

- State vectors regarded as constant and operators carry time dependence
- State vector defined as

$$
|\psi(t)\rangle_{S}=e^{-i \hat{H}\left(t-t_{0}\right)}\left|\psi\left(t_{0}\right)\right\rangle_{H}
$$

- Transformation should leave expectation values invariant
- Define Heisenberg operator

$$
\hat{O}_{H}(t)=e^{i \hat{H}\left(t-t_{0}\right)} \hat{O}_{S} e^{-i \hat{H}\left(t-t_{0}\right)}
$$

- Heisenberg equation of motion for operators

$$
i \frac{d \hat{O}_{H}(t)}{d t}=\left[\hat{O}_{H}, \hat{H}\right]
$$

Interaction Picture

- Split up Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{H}_{\text {int }}$
- Useful when we have small perturbations to a wellunderstood Hamiltonian (later \hat{H}_{0} will be Hamiltonian of free field theory)
- Time dependence of operators governed by \hat{H}_{0} and time dependence of states by $\hat{H}_{\text {int }}$
- Define

$$
\begin{aligned}
& |\psi(t)\rangle_{I}=e^{i \hat{H}_{0}\left(t-t_{0}\right)}|\psi(t)\rangle_{S} \\
& \hat{O}_{I}(t)=e^{i \hat{H}_{0}\left(t-t_{0}\right)} \hat{O}_{S} e^{-i \hat{H}_{0}\left(t-t_{0}\right)}
\end{aligned}
$$

Interaction Picture

- Interaction Hamiltonian in interaction picture

$$
\hat{H}_{I}(t) \equiv\left(\hat{H}_{\mathrm{int}}\right)_{I}(t)=e^{i \hat{H}_{0}\left(t-t_{0}\right)}\left(\hat{H}_{\mathrm{int}}\right)_{S} e^{-i \hat{H}_{0}\left(t-t_{0}\right)}
$$

- Schrödinger equation for states

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle_{S}=\hat{H}_{S}|\psi(t)\rangle_{S} \rightarrow i \frac{\partial}{\partial t}|\psi(t)\rangle_{I}=\hat{H}_{I}(t)|\psi(t)\rangle_{I}
$$

- Later we will solve this equation but will have to deal with ordering issues

Harmonic Oscillator

- General solution to Klein-Gordon equation is linear superposition of HOs, as we will see. Recall Quantum HO:
- Hamiltonian given by $\hat{H}=\frac{1}{2}\left(\frac{\hat{p}^{2}}{m}+m \omega^{2} \hat{x}^{2}\right)$
- Introduce new operators

$$
\hat{a}=\frac{1}{\sqrt{2}}\left(\sqrt{m \omega} \hat{x}+i \sqrt{\frac{1}{m \omega}} \hat{p}\right) \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left(\sqrt{m \omega} \hat{x}-i \sqrt{\frac{1}{m \omega}} \hat{p}\right)
$$

- Find commutation relations

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=1 \quad\left[\hat{H}, \hat{a}^{\dagger}\right]=\omega \hat{a}^{\dagger} \quad[\hat{H}, \hat{a}]=-\omega \hat{a}
$$

Harmonic Oscillator

- Rewrite Hamiltonian as $\hat{H}=\omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)$
- Can construct complete basis of energy eigenstates $|n\rangle$

$$
\hat{H}|n\rangle=E_{n}|n\rangle
$$

- Using commutation relations

$$
\hat{H} \hat{a}^{\dagger}|n\rangle=\left(E_{n}+\omega\right) \hat{a}^{\dagger}|n\rangle \quad \hat{H} \hat{a}|n\rangle=\left(E_{n}-\omega\right) \hat{a}|n\rangle
$$

- Creation and annihilation operators, raising/lowering energy
- Define ground state by $\hat{a}|0\rangle=0$
- Zero-point energy $\hat{H}|0\rangle=\frac{\omega}{2}|0\rangle$
- Excited states: repeated application of \hat{a}^{\dagger} on ground state

Klein-Gordon Equation

- Recall Lagrangian

$$
\mathcal{L}=\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

- Euler-Lagrange equation then gives Klein-Gordon equation

$$
\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=\left(\square+m^{2}\right) \phi=0
$$

- Expand in Fourier modes $\phi(\mathbf{x}, t)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{x}} \phi(\mathbf{k}, t)$ and notice $\phi(\mathbf{k}, t)$ satisfies:

$$
\left[\frac{\partial^{2}}{\partial t^{2}}+\left(\mathbf{k}^{2}+m^{2}\right)\right] \phi(\mathbf{k}, t)=0
$$

- Infinite number of HO's with frequency $E(\mathbf{k})=\sqrt{\mathbf{k}^{2}+m^{2}}$ (labelled by k)

Canonical Quantization

- Analogous to quantum mechanics promote canonical variables to be operators acting on states

$$
\phi(\mathbf{x}) \rightarrow \hat{\phi}(\mathbf{x}) \quad \pi(\mathbf{x}) \rightarrow \hat{\pi}(\mathbf{x})
$$

- Impose commutation relations (from Poisson brackets)

$$
\begin{aligned}
& {[\hat{\phi}(\mathbf{x}), \hat{\phi}(\mathbf{y})]=[\hat{\pi}(\mathbf{x}), \hat{\pi}(\mathbf{y})]=0} \\
& {[\hat{\phi}(\mathbf{x}), \hat{\pi}(\mathbf{y})]=i \delta^{3}(\mathbf{x}-\mathbf{y})}
\end{aligned}
$$

- 3 dimensional δ-function as we are using fields
- Note we are in the Schrödinger picture: operators depend only on space, all time dependence is in the states

