Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 2: Preliminaries (Quantum)




QFT Noether's Theorem

Symmetry: transformation ¢ = X (¢) such that
0L = 0,F(¢) (total derivative)

oL 0L
Change in Lagrangianis 0L = —030¢ + 0(0,9)

0¢ 0(0,.9)

Euler-Lagrange equations give 0L = 0,, (8(g£¢) 5q§)
(for any variation, including ¢ = X (¢)) :

Thus, there is conserved current:

0,0" =0 = G X(0) - PO
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QFT Noether's Theorem

for translational invariance

Consider infinitesimal translation x“ — gt + e

oL
Change in Lagrangianis oL = — d(0
g grang ¢ ¢ 5(0.0) (0n.9)
Euler-Lagrange equations give §L = 0 ( oL 5q§)
"\ 9(0,9)

Under translation o(z) — o(x) — €0, 0(x)
L(x) = L(z)— "0, L(x)

NB Lagrangian has no explicit coordinate dependence



QFT Noether’'s Theorem
for translational invariance

- For invariance of action for general ¢" find 4 conserved
currents
oL

(j'u)z/ — 8(8qu)

« TH  is the energy-momentum tensor which satisfies
0,TH", =0
« Translation symmetry gives rise to conservation of
energy-momentum

« Other symmetries give other conserved currents - e.g.
Lorentz transformation and angular momentum

o, —obL=T",



QFT Energy-Momentum Tensor

« 4 conserved quantities - energy and total momentum of
field
E = /d%TOO P! = /d% T

+ Identify 7°Y as the Hamiltonian density
1 1
» For scalar field theory with £ = §n“”8ugbé9yqb — §m2gb2

 Energy-momentum tensor TH*" = 0" 0" — n"' L

« Find conserved energy and momentum

E = %/d% 72+ (Ve)2 +m2¢?] P = /d?’l’(ﬁ@iﬁb
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QFT Canonical Quantization

* In quantum mechanics canonical quantization takes
Hamiltonian formalism of classical mechanics to quantum
theory

— Dynamical variables such as position Z; and
momentum P; are promoted to operators

— Poisson bracket structure of classical mechanics
morphs into commutation relations

- Recall Hamilton’s equations  9H — _pt OH — 5
5’:62- b ‘ ‘




QFT Canonical Quantization

00 0H 00 0H
Ox; Opt  Op' Ox;

For observable O(z,p) = ={0,H}

Poisson bracket {z;,z;} = {p",p’} =0 {z;,p’} =6

Classical to quantum {,}Classical — —1 [,]quamum

Commutation relations

- In field theory will do the same for field ¢(x) and
momentum conjugate 7 (x)

« Will first do this in the Schrddinger picture. In Heisenberg

picture these will be equal time commutation relations
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QFT State Vectors

Physical states are encoded in state vector W> in
Hilbert space H

Eigenstates of an operator defined by AW} — ah@

Measurable quantities given by expectation value of

Hermitian operators (A) = (| Aly)

Hermiticity ensures expectation values are real
Probability to go from state 1 to state 2 |(1)1|12)]°

Eigenstates form a complete orthonormal basis - can
expand arbitrary state vector in set of eigenstates
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QFT Schrodinger Picture

« State vectors are functions of time, while operators are
time independent

« Time evolution described by Schrodinger equation

0 A
i () = Hlv ()

« Time dependent state vector

() = e HE=10) |4h(t5))



QFT Heisenberg Picture

» State vectors regarded as constant and operators carry
time dependence

o State vector defined as

(1)) = e A0 (1))

* Transformation should leave expectation values invariant
« Define Heisenberg operator

OH(t) _ eiﬁ(t—to)ése—iﬁ(t—to)

« Heisenberg equation of motion for operators

12080 (6,1
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QFT Interaction Picture

« Split up Hamiltonian F] — ﬁo + ﬁint

» Useful when we have small perturbations to a well-
understood Hamiltonian (later Hy will be Hamiltonian of
free field theory)

* Time dependence of operators governed by f[o and time
dependence of states by H;,;

 Define A
p(t)); = e ol (1)) g

O (t) = oiHo(t—t0) O“Se—iﬁo(t_to)
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QFT Interaction Picture

Interaction Hamiltonian in interaction picture
Hi(t) = (Hin)1(t) = eiﬁo@_to)(ﬁint)ge_iﬁO(t_tO)

« Schrodinger equation for states

D (e)s = Hshi)s = i k) = ArOlp(0)s

« Later we will solve this equation but will have to deal with
ordering issues
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QFT Harmonic Oscillator

General solution to Klein-Gordon equation is linear
superposition of HOs, as we will see. Recall Quantum HO:

A2
Hamiltonian given by FH = % (p_ 4+ mw2§;2>
m

Introduce new operators

1 [ 1 1 [ 1

Find commutation relations

a,af] =1  [f.al] =wal [Ha] = —wi
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QFT Harmonic Oscillator

- 1
Rewrite Hamiltonianas H = w (d*& 4+ 5)

Can construct complete basis of energy eigenstates ‘n>
Hln) = Ep|n)

Using commutation relations

datin) = (E, +w)alln)  Haln) = (E, — w) aln)

Creation and annihilation operators, raising/lowering energy

Define ground state by a|0) = 0

Zero-point energy  H|0) = g]m

Excited states: repeated application of &T on ground state
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QFT Klein-Gordon Equation

1
Recall Lagrangian L= §n“”8ugb6,,gb —m 2

Euler-Lagrange equation then gives Klein-Gordon
equation 2
. 6’M0“’q§—|—m2gb:( —I—m)qb:()

d>k
Expand in Fourier modes ¢(x,t) = / (%)3 e™* o (k,t)
and notice ¢(k,t) satisfies:

{g—; + (k* + m2)} o(k,t) =0

Infinite number of HO’s with frequency E(k) = v/k2 + m?
(labelled by k)
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QFT Canonical Quantization

* Analogous to quantum mechanics promote canonical
variables to be operators acting on states

B(x) = d(x)  w(x) = 7(x)

« Impose commutation relations (from Poisson brackets)
$(x),0(y)| = [(x),7(y)] =0
(x), 7(y)| = i0°(x ~ )

- 3 dimensional ¢-function as we are using fields

* Note we are in the Schrédinger picture: operators depend
only on space, all time dependence is in the states
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