Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 4:

Free Fields - Causality, Feynman
Propagator, Complex Scalar




QFT Recap: n-particle states

Commutation relation for momentum [P, a'(k)] = ka' (k)
Consider multiple &' (k) acting on vacuum

Pal(ki)...a'(kn)|0) = (ki + ... kn)a (ki) ...af (kn)|O)

Interpret as n-particle state

ki,....ky)=a'(ky)...a"(kyn)|0)

Since a'(k) commute state is symmetric under
exchange of any two particles, e.qg.

‘kla k2> — ‘k27 k1>

Particles are bosons



QFT Recap: n-particle states

« Have a Hilbert space for each n-particle state. Sum of
these Hilbert spaces for all n is Fock space

d>k

« Define number operator N = / 2732 () ' (k)a(k)
* Gives number of bosons in particular state
N‘k17'°°7k]\7>_ 7kN>

Commutes with Hamiltonian [N, H] = 0

Particle number is conserved in free scalar field
theory - will not be the case in interacting theories
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QFT Causality

« So far we have imposed equal-time commutation
relations

B(x.1), 3y, )| = [7(x, ), 7(y, )] = 0
(x.1), 7y, )| = i0°(x — y)

« What about arbitrary space-time separations?



QFT Causality

* In order for our theory to be causal we require local
space-like separated operators to commute, i.e.

O1(x),02(y)] =0 for (2 — y)2 < 0

(x —y)? > 0, time-like
time 4 :

~— (z — y)? =0, light-like

Yy
(x — y)? < 0, space-like

space 5



QFT Causality

* This condition ensures measurement at x cannot effect
that at y if they are not causally connected

 Can show (leave [7(x),7(y)|] as exercise)

[qg(aj),fr(y)] — %/ (;Z:;:s (e—z’k-(x—y) _|_€ik-(x—y))

500060 = [ G (¢4 e o)

* These are c-number functions (classical numbers)
(but note this statement is only true in the free theory)

« Can show they vanish for space-like separations
(Chose t=0 and do a rotation or relabel p: first is a d-function, second is zero)
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QFT Propagators

« Compute the amplitude of particle created at y to
propagate to x. Define the propagator

D(z — y) = (0]$(2)d(y)|0) = / ( %)‘522 (k)e—ik-(x—y)

* Propagator decays outside light-cone but is non-
vanishing! Rewrite commutator

6(x), d(y)] = D(z —y) — D(y — z)

* Interpretation: Particle can travel in space-like direction
from y to x, but can also travel from x to y. The
amplitudes for these two processes cancel

(In fact one is a particle and the other an antiparticle but it is not obvious for real scalar)
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QFT Feynman Propagator

An important quantity in interacting theories is the
Feynman propagator

Ap(z —y) = (0]T(x)d(y)|0)

Here T stands for time ordering, such that all operators at
later times are placed to the left

o e@)dy), if 20 >y
T(x)b(y) = { A7) LI
P(y)e(x), iy >z
« Useful to turn this into a four-dimensional integral rather

than fixing E(k) = k2 + m2. Find:

d*k (0

Arlr =)= / T A




QFT Residue Theorem

e Let I' be anticlockwise closed contour. If f(z)is analytic
except for a finite number of singular points <; in the
interior of 1" then

/ f(2)dz = 2mi z”’: b;
I i

- Here b, is the residue of f(z) at point Z;. The residue
is defined as coefficient C1 of the Laurent expansion
around Z;




Residue Theorem

* For example

3 2 2 ? D

fz) = (2—1)2+z—i_z—|—i+z+3—2z’+z—|—1—|—2i

Res f(z)=2
=i

« Consider the contour e u
Res flay=i -~ _‘K Res f(z)=0

integral shown to the right ===+

=1

{ \
y \
| \h-- 7

/F f(2)dz = 2mi(2 4+ 0) = 4mi R N

Res f(z)=-2
I=-i
°
Res f(z)=5
I=-1-2i
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QFT Feynman Propagator

e From k?>—m?=(k"?-k*-—m?=(k")? - E(k)? then

Bk [ dkO ; oo o
A _ — —ik” (" —y") ik (x—y)
(@ =y) /(2@3/ o (0 — B(k)) (K0 + E(k))* ¢

+ Integrating over k" find poles at k% = +E(k)
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QFT Feynman Propagator

e Case when z' > °

— Close contour in lower half of plane (integrand
vanishes at £’ — —ico)

—Pole at k= +E(k)

— Residue of 12 _1m2 IS +%<k) |
— Result for line integral is — 2 (minus from
. 2F (k)
clockwise contour)
— Propagator
AF(-Z’ ;CJ y) = / e = D(z —y)
(2m)32E(k)
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QFT Feynman Propagator

e Case when " > 2’

— Close contour in upper half of plane (integrand
vanishes at £’ — i )
—Pole at k’ = —E(k)

. . 1
— Residue iIs now ———

 2E(k)

— Result is —2]257&) (minus from pole)

— Propagator 7B |

Ap(r —y) = / (ZW)BZE(k)e—zk-(y—a:) — D(y — z)
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QFT Feynman Propagator

* There is an equivalent way of writing the Feynman
propagator
d*k ) .
A ) — —ik-(z—y)
F(r —y) / (2m)4 k2 — m?2 + iee

 This shifts the poles slightly off the real axis, so we can
integrate over the real k” component
Im (%)

Re(k")
I —ig

Y
+

« Equivalent to contour integration y



QFT Complex Scalar Fields

« Consider complex scalar field with Lagrangian
L = 0,1+ 0" — Mo
+ Invariant under global transformation ) — e'*)
« Associated Noether current j* = i(0"y™)y — ip™(0H )
- Treat 1) and 1)™ as independent variables. Equations of

motion
0,01 + M1 = 0
8N8/‘¢* T M2¢* =0
« Classical field momentum 7= — =%

Y
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QFT Complex Scalar Fields

» Expand field operator in terms of plane waves
A d3k | A |
o AT ik-x —ik-x
Y(x) = / (27)325 (K) {c (k)e™* + b(k)e }

« Equal-time commutation relations

D(x,1), 7y, )| =6’ (x~y)  (same for ), 7)

D). 71 ()| = [P0 By D)| = [P0 6 (v, 0)] = =0
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QFT Complex Scalar Fields

« Can show these are equivalent to (all other combinations
commute)

[13<k1), ?)T(kz)} = [e(k1), ¢ (k2)] = (27)°2E(k1)6° (k1 — ka)

* Quantizing complex scalar field leads to two creation
operators - interpreted as particles and anti-particles,
both of mass M and spin-zero

« After normal ordering conserved charge

0= [ Grpas (¢ et — B )ik

. [FI, Q] — () ensuring charge is conserved in quantum

theory (number of particles minus anti-particles)
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