QFT

Dr Tasos Avgoustidis

Lecture 4:
Free Fields - Causality, Feynman Propagator, Complex Scalar

Recap: n-particle states

- Commutation relation for momentum $\left[\hat{\mathbf{P}}, \hat{a}^{\dagger}(\mathbf{k})\right]=\mathbf{k} \hat{a}^{\dagger}(\mathbf{k})$
- Consider multiple $\hat{a}^{\dagger}(\mathbf{k})$ acting on vacuum

$$
\hat{\mathbf{P}} \hat{a}^{\dagger}\left(\mathbf{k}_{1}\right) \ldots \hat{a}^{\dagger}\left(\mathbf{k}_{N}\right)|0\rangle=\left(\mathbf{k}_{1}+\ldots \mathbf{k}_{N}\right) \hat{a}^{\dagger}\left(\mathbf{k}_{1}\right) \ldots \hat{a}^{\dagger}\left(\mathbf{k}_{N}\right)|0\rangle
$$

- Interpret as n-particle state

$$
\left|\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right\rangle=\hat{a}^{\dagger}\left(\mathbf{k}_{1}\right) \ldots \hat{a}^{\dagger}\left(\mathbf{k}_{N}\right)|0\rangle
$$

- Since $\hat{a}^{\dagger}(\mathbf{k})$ commute state is symmetric under exchange of any two particles, e.g.

$$
\left|\mathbf{k}_{1}, \mathbf{k}_{2}\right\rangle=\left|\mathbf{k}_{2}, \mathbf{k}_{1}\right\rangle
$$

- Particles are bosons

Recap: n-particle states

- Have a Hilbert space for each n-particle state. Sum of these Hilbert spaces for all n is Fock space
- Define number operator $\hat{N}=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} \hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k})$
- Gives number of bosons in particular state

$$
\hat{N}\left|\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right\rangle=n\left|\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}\right\rangle
$$

- Commutes with Hamiltonian $[\hat{N}, \hat{H}]=0$
- Particle number is conserved in free scalar field theory - will not be the case in interacting theories

Causality

- So far we have imposed equal-time commutation relations

$$
\begin{gathered}
{[\hat{\phi}(\mathbf{x}, t), \hat{\phi}(\mathbf{y}, t)]=[\hat{\pi}(\mathbf{x}, t), \hat{\pi}(\mathbf{y}, t)]=0} \\
{[\hat{\phi}(\mathbf{x}, t), \hat{\pi}(\mathbf{y}, t)]=i \delta^{3}(\mathbf{x}-\mathbf{y})}
\end{gathered}
$$

- What about arbitrary space-time separations?

Causality

- In order for our theory to be causal we require local space-like separated operators to commute, i.e.

$$
\left[\mathcal{O}_{1}(x), \mathcal{O}_{2}(y)\right]=0 \quad \text { for } \quad(x-y)^{2}<0
$$

Causality

- This condition ensures measurement at x cannot effect that at y if they are not causally connected
- Can show (leave $[\hat{\pi}(x), \hat{\pi}(y)]$ as exercise)

$$
\begin{gathered}
{[\hat{\phi}(x), \hat{\pi}(y)]=\frac{i}{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left(e^{-i k \cdot(x-y)}+e^{i k \cdot(x-y)}\right)} \\
{[\hat{\phi}(x), \hat{\phi}(y)]=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})}\left(e^{-i k \cdot(x-y)}-e^{i k \cdot(x-y)}\right)}
\end{gathered}
$$

- These are c-number functions (classical numbers) (but note this statement is only true in the free theory)
- Can show they vanish for space-like separations
(Chose $t=0$ and do a rotation or relabel p : first is a δ-function, second is zero)

Propagators

- Compute the amplitude of particle created at y to propagate to x. Define the propagator

$$
D(x-y) \equiv\langle 0| \hat{\phi}(x) \hat{\phi}(y)|0\rangle=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} e^{-i k \cdot(x-y)}
$$

- Propagator decays outside light-cone but is nonvanishing! Rewrite commutator

$$
[\hat{\phi}(x), \hat{\phi}(y)]=D(x-y)-D(y-x)
$$

- Interpretation: Particle can travel in space-like direction from y to x, but can also travel from x to y. The amplitudes for these two processes cancel
(In fact one is a particle and the other an antiparticle but it is not obvious for real scalar)

QFT

Feynman Propagator

- An important quantity in interacting theories is the Feynman propagator

$$
\Delta_{F}(x-y)=\langle 0| T \hat{\phi}(x) \hat{\phi}(y)|0\rangle
$$

- Here T stands for time ordering, such that all operators at later times are placed to the left

$$
T \hat{\phi}(x) \hat{\phi}(y)= \begin{cases}\hat{\phi}(x) \hat{\phi}(y), & \text { if } x^{0}>y^{0} \\ \hat{\phi}(y) \hat{\phi}(x), & \text { if } y^{0}>x^{0}\end{cases}
$$

- Useful to turn this into a four-dimensional integral rather than fixing $E(\mathbf{k})=\sqrt{\mathbf{k}^{2}+m^{2}}$. Find:

$$
\Delta_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}} e^{-i k \cdot(x-y)}
$$

Residue Theorem

- Let Γ be anticlockwise closed contour. If $f(z)$ is analytic except for a finite number of singular points z_{i} in the interior of Γ then

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{i}^{n} b_{i}
$$

- Here b_{i} is the residue of $f(z)$ at point z_{i}. The residue is defined as coefficient c_{1} of the Laurent expansion around z_{i}

$$
f(z)=\sum_{n=0}^{\infty}\left(z-z_{i}\right)^{n}+\frac{c_{1}}{z-z_{i}}+\frac{c_{2}}{\left(z-z_{i}\right)^{2}}+\ldots
$$

Residue Theorem

- For example

$$
f(z)=\frac{3}{(z-1)^{2}}+\frac{2}{z-i}-\frac{2}{z+i}+\frac{i}{z+3-2 i}+\frac{5}{z+1+2 i}
$$

- Consider the contour integral shown to the right

$$
\int_{\Gamma} f(z) d z=2 \pi i(2+0)=4 \pi i
$$

$$
\bullet_{z=-1-2 i} f(z)=5
$$

Feynman Propagator

- From $k^{2}-m^{2}=\left(k^{0}\right)^{2}-\mathbf{k}^{2}-m^{2}=\left(k^{0}\right)^{2}-E(\mathbf{k})^{2}$ then

$$
\Delta_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d k^{0}}{2 \pi} \frac{i}{\left(k^{0}-E(\mathbf{k})\right)\left(k^{0}+E(\mathbf{k})\right)} e^{-i k^{0} \cdot\left(x^{0}-y^{0}\right)} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})}
$$

- Integrating over k^{0} find poles at $k^{0}= \pm E(\mathbf{k})$

Feynman Propagator

- Case when $x^{0}>y^{0}$
- Close contour in lower half of plane (integrand vanishes at $\left.k^{0} \rightarrow-i \infty\right)$
- Pole at $k^{0}=+E(\mathbf{k})$
- Residue of $\frac{1}{k^{2}-m^{2}}$ is $+\frac{1}{2 E(\mathbf{k})}$
- Result for line integral is $-\frac{2 \pi i}{2 E(\mathbf{k})}$ (minus from clockwise contour)
- Propagator

$$
\Delta_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} e^{-i k \cdot(x-y)}=D(x-y)
$$

Feynman Propagator

- Case when $y^{0}>x^{0}$
- Close contour in upper half of plane (integrand vanishes at $k^{0} \rightarrow i \infty$)
- Pole at $k^{0}=-E(\mathbf{k})$
- Residue is now $-\frac{1}{2 E(\mathbf{k})}$
- Result is $-\frac{2 \pi i}{2 E(\mathbf{k})}$ (minus from pole)
- Propagator
$\Delta_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} e^{-i k \cdot(y-x)}=D(y-x)$

Feynman Propagator

- There is an equivalent way of writing the Feynman propagator

$$
\Delta_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}
$$

- This shifts the poles slightly off the real axis, so we can integrate over the real k^{0} component

- Equivalent to contour integration

Complex Scalar Fields

- Consider complex scalar field with Lagrangian

$$
\mathcal{L}=\partial_{\mu} \psi^{\star} \partial^{\mu} \psi-M^{2} \psi^{\star} \psi
$$

- Invariant under global transformation $\psi \rightarrow e^{i \alpha} \psi$
- Associated Noether current $j^{\mu}=i\left(\partial^{\mu} \psi^{\star}\right) \psi-i \psi^{\star}\left(\partial^{\mu} \psi\right)$
- Treat ψ and ψ^{\star} as independent variables. Equations of motion

$$
\begin{aligned}
& \partial_{\mu} \partial^{\mu} \psi+M^{2} \psi=0 \\
& \partial_{\mu} \partial^{\mu} \psi^{\star}+M^{2} \psi^{\star}=0
\end{aligned}
$$

- Classical field momentum $\pi=\frac{\partial \mathcal{L}}{\partial \dot{\psi}}=\dot{\psi}^{\star}$

Complex Scalar Fields

- Expand field operator in terms of plane waves

$$
\begin{aligned}
\hat{\psi}(x) & =\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})}\left[\hat{c}^{\dagger}(\mathbf{k}) e^{i k \cdot x}+\hat{b}(\mathbf{k}) e^{-i k \cdot x}\right] \\
\hat{\psi}^{\dagger}(x) & =\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})}\left[\hat{c}(\mathbf{k}) e^{-i k \cdot x}+\hat{b}^{\dagger}(\mathbf{k}) e^{i k \cdot x}\right]
\end{aligned}
$$

- Equal-time commutation relations

$$
\begin{gathered}
{[\hat{\psi}(\mathbf{x}, t), \hat{\pi}(\mathbf{y}, t)]=i \delta^{3}(\mathbf{x}-\mathbf{y}) \quad \text { (same for } \hat{\psi}^{\dagger}, \hat{\pi}^{\dagger} \text {) }} \\
{\left[\hat{\psi}(\mathbf{x}, t), \hat{\pi}^{\dagger}(\mathbf{y}, t)\right]=[\hat{\psi}(\mathbf{x}, t), \hat{\psi}(\mathbf{y}, t)]=\left[\hat{\psi}(\mathbf{x}, t), \hat{\psi}^{\dagger}(\mathbf{y}, t)\right]=\ldots=0}
\end{gathered}
$$

Complex Scalar Fields

- Can show these are equivalent to (all other combinations commute)

$$
\left[\hat{b}\left(\mathbf{k}_{\mathbf{1}}\right), \hat{b}^{\dagger}\left(\mathbf{k}_{\mathbf{2}}\right)\right]=\left[\hat{c}\left(\mathbf{k}_{\mathbf{1}}\right), \hat{c}^{\dagger}\left(\mathbf{k}_{\mathbf{2}}\right)\right]=(2 \pi)^{3} 2 E\left(\mathbf{k}_{\mathbf{1}}\right) \delta^{3}\left(\mathbf{k}_{\mathbf{1}}-\mathbf{k}_{\mathbf{2}}\right)
$$

- Quantizing complex scalar field leads to two creation operators - interpreted as particles and anti-particles, both of mass M and spin-zero
- After normal ordering conserved charge

$$
\hat{Q}=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})}\left(\hat{c}^{\dagger}(\mathbf{k}) \hat{c}(\mathbf{k})-\hat{b}^{\dagger}(\mathbf{k}) \hat{b}(\mathbf{k})\right)
$$

- $[\hat{H}, \hat{Q}]=0$ ensuring charge is conserved in quantum theory (number of particles minus anti-particles)

