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Lecture 4:  
Free Fields - Causality, Feynman 

Propagator, Complex Scalar  



• Consider multiple           acting on vacuum

P̂ â†(k1) . . . â
†(kN )|0i = (k1 + . . .kN )â†(k1) . . . â

†(kN )|0i

â†(k)

|k1,k2i = |k2,k1i

|k1, . . . ,kN i = â†(k1) . . . â
†(kN )|0i

QFT Recap: n-particle states

• Commutation relation for momentum
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[P̂, â†(k)] = k â†(k)

• Interpret as n-particle state 

• Since           commute state is symmetric under 
exchange of any two particles, e.g.

â†(k)

• Particles are bosons



N̂ |k1, . . . ,kN i = n|k1, . . . ,kN i

[N̂ , Ĥ] = 0

QFT Recap: n-particle states
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• Define number operator 

• Gives number of bosons in particular state

• Commutes with Hamiltonian 

• Particle number is conserved in free scalar field 
theory - will not be the case in interacting theories 

N̂ =

Z
d3k

(2⇡)32E(k)
â†(k)â(k)

• Have a Hilbert space for each n-particle state. Sum of 
these Hilbert spaces for all n is Fock space 



QFT Causality

• So far we have imposed equal-time commutation 
relations
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h
�̂(x, t), �̂(y, t)

i
= [⇡̂(x, t), ⇡̂(y, t)] = 0

h
�̂(x, t), ⇡̂(y, t)

i
= i�3(x� y)

• What about arbitrary space-time separations? 



[O1(x),O2(y)] = 0 (x� y)2 < 0

QFT

• In order for our theory to be causal we require local 
space-like separated operators to commute, i.e.
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Causality

for

y

space

time

(x − y)2 < 0, space-like

(x − y)2 > 0, time-like

(x − y)2 = 0, light-like

Figure 3: The light cone about y. Events occurring at points x and y are said to be
time-like (space-like) if x is inside (outside) the light cone about y.

a finite interval |t′ − t|. It also vanishes for t′ = t, as long as x ̸= y. Only if the fields
are evaluated at an equal space-time point can they affect each other, which leads to
the equal-time commutation relations above. They can also affect each other everywhere
within the light cone, i.e. for time-like intervals. It is not hard to show that in this case

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] = 0, for (x − y)2 > 0

[
φ̂(x), π̂(y)

]
=

i

2

∫
d3p

(2π)3

(
eip·(x−y) + e−ip·(x−y)

)
. (3.5)

3.3 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for
operators. For its solution we simply promote the classical plane wave solution, Eq. (2.25),
to operator status,

φ̂(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xâ†(k) + e−ik·xâ(k)

)
. (3.6)

Note that the complex conjugation of the Fourier coefficient turned into hermitian con-
jugation for an operator.

Let us now solve for the operator coefficients of the positive and negative energy
solutions. In order to do so, we invert the Fourier integrals for the field and its time
derivative,

∫
d3x φ̂(x, t)eikx =

1

2E

[
â(k) + â†(k)e2 ik0x0

]
, (3.7)

∫
d3x ˙̂φ(x, t)eikx = − i

2

[
â(k) − â†(k)e2 ik0x0

]
, (3.8)

and then build the linear combination iE(k)(3.7)−(3.8) to find
∫

d3x
[
iE(k)φ̂(x, t) − ˙̂φ(x, t)

]
eikx = iâ(k), (3.9)



• Can show they vanish for space-like separations                                             

• Can show (leave                       as  exercise)

[�̂(x), ⇡̂(y)] =
i

2

Z
d3k

(2⇡)3

⇣
e�ik·(x�y) + eik·(x�y)

⌘

[�̂(x), �̂(y)] =

Z
d3k

(2⇡)32E(k)

⇣
e�ik·(x�y) � eik·(x�y)

⌘

[⇡̂(x), ⇡̂(y)]

QFT
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Causality

• These are c-number functions (classical numbers) 

• This condition ensures measurement at x cannot effect              
that at y if they are not causally connected

(Chose t=0 and do a rotation or relabel p: first is a δ-function, second is zero) 

(but note this statement is only true in the free theory) 



D(x� y) ⌘ h0|�̂(x)�̂(y)|0i =
Z

d3k

(2⇡)32E(k)
e�ik·(x�y)

[�̂(x), �̂(y)] = D(x� y)�D(y � x)

QFT
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Propagators

• Compute the amplitude of particle created at y to 
propagate to x. Define the propagator

• Propagator decays outside light-cone but is non-
vanishing! Rewrite commutator 

• Interpretation: Particle can travel in space-like direction 
from y to x, but can also travel from x to y. The 
amplitudes for these two processes cancel

(In fact one is a particle and the other an antiparticle but it is not obvious for real scalar) 



�F (x� y) = h0|T �̂(x)�̂(y)|0i

QFT Feynman Propagator
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• An important quantity in interacting theories is the 
Feynman propagator

• Here T stands for time ordering, such that all operators at 
later times are placed to the left

Lecture equations

Adam Moss
(Dated: February 13, 2012)

Ĥ =
1

8

Z
d
3
x d

3
k d

3
q

(2⇡)6E(k)E(q)
⇥ (1)

E(k)E(q)
⇥
�(â†(k)eik·x � â(k)e�ik·x)(â†(q)eiq·x � â(q)e�iq·x)

⇤
(2)

⇥
(�ik â

†(k)eik·x + ik â(k)e�ik·x)(�iq â
†(q)eiq·x + iq â(q)e�iq·x)

⇤
(3)

m
2
⇥
(â†(k)eik·x + â(k)e�ik·x)(â†(q)eiq·x + â(q)e�iq·x)

⇤
(4)

Ĥ =
1

8

Z
d
3
k

(2⇡)3E(k)2
⇥ (5)

h
(�E(k)2 + k2 +m

2)(â†(k)â†(�k)e2iE(k)t + â(k)â(�k)e�2iE(k)t)
i

(6)
⇥
(E(k)2 + k2 +m

2)(â†(k)â(k) + â(k)â†(k))
⇤

(7)

Ĥ =
1

4

Z
d
3
k

(2⇡)3
(â†(k)â(k) + â(k)â†(k)) (8)

T �̂(x)�̂(y) =

(
�̂(x)�̂(y), if x0

> y
0

�̂(y)�̂(x), if y0 > x
0 (9)

• Useful to turn this into a four-dimensional integral rather 
than fixing                               . Find: E(k) =

p
k2 +m2

�F (x� y) =

Z
d4k

(2⇡)4
i

k2 �m2
e�ik·(x�y)



• Here       is the residue of         at point      . The residue 
is defined as coefficient       of the Laurent expansion 
around 

• Let      be anticlockwise closed contour. If        is analytic 
except for a finite number of singular points       in the 
interior of       then

� f(z)
zi

Z

�
f(z)dz = 2⇡i

nX

i

bi

bi
c1

f(z) =
1X

n=0

(z � zi)
n +

c1
z � zi

+
c2

(z � zi)2
+ . . .

QFT Residue Theorem
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�

f(z) zi

zi



f(z) =
3

(z � 1)2
+

2

z � i
� 2

z + i
+

i

z + 3� 2i
+

5

z + 1 + 2i

Z

�
f(z)dz = 2⇡i(2 + 0) = 4⇡i

QFT
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Residue Theorem

• For example 

• Consider the contour 
integral shown to the right



• Integrating over        find poles at 

k2 �m2 = (k0)2 � k2 �m2 = (k0)2 � E(k)2

k0 k0 = ±E(k)

�F (x� y) =

Z
d3k

(2⇡)3

Z
dk0

2⇡

i

(k0 � E(k))(k0 + E(k))
e�ik0·(x0�y0)eik·(x�y)

QFT
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Feynman Propagator

• From                                                              then

where T stands for time ordering, placing all operators evaluated at later times to the
left so,

Tφ(x)φ(y) =

{

φ(x)φ(y) x0 > y0

φ(y)φ(x) y0 > x0
(2.94)

Claim: There is a useful way of writing the Feynman propagator in terms of a 4-

momentum integral.

∆F (x − y) =

∫

d4p

(2π)4

i

p2 − m2
e−ip·(x−y) (2.95)

Notice that this is the first time in this course that we’ve integrated over 4-momentum.
Until now, we integrated only over 3-momentum, with p0 fixed by the mass-shell con-

dition to be p0 = Ep⃗. In the expression (2.95) for ∆F , we have no such condition on
p0. However, as it stands this integral is ill-defined because, for each value of p⃗, the

denominator p2−m2 = (p0)2− p⃗ 2−m2 produces a pole when p0 = ±Ep⃗ = ±
√

p⃗ 2 + m2.
We need a prescription for avoiding these singularities in the p0 integral. To get the

Feynman propagator, we must choose the contour to be

Im(p )

Re(p )Ep−
E+ p

0

0

Figure 5: The contour for the Feynman propagator.

Proof:

1

p2 − m2
=

1

(p0)2 − E2
p⃗

=
1

(p0 − Ep⃗)(p0 + Ep⃗)
(2.96)

so the residue of the pole at p0 = ±Ep⃗ is ±1/2Ep⃗. When x0 > y0, we close the contour
in the lower half plane, where p0 → −i∞, ensuring that the integrand vanishes since

e−ip0(x0−y0) → 0. The integral over p0 then picks up the residue at p0 = +Ep⃗ which
is −2πi/2Ep⃗ where the minus sign arises because we took a clockwise contour. Hence

when x0 > y0 we have

∆F (x − y) =

∫

d3p

(2π)4

−2πi

2Ep⃗
i e−iEp⃗(x0−y0)+ip⃗·(x⃗−y⃗)

– 39 –

+E(k)

Re(k0)

Im(k0)

�E(k)



• Case when  
– Close contour in lower half of plane (integrand 

vanishes at                 )  
– Pole at  

– Residue of             is 

– Result for line integral is                (minus from 
clockwise contour) 

– Propagator 

� 2⇡i

2E(k)

k0 = +E(k)

k0 ! �i1

�F (x� y) =

Z
d3k

(2⇡)32E(k)
e�ik·(x�y) = D(x� y)

QFT
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Feynman Propagator

x0 > y0

+
1

2E(k)

1

k2 �m2



• Case when  
– Close contour in upper half of plane (integrand 

vanishes at                 )  
– Pole at 

  

– Residue is now  

– Result is                (minus from pole) 

– Propagator 

� 2⇡i

2E(k)

y0 > x0

k0 ! i1

k0 = �E(k)

�F (x� y) =

Z
d3k

(2⇡)32E(k)
e�ik·(y�x) = D(y � x)

QFT
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Feynman Propagator

� 1

2E(k)



• This shifts the poles slightly off the real axis, so we can 
integrate over the real        component

�F (x� y) =

Z
d4k

(2⇡)4
i

k2 �m2 + i✏
e�ik·(x�y)

k0

QFT

• There is an equivalent way of writing the Feynman 
propagator 
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Feynman Propagator

• Equivalent to contour integration

=

∫

d3p

(2π)3

1

2Ep⃗
e−ip·(x−y) = D(x − y) (2.97)

which is indeed the Feynman propagator for x0 > y0. In contrast, when y0 > x0, we

close the contour in an anti-clockwise direction in the upper half plane to get,

∆F (x − y) =

∫

d3p

(2π)4

2πi

(−2Ep⃗)
i e+iEp⃗(x0−y0)+ip⃗·(x⃗−y⃗)

=

∫

d3p

(2π)3

1

2Ep⃗
e−iEp⃗(y0−x0)−ip⃗·(y⃗−x⃗)

=

∫

d3p

(2π)3

1

2Ep⃗
e−ip·(y−x) = D(y − x) (2.98)

where to go to from the second line to the third, we have flipped the sign of p⃗ which

is valid since we integrate over d3p and all other quantities depend only on p⃗ 2. Once
again we reproduce the Feynman propagator. !

Instead of specifying the contour, we may instead write Im(p )0

+ iε

iε−

Re(p )0

Figure 6:

the Feynman propagator as

∆F (x − y) =

∫

d4p

(2π)4

ie−ip·(x−y)

p2 − m2 + iϵ
(2.99)

with ϵ > 0, and infinitesimal. This has the effect of shifting
the poles slightly off the real axis, so the integral along the
real p0 axis is equivalent to the contour shown in Figure 5.

This way of writing the propagator is, for obvious reasons,
called the “iϵ prescription”.

2.7.2 Green’s Functions

There is another avatar of the propagator: it is a Green’s function for the Klein-Gordon
operator. If we stay away from the singularities, we have

(∂2
t −∇2 + m2)∆F (x − y) =

∫

d4p

(2π)4

i

p2 − m2
(−p2 + m2) e−ip·(x−y)

= −i

∫

d4p

(2π)4
e−ip·(x−y)

= −i δ(4)(x − y) (2.100)

Note that we didn’t make use of the contour anywhere in this derivation. For some
purposes it is also useful to pick other contours which also give rise to Green’s functions.

– 40 –

Im(k0)

Re(k0)



• Associated Noether current
• Invariant under global transformation

• Treat      and       as independent variables. Equations of 
motion

L = @µ 
?@µ �M2 ? 

 ! ei↵ 
jµ = i(@µ ?) � i ?(@µ )

@µ@
µ +M2 = 0

@µ@
µ ? +M2 ? = 0

  ?

⇡ =
@L
@ ̇

=  ̇?

QFT Complex Scalar Fields

• Consider complex scalar field with Lagrangian
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• Classical field momentum 



h
 ̂(x, t), ⇡̂(y, t)

i
= i�3(x� y)

h
 ̂(x, t), ⇡̂†(y, t)

i
=

h
 ̂(x, t),  ̂(y, t)

i
=

h
 ̂(x, t),  ̂†(y, t)

i
= . . . = 0

 ̂(x) =

Z
d3k

(2⇡)32E(k)

h
ĉ†(k)eik·x + b̂(k)e�ik·x

i

 ̂†(x) =

Z
d3k

(2⇡)32E(k)

h
ĉ(k)e�ik·x + b̂†(k)eik·x

i

QFT

• Expand field operator in terms of plane waves 
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Complex Scalar Fields

• Equal-time commutation relations

(same for     ,     ) ̂† ⇡̂†



h
b̂(k1), b̂

†(k2)
i
=

⇥
ĉ(k1), ĉ

†(k2)
⇤
= (2⇡)32E(k1)�

3(k1 � k2)

Q̂ =

Z
d3k

(2⇡)32E(k)

⇣
ĉ†(k)ĉ(k)� b̂†(k)b̂(k)

⌘

QFT

• Can show these are equivalent to (all other combinations 
commute)
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Complex Scalar Fields

• Quantizing complex scalar field leads to two creation 
operators - interpreted as particles and anti-particles, 
both of mass M and spin-zero

• After normal ordering conserved charge

•                      ensuring charge is conserved in quantum 
theory (number of particles minus anti-particles)
[Ĥ, Q̂] = 0


