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Lecture 5: Interacting Fields
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Interacting Fields

• Will always discuss quantized fields - drop the hats off 
operators 

• Will consider small perturbations to free theory 
Lagrangian 

!2

L = L0 + LI

• Hamiltonian density of interaction

• E.g. real scalar field

• What conditions do we require on         so the 
additional terms are small perturbations?



QFT

•                          : Dimensionless parameter is       . These 
terms are called marginal  and are important if  

•                          : Dimensionless parameter is           . 
These terms are called relevant since they are most 
important at low energies. Since E>m, just need λ<m.   

n = 3 [�3] = 1 �3/E

n = 4 [�4] = 0 �4
�4 ⇠ O(1)

n � 5 [�n] < 0 �nE
n�4

Interacting Fields

• Dimensional analysis leads to 
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[L] = 4 [�] = 1 [m] = 1 [�n] = 4� n

•                          : Dimensionless parameter is                . 
These terms are called irrelevant and are important at 
high energies 



QFT Interacting Fields

• Irrelevant couplings can cause problems at high energies 
- lead to non-renormalizable theories  

• Doesn’t mean quantum theory is useless, but it is 
incomplete above some energy scale 

• Theory still perfectly good as an Effective Field Theory at 
low energies - decoupling 

• We will only consider theories with relevant/marginal 
couplings and which are weakly interacting 
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QFT

HI =
�

4!
�4 � << 1

[H,N ] 6= 0

theory

• Lagrangian and interaction Hamiltonian: 
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L =
1

2
@µ�@

µ�� 1

2
m2�2 � �
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• Interaction term contains:  
                                      ,                                 , etc 
    and so can create and destroy particles 
  
• Particle number is no longer conserved 

a†(k)a†(k)a†(k)a†(k) a†(k)a†(k)a†(k)a(k)



• Individual particle numbers not conserved 

• Symmetry ensuring number of       particles minus   
    anti-particles (denoted      ) is conserved 

QFT

L =
1

2
@µ�@

µ�+ @µ 
?@µ � 1

2
m2�2 �M2 ? � g ? �

HI = g ? � g << M,m

 
 ̄

Scalar Yukawa Theory

• Lagrangian and interaction Hamiltonian: 
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• Since it is an operator there are ordering issues 
(apparent when expanding the exponential in powers   
of           )

• Recall in interaction picture

QFT

• If             were a function 

• Write solution in terms of unitary time evolution operator 
such that                                          and

Dyson’s Formula

i
@

@t
| (t)iI = HI(t)| (t)iI

| (t)iI = U(t, t0)| (t0)iI

U(t1, t2)U(t2, t3) = U(t1, t3) U(t, t) = 1

i
dU

dt
= HI(t)U

U(t, t0) = exp

✓
�i

Z t

t0

HI(t
0)dt0

◆
HI(t)
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• Requires that 

HI(t)



• Still depends on evolution operator. Substitute new 
expression into integrand (                  )

• To solve integrate time evolution equation

QFT

U(t, t0) = 1� i

Z t

t0

HI(t1)U(t1, t0)dt1

t2 < t1 < t

U(t, t0) = 1� i

Z t

t0

HI(t1)dt1 �
Z t

t0

dt1

Z t1

t0

dt2HI(t1)HI(t2) . . .

U(t, t0) = T exp

✓
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Z t

t0

HI(t
0)dt0

◆

Dyson’s Formula
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• Can be written as time-ordered exponential

Lecture equations

Adam Moss
(Dated: February 13, 2012)

Ĥ =
1

8

Z
d
3
x d

3
k d

3
q

(2⇡)6E(k)E(q)
⇥ (1)

E(k)E(q)
⇥
�(â†(k)eik·x � â(k)e�ik·x)(â†(q)eiq·x � â(q)e�iq·x)

⇤
(2)

⇥
(�ik â

†(k)eik·x + ik â(k)e�ik·x)(�iq â
†(q)eiq·x + iq â(q)e�iq·x)

⇤
(3)

m
2
⇥
(â†(k)eik·x + â(k)e�ik·x)(â†(q)eiq·x + â(q)e�iq·x)

⇤
(4)

Ĥ =
1

8

Z
d
3
k

(2⇡)3E(k)2
⇥ (5)

h
(�E(k)2 + k2 +m

2)(â†(k)â†(�k)e2iE(k)t + â(k)â(�k)e�2iE(k)t)
i

(6)
⇥
(E(k)2 + k2 +m

2)(â†(k)â(k) + â(k)â†(k))
⇤

(7)

Ĥ =
1

4

Z
d
3
k

(2⇡)3
(â†(k)â(k) + â(k)â†(k)) (8)

T �̂(x)�̂(y) =

(
�̂(x)�̂(y), if x0

> y
0

�̂(y)�̂(x), if y0 > x
0 (9)



• Initial state       at                  and final state        at                      
are eigenstates of free Hamiltonian   

• At               particles are far separated and don’t feel the 
effects of each other  

• Initial and final states are eigenstates of number operator  
with                    , but crucially   

Assume initial & final states are eigenstates of free theory

• Particles briefly interact. Probability of going from      to  

t = ±1

|ii t = �1 |fi t = +1
H0

[H0, N ] = 0

S = T exp

✓
�i

Z 1

�1
HI(t

0)dt0
◆

!9

S-Matrix

|ii |fi

the interaction picture and follow the evolution of the state: |ψ(t)⟩ = U(t, t0) |ψ(t0)⟩,
where U(t, t0) is given by Dyson’s formula (3.20) which is an expansion in powers of

Hint. But Hint contains creation and annihilation operators for each type of particle.
In particular,

• φ ∼ a + a†: This operator can create or destroy φ particles. Let’s call them

mesons.

• ψ ∼ b + c†: This operator can destroy ψ particles through b, and create anti-
particles through c†. Let’s call these particles nucleons. Of course, in reality

nucleons are spin 1/2 particles, and don’t arise from the quantization of a scalar
field. But we’ll treat our scalar Yukawa theory as a toy model for nucleons

interacting with mesons.

• ψ† ∼ b† + c: This operator can create nucleons through b†, and destroy anti-
nucleons through c.

Importantly, Q = Nc − Nb remains conserved in the presence of Hint. At first order in
perturbation theory, we find terms in Hint like c†b†a. This kills a meson, producing a

nucleon-anti-nucleon pair. It will contribute to meson decay φ→ ψψ̄.

At second order in perturbation theory, we’ll have more complicated terms in (Hint)2,

for example (c†b†a)(cba†). This term will give contributions to scattering processes
ψψ̄ → φ → ψψ̄. The rest of this section is devoted to computing the quantum ampli-

tudes for these processes to occur.

To calculate amplitudes we make an important, and slightly dodgy, assumption:

Initial and final states are eigenstates of the free theory

This means that we take the initial state |i⟩ at t → −∞, and the final state |f⟩ at
t → +∞, to be eigenstates of the free Hamiltonian H0. At some level, this sounds

plausible: at t → −∞, the particles in a scattering process are far separated and don’t
feel the effects of each other. Furthermore, we intuitively expect these states to be

eigenstates of the individual number operators N , which commute with H0, but not
Hint. As the particles approach each other, they interact briefly, before departing again,

each going on its own merry way. The amplitude to go from |i⟩ to |f⟩ is

lim
t±→±∞

⟨f |U(t+, t−) |i⟩ ≡ ⟨f |S |i⟩ (3.26)

where the unitary operator S is known as the S-matrix. (S is for scattering). There

are a number of reasons why the assumption of non-interacting initial and final states
is shaky:

– 54 –

QFT

[HI , N ] 6= 0



• Lets look at our scalar Yukawa theory

QFT

• Interaction Hamiltonian contains 
-                      which can create/destroy      particles 

(call these mesons) 
-                     which can create       and destroy       (call 

these nucleons) 
-                     which can create       and destroy

� ⇠ a+ a† �

 ⇠ b+ c†  ̄  

 † ⇠ b† + c

HI = g

Z
d
3
x 

†(x) (x)�(x)

Scalar Yukawa Theory
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  ̄



•               : Initial state contains single meson of momentum    
Final state a nucleon-anti-nucleon pair of      and

• Expand out                     . Only term which contributes is: 

QFT

• To leading order 

Meson Decay

�!   ̄ p
q1 q2

|ii = a†(p)|0i |fi = b†(q1)c
†(q2)|0i

hf |S|ii = �igh0|
Z

d4x c(q2)b(q1) 
†(x) (x)�(x)a†(p)|0i

hf |S|ii = �igh0|
Z

d4x c(q2)b(q1) 
†(x) (x)

Z
d3k

(2⇡)32E(k)
a(k)a†(p)e�ik·x|0i
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� ⇠ a+ a†



• Delta function puts constraints on decays. Boost to frame 
with                           then                  and 

• Commute           past             and integrate 

QFT Meson Decay

a(k) a†(p)

hf |S|ii = �igh0|
Z

d4x c(q2)b(q1) 
†(x) (x)e�ip·x|0i

hf |S|ii = �igh0|
Z

d4x d3k1 d3k2
(2⇡)64E(k1)E(k2)

c(q2)b(q1)b
†(k1)c

†(k2)e
i(k1+k2�p)·x|0i

hf |S|ii = �ig(2⇡)4�4(q1 + q2 � p)

p = (m, 0, 0, 0) q1 = �q2 m = 2
p

M2 + q2
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• Similarly expand                     and  ⇠ b+ c†  † ⇠ b† + c

• Integrate to find



• Things will be a lot more convenient if we can move all 
annihilation operators to the right to act on 

QFT

hf |T {HI(x1) . . . HI(xn)} |ii

|ii

�(x) = �+(x) + ��(x)

�+(x) =

Z
d3k

(2⇡)32E(k)
a(k)e�ik·x

��(x) =

Z
d3k

(2⇡)32E(k)
a†(k)eik·x

Wick’s Theorem

• At general order want to compute  
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• Wick’s Theorem tells us how to go from time-ordered to 
normal-ordered products

• Consider scalar field    
with:



QFT

T�(x)�(y) = �(x)�(y) = �+(x)�+(y) + ��(x)�+(y)+

��(y)�+(x) + ��(x)��(y) + [�+(x),��(y)]

T�(x)�(y) =: �(x)�(y) : +D(x� y)

Wick’s Theorem

• When 

!14

x0 > y0

• Commutator is equal to the (Feynman) propagator. Recall

�F (x� y) =

Z
d3k

(2⇡)32E(k)
e�ik·(x�y) = D(x� y)

• Time ordered product is therefore 
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T�(x)�(y) =: �(x)�(y) : +D(y � x)

T�(x)�(y) =: �(x)�(y) : +�F (x� y)

Wick’s Theorem

• Case when 
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y0 > x0

�F (x� y) =

Z
d3k

(2⇡)32E(k)
e�ik·(y�x) = D(y � x)

• Putting together for 2 fields:

• NB: �F (x� y) =

Z
d4k

(2⇡)4
i

k2 �m2 + i✏
e�ik·(x�y)



QFT

T [�(x1). . . .�(xn)] ⌘ T [�1. . . .�n]

T [�1. . . .�n] =: �1. . . .�n : + : all possible contractions :

Wick’s Theorem

• Define contraction of pair in string of operators                          
to mean replace with Feynman propagator, i.e.  
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where the ± signs on φ± make little sense, but apparently you have Pauli and Heisenberg
to blame. (They come about because φ+ ∼ e−iEt, which is sometimes called the positive

frequency piece, while φ− ∼ e+iEt is the negative frequency piece). Then choosing
x0 > y0, we have

T φ(x)φ(y) = φ(x)φ(y)

= (φ+(x) + φ−(x))(φ+(y) + φ−(y)) (3.33)

= φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) + [φ+(x),φ−(y)] + φ−(x)φ−(y)

where the last line is normal ordered, and for our troubles we have picked up a factor
of D(x − y) = [φ+(x),φ−(y)] which is the propagator we met in (2.90). So for x0 > y0

we have

T φ(x)φ(y) =: φ(x)φ(y) : + D(x − y) (3.34)

Meanwhile, for y0 > x0, we may repeat the calculation to find

T φ(x)φ(y) =: φ(x)φ(y) : + D(y − x) (3.35)

So putting this together, we have the final expression

T φ(x)φ(y) =: φ(x)φ(y) : + ∆F (y − x) (3.36)

where ∆F (x − y) is the Feynman propagator defined in (2.93), for which we have the
integral representation

∆F (x − y) =

∫
d4k

(2π)4

ieik·(x−y)

k2 − m2 + iϵ
(3.37)

Let me reiterate a comment from Section 2: although T φ(x)φ(y) and : φ(x)φ(y) : are
both operators, the difference between them is a c-number function, ∆F (x − y).

Definition: We define the contraction of a pair of fields in a string of operators
. . .φ(x1) . . .φ(x2) . . . to mean replacing those operators with the Feynman propaga-

tor, leaving all other operators untouched. We use the notation,

. . .
︷ ︸︸ ︷

φ(x1) . . .φ(x2) . . . (3.38)

to denote contraction. So, for example,

︷ ︸︸ ︷

φ(x)φ(y) = ∆F (x − y) (3.39)
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where the ± signs on φ± make little sense, but apparently you have Pauli and Heisenberg
to blame. (They come about because φ+ ∼ e−iEt, which is sometimes called the positive

frequency piece, while φ− ∼ e+iEt is the negative frequency piece). Then choosing
x0 > y0, we have

T φ(x)φ(y) = φ(x)φ(y)

= (φ+(x) + φ−(x))(φ+(y) + φ−(y)) (3.33)

= φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) + [φ+(x),φ−(y)] + φ−(x)φ−(y)

where the last line is normal ordered, and for our troubles we have picked up a factor
of D(x − y) = [φ+(x),φ−(y)] which is the propagator we met in (2.90). So for x0 > y0

we have

T φ(x)φ(y) =: φ(x)φ(y) : + D(x − y) (3.34)

Meanwhile, for y0 > x0, we may repeat the calculation to find

T φ(x)φ(y) =: φ(x)φ(y) : + D(y − x) (3.35)

So putting this together, we have the final expression

T φ(x)φ(y) =: φ(x)φ(y) : + ∆F (y − x) (3.36)

where ∆F (x − y) is the Feynman propagator defined in (2.93), for which we have the
integral representation

∆F (x − y) =

∫
d4k

(2π)4

ieik·(x−y)

k2 − m2 + iϵ
(3.37)

Let me reiterate a comment from Section 2: although T φ(x)φ(y) and : φ(x)φ(y) : are
both operators, the difference between them is a c-number function, ∆F (x − y).

Definition: We define the contraction of a pair of fields in a string of operators
. . .φ(x1) . . .φ(x2) . . . to mean replacing those operators with the Feynman propaga-

tor, leaving all other operators untouched. We use the notation,

. . .
︷ ︸︸ ︷

φ(x1) . . .φ(x2) . . . (3.38)

to denote contraction. So, for example,

︷ ︸︸ ︷

φ(x)φ(y) = ∆F (x − y) (3.39)
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• For any string of operators                                                       
Wick’s Theorem states 

Lecture equations

Adam Moss
(Dated: February 20, 2012)

Ĥ =
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Z
d
3
x d

3
k d

3
q

(2⇡)6E(k)E(q)
⇥ (1)

E(k)E(q)
⇥
�(â†(k)eik·x � â(k)e�ik·x)(â†(q)eiq·x � â(q)e�iq·x)

⇤
(2)

⇥
(�ik â

†(k)eik·x + ik â(k)e�ik·x)(�iq â
†(q)eiq·x + iq â(q)e�iq·x)

⇤
(3)

m
2
⇥
(â†(k)eik·x + â(k)e�ik·x)(â†(q)eiq·x + â(q)e�iq·x)

⇤
(4)

Ĥ =
1

8

Z
d
3
k

(2⇡)3E(k)2
⇥ (5)

h
(�E(k)2 + k2 +m

2)(â†(k)â†(�k)e2iE(k)t + â(k)â(�k)e�2iE(k)t)
i

(6)
⇥
(E(k)2 + k2 +m

2)(â†(k)â(k) + â(k)â†(k))
⇤

(7)

Ĥ =
1

4

Z
d
3
k

(2⇡)3
(â†(k)â(k) + â(k)â†(k)) (8)

T �̂(x)�̂(y) =

(
�̂(x)�̂(y), if x0

> y
0

�̂(y)�̂(x), if y0 > x
0 (9)

T [�1�2�3�4] = : �1�2�3�4 : + (10)

�F (x1 � x2) : �3�4 : +�F (x1 � x3) : �2�4 : +�F (x1 � x4) : �2�3 : + (11)

�F (x2 � x3) : �1�4 : +�F (x2 � x4) : �1�3 : +�F (x3 � x4) : �1�2 : + (12)

�F (x1 � x2)�F (x3 � x4) +�F (x1 � x3)�F (x2 � x4) +�F (x1 � x4)�F (x2 � x3) (13)

• For example 4 fields:


