Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 5: Interacting Fields




QFT Interacting Fields

« Will always discuss quantized fields - drop the hats off
operators

« Will consider small perturbations to free theory
Lagrangian L = Ly + L;

« Hamiltonian density of interaction H; = — L

An
» E.g.real scalarfield L; = — g — 0"
n!
n>3

« What conditions do we require on \,, so the
additional terms are small perturbations?



QFT Interacting Fields

* Dimensional analysis leads to
L]=4 [¢g]=1 |m|]=1 [A]=4-n

« n=23 [A3] =1: Dimensionless parameteris A\3/F .
These terms are called relevant since they are most
important at low energies. Since E>m, just need A<m.

« n=4 [\]=0: Dimensionless parameter is A4 . These
terms are called marginal and are important if Ay ~ O(1)

e n>5 [\]<0:Dimensionless parameteris \,E" .
These terms are called irrelevant and are important at
high energies



QFT Interacting Fields

Irrelevant couplings can cause problems at high energies
- lead to non-renormalizable theories

Doesn’t mean quantum theory is useless, but it is
Incomplete above some energy scale

Theory still perfectly good as an Effective Field Theory at
low energies - decoupling

We will only consider theories with relevant/marginal
couplings and which are weakly interacting



QFT »* theory

« Lagrangian and interaction Hamiltonian:

A
E——u¢3“¢——m¢——<b ’HI:Z‘l A << 1

* [nteraction term contains:
a'(k)a' (k)a'(k)a' (k) , a'(k)a'(k)a' (k)a(k), etc

and so can create and destroy particles

» Particle number is no longer conserved |H, N| = 0



QFT Scalar Yukawa Theory

« Lagrangian and interaction Hamiltonian:

=1 PO" ¢ + O, OMep — %m2¢2 — M*Y*y — gip* ¢

2 2
Hr = g™ Yo g << M,m

Individual particle numbers not conserved

Symmetry ensuring number of w particles minus
anti-particles (denoted ¢ ) is conserved



QFT Dyson’s Formula

.0
Recall in interaction picture Za\w(t)h = H;(t)|¥(t))1

Write solution in terms of unitary time evolution operator
such that U(t;,t2)U(t2,t3) = U(ty,t3) and U(t,t) =1

[W(t))r = U(t, to)|b(to))r

dU
Requires that iﬁ = H;(t)U

If H;(t) were afunction U(t,t,) = exp (—z’

t

H I(t’)dt’)
to
Since it is an operator there are ordering issues

(apparent when expanding the exponential in powers
of H] (t) ) 7



QFT Dyson’s Formula

* To solve integrate time evolution equation
t

(](t,t0>2=31.—-i }Jj<t1)l](t1,t0)dt1
to
Still depends on evolution operator. Substitute new
expression into integrand (t2 <t; <t )

t t t1
U(t,to):l—i/ HI(tl)dtl—/ dtl/ dtoHy(t1)Hi(ts) ...
to o to

« Can be written as time-ordered exponential

. ) X 7 n if 10 0
Ult,tg) = T exp (—75 /to Hl(t/)dt/) To(x)p(y) = {zgiggi;: ;f ZTO iio
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QFT S-Matrix

Assume initial & final states are eigenstates of free theory

- Initial state |¢) at ¢ = —oo and final state | f) at t = +o0
are eigenstates of free Hamiltonian H |,

At t = +o0 particles are far separated and don't feel the
effects of each other

« |nitial and final states are eigenstates of number operator
with [Hy, N] = 0, but crucially [H;, N] # 0

- Particles briefly interact. Probability of going from |%) to | f)
i (Ut [) = (71S1) 5 =Texp (i [~ mi)ar)

t+—+o00
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QFT Scalar Yukawa Theory

» Lets look at our scalar Yukawa theory
Hi =g [ a6l (@)i@)s()

 |nteraction Hamiltonian contains

- o~a-+ ' which can create/destroy ¢ particles
(call these mesons)

- 9) ~ b+ ¢! which can create 1) and destroy 1) (call
these nucleons)

- w ~ b 4 ¢ which can create ) and destroy @Z
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QFT Meson Decay

» ¢ — ! Initial state contains single meson of momentum p
Final state a nucleon-anti-nucleon pair of g1 and g2

i) = al(p)|0)  1f) ="b(a))c!(a2)[0)
* To leading order
(f1S]i) = —i9<0\/d4$C(Q2)b(Q1)¢T($)¢($) d(x)a’ (p)[0)
- Expandout ¢ ~ a + al. Only term which contributes is:

(11810) = =ig 0] [ a'ec(az)blant @) i@) [ GmEazaloal e 0
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QFT Meson Decay

. Commute a(k) past a'(p) and integrate
(f|S]i) = —ig(0] /d4$ c(qq)b(q)¥’ (z) ¥(z)e""|0)

- Similarly expand ¢ ~ b+ ¢ and ! ~ bl +¢

d4$d3k‘1 dgkg :
_ b b (ke (k i(k1+k2—p)x 0
(11810) = =ig00] | s o ¢l blanh (e (ko)e 0

* Integrate to find <f!S\i> = —ig(2m)*0*(q1 + g2 — p)

« Delta function puts constraints on decays. Boost to frame
with p=(m,0,0,0) then a; =-q2 and m =2/ M2+ ¢’
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QFT Wick's Theorem

At general order want to compute (f|T{Hi(x1)... Hi(zn)} |7)

* Things will be a lot more convenient if we can move all
annihilation operators to the right to act on |7)

* Wick’'s Theorem tells us how to go from time-ordered to
normal-ordered products

» Consider scalar field ¢(z) = ¢7(z) + ¢~ ()
with: .

¢+<x):/(2W)32E(k)a(k>€_ikw

] & o
6 (@)= [ i (0"
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QFT Wick's Theorem

« When z' >4

To(2)p(y) = d(z)d(y) = ¢ (2)¢ " (y) + ¢ (2)¢" (y)+
¢ (y)¢"(x) + ¢ (2)o (y) + [67(2), 6™ (y)]

« Commutator is equal to the (Feynman) propagator. Recall

Bk ey

« Time ordered product is therefore
To(x)o(y) =: ¢(x)d(y) : +D(x — y)
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QFT Wick's Theorem

« Case when ¢° > 2°
To(z)p(y) =: ¢(x)o(y) : +D(y — x)
Ap(r —y) = / (ZW)ZQZ(k)e—ik-(y—x) = D(y — z)

« Putting together for 2 fields:
To(x)p(y) =: ¢(x)o(y) : +Ar(z — y)

A .
° NB AF($ . y) _ / (d k (4 e—ik-(x—y)

2m)4 k2 — m? + e
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QFT Wick's Theorem

7\

» Define contraction of pair in string of operators ... %(z.)...é(z). ..
to mean replace with Feynman propagator, i.e.

7\

o(2)(y) = Ap(z —y)
« For any string of operators T [¢(z1)....¢(xn)] = T[¢1. .. .0n]
Wick’s Theorem states

T(p1....0n] =: ¢1....0y, : + : all possible contractions :

* For example 4 fields:

T(p1P2¢304] = : P1P2P3¢4 : +
Ap(r1 — x2) : ¢3¢ : +Ap(T1 — 23) 1 Pady 1 +Ap(T1 — T4) : P23 1 +
Ap(z2 —3) : 9104 1 +Ap (T2 — 24) 1 G103 1 +AR(T3 —24) 1 P12 1 +
Ap(x1 —x22)Ap(xs —x4) + Ap(r1 — 23)Ap(re — 24) + Ap(x1 — 24) AR (22 — x3)
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