QFT

Dr Tasos Avgoustidis

(Notes based on Dr A. Moss' lectures)

Lecture 5: Interacting Fields

Interacting Fields

- Will always discuss quantized fields - drop the hats off operators
- Will consider small perturbations to free theory Lagrangian $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{I}$
- Hamiltonian density of interaction $\mathcal{H}_{I}=-\mathcal{L}_{I}$
- E.g. real scalar field $\quad \mathcal{L}_{I}=-\sum_{n \geq 3} \frac{\lambda_{n}}{n!} \phi^{n}$
- What conditions do we require on λ_{n} so the additional terms are small perturbations?

Interacting Fields

- Dimensional analysis leads to

$$
[\mathcal{L}]=4 \quad[\phi]=1 \quad[m]=1 \quad\left[\lambda_{n}\right]=4-n
$$

- $n=3 \quad\left[\lambda_{3}\right]=1$: Dimensionless parameter is λ_{3} / E. These terms are called relevant since they are most important at low energies. Since E>m, just need $\lambda<m$.
- $n=4 \quad\left[\lambda_{4}\right]=0$: Dimensionless parameter is λ_{4}. These terms are called marginal and are important if $\lambda_{4} \sim O(1)$
- $n \geq 5 \quad\left[\lambda_{n}\right]<0$: Dimensionless parameter is $\lambda_{n} E^{n-4}$. These terms are called irrelevant and are important at high energies
- Irrelevant couplings can cause problems at high energies - lead to non-renormalizable theories
- Doesn't mean quantum theory is useless, but it is incomplete above some energy scale
- Theory still perfectly good as an Effective Field Theory at low energies - decoupling
- We will only consider theories with relevant/marginal couplings and which are weakly interacting
- Lagrangian and interaction Hamiltonian:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \quad \mathcal{H}_{I}=\frac{\lambda}{4!} \phi^{4} \quad \lambda \ll 1
$$

- Interaction term contains:
$a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k}), a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k}) a(\mathbf{k})$, etc and so can create and destroy particles
- Particle number is no longer conserved $[H, N] \neq 0$

Scalar Yukawa Theory

- Lagrangian and interaction Hamiltonian:

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\partial_{\mu} \psi^{\star} \partial^{\mu} \psi-\frac{1}{2} m^{2} \phi^{2}-M^{2} \psi^{\star} \psi-g \psi^{\star} \psi \phi \\
\mathcal{H}_{I}=g \psi^{\star} \psi \phi \quad g \ll M, m
\end{gathered}
$$

- Individual particle numbers not conserved
- Symmetry ensuring number of ψ particles minus anti-particles (denoted $\bar{\psi}$) is conserved

Dyson's Formula

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle_{I}=H_{I}(t)|\psi(t)\rangle_{I}
$$

- Write solution in terms of unitary time evolution operator such that $U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right)=U\left(t_{1}, t_{3}\right)$ and $U(t, t)=1$

$$
|\psi(t)\rangle_{I}=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle_{I}
$$

- Requires that $i \frac{d U}{d t}=H_{I}(t) U$
- If $H_{I}(t)$ were a function $U\left(t, t_{0}\right)=\exp \left(-i \int_{t_{0}}^{t} H_{I}\left(t^{\prime}\right) d t^{\prime}\right)$
- Since it is an operator there are ordering issues (apparent when expanding the exponential in powers of $H_{I}(t)$)

Dyson's Formula

- To solve integrate time evolution equation

$$
U\left(t, t_{0}\right)=1-i \int_{t_{0}}^{t} H_{I}\left(t_{1}\right) U\left(t_{1}, t_{0}\right) d t_{1}
$$

- Still depends on evolution operator. Substitute new expression into integrand ($t_{2}<t_{1}<t$)

$$
U\left(t, t_{0}\right)=1-i \int_{t_{0}}^{t} H_{I}\left(t_{1}\right) d t_{1}-\int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right) \ldots
$$

- Can be written as time-ordered exponential

$$
U\left(t, t_{0}\right)=T \exp \left(-i \int_{t_{0}}^{t} H_{I}\left(t^{\prime}\right) d t^{\prime}\right) \quad T \hat{\phi}(x) \hat{\phi}(y)= \begin{cases}\hat{\phi}(x) \hat{\phi}(y), & \text { if } x^{0}>y^{0} \\ \hat{\phi}(y) \hat{\phi}(x), & \text { if } y^{0}>x^{0}\end{cases}
$$

S-Matrix

Assume initial \& final states are eigenstates of free theory

- Initial state $|i\rangle$ at $t=-\infty$ and final state $|f\rangle$ at $t=+\infty$ are eigenstates of free Hamiltonian H_{0}
- At $t= \pm \infty$ particles are far separated and don't feel the effects of each other
- Initial and final states are eigenstates of number operator with $\left[H_{0}, N\right]=0$, but crucially $\left[H_{I}, N\right] \neq 0$
- Particles briefly interact. Probability of going from $|i\rangle$ to $|f\rangle$

$$
\lim _{t_{ \pm} \rightarrow \pm \infty}\langle f| U\left(t_{+}, t_{-}\right)|i\rangle \equiv\langle f| S|i\rangle \quad S=T \exp \left(-i \int_{-\infty}^{\infty} H_{I}\left(t^{\prime}\right) d t^{\prime}\right)
$$

Scalar Yukawa Theory

- Lets look at our scalar Yukawa theory

$$
H_{I}=g \int d^{3} x \psi^{\dagger}(x) \psi(x) \phi(x)
$$

- Interaction Hamiltonian contains
- $\phi \sim a+a^{\dagger}$ which can create/destroy ϕ particles (call these mesons)
- $\psi \sim b+c^{\dagger}$ which can create $\bar{\psi}$ and destroy ψ (call these nucleons)
- $\psi^{\dagger} \sim b^{\dagger}+c$ which can create ψ and destroy $\bar{\psi}$

Meson Decay

- $\phi \rightarrow \psi \bar{\psi}$: Initial state contains single meson of momentum p Final state a nucleon-anti-nucleon pair of q_{1} and q_{2}

$$
|i\rangle=a^{\dagger}(\mathbf{p})|0\rangle \quad|f\rangle=b^{\dagger}\left(\mathbf{q}_{1}\right) c^{\dagger}\left(\mathbf{q}_{2}\right)|0\rangle
$$

- To leading order

$$
\langle f| S|i\rangle=-i g\langle 0| \int d^{4} x c\left(\mathbf{q}_{2}\right) b\left(\mathbf{q}_{1}\right) \psi^{\dagger}(x) \psi(x) \phi(x) a^{\dagger}(\mathbf{p})|0\rangle
$$

- Expand out $\phi \sim a+a^{\dagger}$. Only term which contributes is:
$\langle f| S|i\rangle=-i g\langle 0| \int d^{4} x c\left(\mathbf{q}_{2}\right) b\left(\mathbf{q}_{1}\right) \psi^{\dagger}(x) \psi(x) \int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} a(\mathbf{k}) a^{\dagger}(\mathbf{p}) e^{-i k \cdot x}|0\rangle$

Meson Decay

- Commute $a(\mathbf{k})$ past $a^{\dagger}(\mathbf{p})$ and integrate

$$
\langle f| S|i\rangle=-i g\langle 0| \int d^{4} x c\left(\mathbf{q}_{2}\right) b\left(\mathbf{q}_{1}\right) \psi^{\dagger}(x) \psi(x) e^{-i p \cdot x}|0\rangle
$$

- Similarly expand $\psi \sim b+c^{\dagger}$ and $\psi^{\dagger} \sim b^{\dagger}+c$

$$
\langle f| S|i\rangle=-i g\langle 0| \int \frac{d^{4} x d^{3} k_{1} d^{3} k_{2}}{(2 \pi)^{6} 4 E\left(\mathbf{k}_{\mathbf{1}}\right) E\left(\mathbf{k}_{\mathbf{2}}\right)} c\left(\mathbf{q}_{2}\right) b\left(\mathbf{q}_{1}\right) b^{\dagger}\left(\mathbf{k}_{1}\right) c^{\dagger}\left(\mathbf{k}_{2}\right) e^{i\left(k_{1}+k_{2}-p\right) \cdot x}|0\rangle
$$

- Integrate to find $\langle f| S|i\rangle=-i g(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p\right)$
- Delta function puts constraints on decays. Boost to frame with $p=(m, 0,0,0)$ then $\mathbf{q}_{1}=-\mathbf{q}_{2}$ and $m=2 \sqrt{M^{2}+\mathbf{q}^{2}}$

Wick's Theorem

- At general order want to compute $\langle f| T\left\{H_{I}\left(x_{1}\right) \ldots H_{I}\left(x_{n}\right)\right\}|i\rangle$
- Things will be a lot more convenient if we can move all annihilation operators to the right to act on $|i\rangle$
- Wick's Theorem tells us how to go from time-ordered to normal-ordered products
- Consider scalar field $\phi(x)=\phi^{+}(x)+\phi^{-}(x)$ with:

$$
\begin{aligned}
& \phi^{+}(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} a(\mathbf{k}) e^{-i k \cdot x} \\
& \phi^{-}(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} a^{\dagger}(\mathbf{k}) e^{i k \cdot x}
\end{aligned}
$$

Wick's Theorem

- When $x^{0}>y^{0}$

$$
\begin{array}{r}
T \phi(x) \phi(y)=\phi(x) \phi(y)=\phi^{+}(x) \phi^{+}(y)+\phi^{-}(x) \phi^{+}(y)+ \\
\phi^{-}(y) \phi^{+}(x)+\phi^{-}(x) \phi^{-}(y)+\left[\phi^{+}(x), \phi^{-}(y)\right]
\end{array}
$$

- Commutator is equal to the (Feynman) propagator. Recall

$$
\Delta_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} e^{-i k \cdot(x-y)}=D(x-y)
$$

- Time ordered product is therefore

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D(x-y)
$$

Wick's Theorem

- Case when $y^{0}>x^{0}$

$$
\begin{gathered}
T \phi(x) \phi(y)=: \phi(x) \phi(y):+D(y-x) \\
\Delta_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})} e^{-i k \cdot(y-x)}=D(y-x)
\end{gathered}
$$

- Putting together for 2 fields:

$$
T \phi(x) \phi(y)=: \phi(x) \phi(y):+\Delta_{F}(x-y)
$$

- NB:

$$
\Delta_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}
$$

Wick's Theorem

- Define contraction of pair in string of operators $\overbrace{\phi\left(x_{1}\right) \ldots \phi\left(x_{2}\right)} \ldots$ to mean replace with Feynman propagator, i.e.

$$
\overbrace{\phi(x) \phi(y)}=\Delta_{F}(x-y)
$$

- For any string of operators $T\left[\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right] \equiv T\left[\phi_{1} \ldots \phi_{n}\right]$ Wick's Theorem states

$$
T\left[\phi_{1} \ldots \phi_{n}\right]=: \phi_{1} \ldots \phi_{n}:+: \text { all possible contractions : }
$$

- For example 4 fields:

```
T[\mp@subsup{\phi}{1}{}\mp@subsup{\phi}{2}{}\mp@subsup{\phi}{3}{}\mp@subsup{\phi}{4}{}]=:\mp@subsup{\phi}{1}{}\mp@subsup{\phi}{2}{}\mp@subsup{\phi}{3}{}\mp@subsup{\phi}{4}{}:+
    \DeltaF}(\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{}):\mp@subsup{\phi}{3}{}\mp@subsup{\phi}{4}{}:+\mp@subsup{\Delta}{F}{}(\mp@subsup{x}{1}{}-\mp@subsup{x}{3}{}):\mp@subsup{\phi}{2}{}\mp@subsup{\phi}{4}{}:+\mp@subsup{\Delta}{F}{}(\mp@subsup{x}{1}{}-\mp@subsup{x}{4}{}):\mp@subsup{\phi}{2}{}\mp@subsup{\phi}{3}{}:
    \Delta
    \Delta
```

