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Lecture 7: Interacting Fields -
Wick’s theorem & Feynman 

diagrams

Lecture 6 not taken place due to the UCU industrial action:   
https://www.ucu.org.uk/article/10408/UCU-announces-eight-days-of-strikes-starting-this-month-at-60-universities

Today we continue from where we left Lecture 5  
(Wick’s theorem)

https://www.ucu.org.uk/article/10408/UCU-announces-eight-days-of-strikes-starting-this-month-at-60-universities


• Will be convenient if we can move all annihilation 
operators to the right to act on 

QFT

hf |T {HI(x1) . . . HI(xn)} |ii

|ii

Wick’s Theorem

• Want to compute:  
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• Wick’s Theorem tells us how to go from time-ordered to 
normal-ordered products: 

(Recap)                

T [�1. . . .�n] =: �1. . . .�n : + : all possible contractions :

where the ± signs on φ± make little sense, but apparently you have Pauli and Heisenberg
to blame. (They come about because φ+ ∼ e−iEt, which is sometimes called the positive

frequency piece, while φ− ∼ e+iEt is the negative frequency piece). Then choosing
x0 > y0, we have

T φ(x)φ(y) = φ(x)φ(y)

= (φ+(x) + φ−(x))(φ+(y) + φ−(y)) (3.33)

= φ+(x)φ+(y) + φ−(x)φ+(y) + φ−(y)φ+(x) + [φ+(x),φ−(y)] + φ−(x)φ−(y)

where the last line is normal ordered, and for our troubles we have picked up a factor
of D(x − y) = [φ+(x),φ−(y)] which is the propagator we met in (2.90). So for x0 > y0

we have

T φ(x)φ(y) =: φ(x)φ(y) : + D(x − y) (3.34)

Meanwhile, for y0 > x0, we may repeat the calculation to find

T φ(x)φ(y) =: φ(x)φ(y) : + D(y − x) (3.35)

So putting this together, we have the final expression

T φ(x)φ(y) =: φ(x)φ(y) : + ∆F (y − x) (3.36)

where ∆F (x − y) is the Feynman propagator defined in (2.93), for which we have the
integral representation

∆F (x − y) =

∫
d4k

(2π)4

ieik·(x−y)

k2 − m2 + iϵ
(3.37)

Let me reiterate a comment from Section 2: although T φ(x)φ(y) and : φ(x)φ(y) : are
both operators, the difference between them is a c-number function, ∆F (x − y).

Definition: We define the contraction of a pair of fields in a string of operators
. . .φ(x1) . . .φ(x2) . . . to mean replacing those operators with the Feynman propaga-

tor, leaving all other operators untouched. We use the notation,

. . .
︷ ︸︸ ︷

φ(x1) . . .φ(x2) . . . (3.38)

to denote contraction. So, for example,

︷ ︸︸ ︷

φ(x)φ(y) = ∆F (x − y) (3.39)
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defined contraction:                                 

Lecture equations

Adam Moss
(Dated: February 20, 2012)
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⇤
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⇤
(4)

Ĥ =
1

8

Z
d
3
k

(2⇡)3E(k)2
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(�E(k)2 + k2 +m

2)(â†(k)â†(�k)e2iE(k)t + â(k)â(�k)e�2iE(k)t)
i

(6)
⇥
(E(k)2 + k2 +m

2)(â†(k)â(k) + â(k)â†(k))
⇤

(7)
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1

4

Z
d
3
k

(2⇡)3
(â†(k)â(k) + â(k)â†(k)) (8)

T �̂(x)�̂(y) =

(
�̂(x)�̂(y), if x0

> y
0

�̂(y)�̂(x), if y0 > x
0 (9)

T [�1�2�3�4] = : �1�2�3�4 : + (10)

�F (x1 � x2) : �3�4 : +�F (x1 � x3) : �2�4 : +�F (x1 � x4) : �2�3 : + (11)

�F (x2 � x3) : �1�4 : +�F (x2 � x4) : �1�3 : +�F (x3 � x4) : �1�2 : + (12)

�F (x1 � x2)�F (x3 � x4) +�F (x1 � x3)�F (x2 � x4) +�F (x1 � x4)�F (x2 � x3) (13)

• For example 4 fields:



QFT

T (x) †(y) =:  (x) †(y) : +�F (x� y)

T (x) (y) =:  (x) (y) :

T †(x) †(y) =:  †(x) †(y) :

Wick’s Theorem

• Similar story applies for complex scalar fields. The 
contractions (difference between time- and normal-
ordered products) are  
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A similar discussion holds for complex scalar fields. We have

Tψ(x)ψ†(y) =: ψ(x)ψ†(y) : +∆F (x − y) (3.40)

prompting us to define the contraction
︷ ︸︸ ︷

ψ(x)ψ†(y) = ∆F (x − y) and
︷ ︸︸ ︷

ψ(x)ψ(y) =
︷ ︸︸ ︷

ψ†(x)ψ†(y) = 0 (3.41)

3.3.2 Wick’s Theorem

For any collection of fields φ1 = φ(x1), φ2 = φ(x2), etc, we have

T (φ1 . . .φn) =: φ1 . . .φn : + : all possible contractions : (3.42)

To see what the last part of this equation means, let’s look at an example. For n = 4,
the equation reads

T (φ1φ2φ3φ4) = : φ1φ2φ3φ4 : +
︷︸︸︷

φ1φ2 : φ3φ4 : +
︷︸︸︷

φ1φ3 : φ2φ4 : + four similar terms

+
︷︸︸︷

φ1φ2

︷︸︸︷

φ3φ4 +
︷︸︸︷

φ1φ3

︷︸︸︷

φ2φ4 +
︷︸︸︷

φ1φ4

︷︸︸︷

φ2φ3 (3.43)

Proof: The proof of Wick’s theorem proceeds by induction and a little thought. It’s

true for n = 2. Suppose it’s true for φ2 . . .φn and now add φ1. We’ll take x0
1 > x0

k

for all k = 2, . . . , n. Then we can pull φ1 out to the left of the time ordered product,

writing

T (φ1φ2 . . .φn) = (φ+
1 + φ−

1 ) (: φ2 . . .φn : + : contractions :) (3.44)

The φ−
1 term stays where it is since it is already normal ordered. But in order to write

the right-hand side as a normal ordered product, the φ+
1 term has to make its way

past the crowd of φ−
k operators. Each time it moves past φ−

k , we pick up a factor of
︷︸︸︷

φ1φk = ∆F (x1 − xk) from the commutator. (Try it!) !

3.3.3 An Example: Nucleon Scattering

Let’s look at ψψ → ψψ scattering. We have the initial and final states

|i⟩ =
√

2Ep⃗1

√

2Ep⃗2
b†p⃗1

b†p⃗2
|0⟩ ≡ |p1, p2⟩

|f⟩ =
√

2Ep⃗′1

√

2Ep⃗ ′
2
b†p⃗ ′

1
b†p⃗ ′

2
|0⟩ ≡ |p ′

1, p
′
2⟩ (3.45)

We can then look at the expansion of ⟨f |S |i⟩. In fact, we really want to calculate
⟨f |S − 1 |i⟩ since we’re not interested in situations where no scattering occurs. At

order g2 we have the term

(−ig)2

2

∫

d4x1d
4x2 T

(

ψ†(x1)ψ(x1)φ(x1)ψ
†(x2)ψ(x2)φ(x2)

)

(3.46)
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• Need strings of              for overlap with initial and final 
states. 4 such terms, which double up under 

•                  : Initial and final states contain a nucleon-anti-
nucleon pair 

• Contribution to S-matrix at 

|ii = c†(p1)b
†(p2)|0i |fi = c†(q1)b

†(q2)|0i

O(g2)

:  †(x) (x) †(y) (y) : ��
F (x� y)

b†c†bc
x $ y

  ̄ !   ̄

(�ig)2

2
h0|

Z
d4x d4y b(q2)c(q1)T

�
 †(x) (x)�(x) †(y) (y)�(y)

 
c†(p1)b

†(p2)|0i
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• Expand time-ordered product using Wick’s Theorem. 
Convince yourself the only term that contributes is 

Nucleon-Anti-Nucleon Scattering



• These are ‘s-channel’ and t-channel’  interactions - each 
has a simple interpretation using Feynman diagrams 

• Other scattering processes such as                  and                                    
come from different strings of operators 

QFT

s = (p1 + p2)
2 t = (p1 � q1)

2

  !   

i(�ig)2


1

s�m2 + i✏
+

1

t�m2 + i✏

�
(2⇡)4�4(p1 + p2 � q1 � q2)

• Find

!5

i(�ig)2
Z

d4x d4y d4k

(2⇡)4
eik·(x�y)

k2 �m2 + i✏

h
e�i(p1�q1)·xe�i(p2�q2)·y + e�i(p1+p2)·xei(q1+q2)·y

i

• Can now integrate to obtain amplitude

 ̄ ̄ !  ̄ ̄

Nucleon-Anti-Nucleon Scattering



• We are interested in the terms                    (i.e. not the 
trivial process where no interaction occurs) 

• Computing scattering amplitudes with Wick’s Theorem is 
rather tedious   

• Feynman diagrams provide a nice way of pictorially 
representing the expansion of

QFT Feynman Diagrams

hf |S|ii
hf |S � 1|ii
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• Draw an external line for each particle in the initial and 
final state (choose dotted lines for mesons, solid lines for 
nucleons) 

• Add an arrow to nucleons to denote charge (incoming 
arrow for     in initial state) 



• For each vertex                                    where momenta 
are into vertex                    

QFT

• Add momenta      to each linek
(�ig)(2⇡)4�4

 
X

i

ki

!

Z
d4k

(2⇡)4
i

k2 �m2 + i✏

Z
d4k

(2⇡)4
i

k2 �M2 + i✏

�  

Feynman Rules

• For our scalar Yukawa theory join lines by trivalent 
vertices 
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solid lines to denote its charge; we’ll choose an incoming (outgoing) arrow in the
initial state for ψ (ψ̄). We choose the reverse convention for the final state, where

an outgoing arrow denotes ψ.

• Join the external lines together with trivalent vertices

ψ

ψ+

φ

Each such diagram you can draw is in 1-1 correspondence with the terms in the

expansion of ⟨f |S − 1 |i⟩.

3.4.1 Feynman Rules

To each diagram we associate a number, using the Feynman rules

• Add a momentum k to each internal line

• To each vertex, write down a factor of

(−ig) (2π)4 δ(4)(
∑

i

ki) (3.54)

where
∑

ki is the sum of all momenta flowing into the vertex.

• For each internal dotted line, corresponding to a φ particle with momentum k,

we write down a factor of
∫

d4k

(2π)4

i

k2 − m2 + iϵ
(3.55)

We include the same factor for solid internal ψ lines, with m replaced by the
nucleon mass M .
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�
 ̄

 

• For each  internal line integrate the propagator 
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  !   

s = (p1 + p2)
2 = (q1 + q2)

2

t = (p1 � q1)
2 = (p2 � q2)

2 u = (p1 � q2)
2 = (p2 � q1)

2

i(�ig)2


1

t�m2 + i✏
+

1

u�m2 + i✏

�
(2⇡)4�4(p1 + p2 � q1 � q2)

Nucleon Scattering

• t and u are Mandelstam variables:  

p1

p2 q2

q1

k

p1

p2

q2

q1

k

!8



• Here the exchange particle is the nucleon rather than the 
meson  

• Exchange particles do not satisfy the usual energy 
dispersion relation (             for mesons and              for 
nucleons) - we call them virtual particles 

QFT

  ̄ ! ��

k2 = m2 k2 = M2

i(�ig)2


1

t�M2 + i✏
+

1

u�M2 + i✏

�
(2⇡)4�4(p1 + p2 � q1 � q2)

Nucleon-Meson Scattering

p1 q1

p2 q2

k

p1

q1p2

q2

k

!9



QFT Nucleon-Anti-Nucleon Scattering

  ̄ !   ̄

i(�ig)2


1

s�m2 + i✏
+

1

t�m2 + i✏

�
(2⇡)4�4(p1 + p2 � q1 � q2)

m > 2M• If                   the s-channel term can diverge. However, 
the meson is unstable for this mass.
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p1

p2 q2

q1

k

p1 q1

p2 q2

k



QFT Higher Order Terms

• Higher order terms can easily be considered, e.g.

!11

p1 p2

q2q1

O(g4)

However, such diagrams involving loop momenta are 
often divergent             Renormalisation (not covered in 
this course) 



QFT Connected and Amputated Diagrams

We have assumed that the initial and final states are eigenstates 
of the free theory Hamiltonian. This is not quite true! However, it 
can be dealt with as follows: 

!12

• We do not consider diagrams with loops on external lines, for example the diagram
shown in the Figure 18. We will not explain how to take these into account in this

course, but you will discuss them next term. They are related to the fact that the
one-particle states of the free theory are not the same as the one-particle states of
the interacting theory. In particular, correctly dealing with these diagrams will

account for the fact that particles in interacting quantum field theories are never
alone, but surrounded by a cloud of virtual particles. We will refer to diagrams

in which all loops on external legs have been cut-off as “amputated”.

Figure 17: A disconnected diagram. Figure 18: An un-amputated diagram

3.6 What We Measure: Cross Sections and Decay Rates

So far we’ve learnt to compute the quantum amplitudes for particles decaying or scat-
tering. As usual in quantum theory, the probabilities for things to happen are the

(modulus) square of the quantum amplitudes. In this section we will compute these
probabilities, known as decay rates and cross sections. One small subtlety here is that
the S-matrix elements ⟨f |S − 1 |i⟩ all come with a factor of (2π)4δ(4)(pF − pI), so we

end up with the square of a delta-function. As we will now see, this comes from the
fact that we’re working in an infinite space.

3.6.1 Fermi’s Golden Rule

Let’s start with something familiar and recall how to derive Fermi’s golden rule from
Dyson’s formula. For two energy eigenstates |m⟩ and |n⟩, with Em ≠ En, we have to

leading order in the interaction,

⟨m|U(t) |n⟩ = −i ⟨m|
∫ t

0

dt HI(t) |n⟩

= −i ⟨m|Hint |n⟩
∫ t

0

dt′ eiωt′

= −⟨m|Hint |n⟩
eiωt − 1

ω
(3.77)
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• We do not consider diagrams with loops on external lines, for example the diagram
shown in the Figure 18. We will not explain how to take these into account in this

course, but you will discuss them next term. They are related to the fact that the
one-particle states of the free theory are not the same as the one-particle states of
the interacting theory. In particular, correctly dealing with these diagrams will

account for the fact that particles in interacting quantum field theories are never
alone, but surrounded by a cloud of virtual particles. We will refer to diagrams

in which all loops on external legs have been cut-off as “amputated”.

Figure 17: A disconnected diagram. Figure 18: An un-amputated diagram

3.6 What We Measure: Cross Sections and Decay Rates

So far we’ve learnt to compute the quantum amplitudes for particles decaying or scat-
tering. As usual in quantum theory, the probabilities for things to happen are the

(modulus) square of the quantum amplitudes. In this section we will compute these
probabilities, known as decay rates and cross sections. One small subtlety here is that
the S-matrix elements ⟨f |S − 1 |i⟩ all come with a factor of (2π)4δ(4)(pF − pI), so we

end up with the square of a delta-function. As we will now see, this comes from the
fact that we’re working in an infinite space.

3.6.1 Fermi’s Golden Rule

Let’s start with something familiar and recall how to derive Fermi’s golden rule from
Dyson’s formula. For two energy eigenstates |m⟩ and |n⟩, with Em ≠ En, we have to

leading order in the interaction,

⟨m|U(t) |n⟩ = −i ⟨m|
∫ t

0

dt HI(t) |n⟩

= −i ⟨m|Hint |n⟩
∫ t

0

dt′ eiωt′

= −⟨m|Hint |n⟩
eiωt − 1

ω
(3.77)
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• We consider only connected diagrams, 
where every part is connected to external 
leg. Related to the fact that the true 
vacuum of the interacting theory is not the 
same as that of free theory

• Do not consider diagrams with loops on 
external legs. Related to the fact that one-
particle states of the interacting theory are 
not the same as those of the free theory



• Scalar fields give rise to spin-0 particles  
• To describe particles with spin (i.e. they have some 

intrinsic angular momentum) look at fields which have 
non-trivial transformations under the Lorentz group 

• E.g. a vector field                                    . This gives rise 
to spin-1 particles 

QFT

• Under a Lorentz transformation                               these 
transform as                                    . The         is because 
we are doing an active transformation 

�(x) ! �0(x) = �(⇤�1x) ⇤�1
xµ ! (x0)µ = ⇤µ

⌫x
⌫

Aµ(x) ! ⇤µ
⌫ A

⌫(⇤�1x)

• So far we have only considered scalar fields

!13

Lorentz Group
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• Here              is a matrix which depends on the Lorentz 
transformation (LT) we are considering. It is a 
representation of the Lorentz group 

• It has the same properties as the Lorentz group, i.e.

Lorentz Group

�a(x) ! D[⇤]ba �
b(⇤�1x)

D[⇤]ba

D[⇤1]D[⇤2] = D[⇤1⇤2] D[⇤�1] = D[⇤]�1

• In general a field can transform as 
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• Want to find all possible representations such that these 
properties are true

• Look at infinitesimal transformations and study Lie 
Algebra



QFT

•          label which matrix,         the row/column of each 
matrix 

⇤µ
�⌘

�⌧⇤⌫
⌧ = ⌘µ⌫

✏ wµ⌫ + w⌫µ = 0

µ, ⌫

(M⇢�)µ⌫ = ⌘⇢µ⌘�⌫ � ⌘�µ⌘⇢⌫

Lorentz Group

• Consider transformation

!15

⇤µ
⌫ = �µ⌫ + ✏wµ

⌫

• Using definition of LT

• For terms linear in     then 

• For infinitesimal LT the matrix needs to be anti-
symmetric. This has 6 degrees of freedom, 
corresponding to the 6 transformations of the Lorentz 
group 

• Introduce basis of 6 anti-symmetric 4x4 matrices

⇢,�


