Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 7: Interacting Fields -
Wick’s theorem & Feynman

diagrams

Lecture 6 not taken place due to the UCU industrial action:

https://www.ucu.org.uk/article/10408/UCU-announces-eight-days-of-strikes-starting-this-month-at-60-universities

Today we continue from where we left Lecture 5
(Wick’s theorem)



https://www.ucu.org.uk/article/10408/UCU-announces-eight-days-of-strikes-starting-this-month-at-60-universities

QFT Wick’'s Theorem
(Recap)

 Want to compute: (f|T{H;(z1)...Hi(z,)}|i)

 Will be convenient if we can move all annihilation
operators to the right to act on \2}

* Wick’s Theorem tells us how to go from time-ordered to
normal-ordered products:
T(p1....0n] =: ¢1....05, : + : all possible contractions :

7\

defined contraction: 3(2)¢(y) = Ar(z — )

* For example 4 fields:
T(p1¢20304] = : P1P2P304 : +
Ap(xzy —x2) : ¢p3ds 1 +Ap(x1 —x3) : pada : +Ap(x1 —x4) : P23 +
Ap(ro —23) : 9104 : +Ap (T2 —24) : G103 : +AF(T3 — 24) : P12+ +
Ap(zy —x2)Ap(rs — 24) + Ap(z1 — 23)Ap(v2 — 24) + Ap(z1 — 24)Ap(x2 — 23)
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QFT Wick's Theorem

« Similar story applies for complex scalar fields. The
contractions (difference between time- and normal-

ordered products) are

A\

A\ AL

@ (W) = Ar(w—y) and  H@PE) = P @)P(y) =0

Ty(z)y' (y) = ¥ (@)Y (y) : +Ap(z — y)
Ty(x)y(y) = (x)(y) :
Ty (z)yt(y) = ¢T(z)yT(y) :



QFT Nucleon-Anti-Nucleon Scattering

« Yy — 1 : Initial and final states contain a nucleon-anti-
nucleon pair |;) = ¢f (p)bT(p2)|0)  |f) = c'(q1)b (q2)|0)

- Contribution to S-matrix at O(¢?)

(_ég) 0 / d'z dyb(as)e(an)T {1 (x) ¥(x) p(z)e" (y) ¥(y) ¢(y) } ¢! (p1)b' (p2)]0)

« Expand time-ordered product using Wick's Theorem.
Convince yourself the only term that contributes is

T (@) Y(2)dT () Y(y) : A(z — y)

« Need strings of b'c'be for overlap with initial and final
states. 4 such terms, which double up under x <> y
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QFT Nucleon-Anti-Nucleon Scattering

 Find

d*z d*y d*k e (Ey) : : : .
. . 2 —U\pP1—4q1) T —1{P2—(F2):" — 1\ P1 2 )T 1(gq1 2)
i(—ig) / CaraE o [e (P1—q1) @ ,~i(p2—a2)y | —i(P1+p2) 2, i(q1+g )y]

« Can now integrate to obtain amplitude

i(—ig)? [ : : }J 2m)* 6% (p1 +p2 — q1 — @2)

— +
s—m2+ie t—m24+1

s = (p1 +p2)2 t=(p1—aq)’

« These are ‘s-channel’ and t-channel’ interactions - each
has a simple interpretation using Feynman diagrams

« Other scattering processes such as ¥ — ¥ and ¥y — i

come from different strings of operators
5



QFT Feynman Diagrams

« Computing scattering amplitudes with Wick’s Theorem is
rather tedious

 Feynman diagrams provide a nice way of pictorially
representing the expansion of (f|S|)

« We are interested in the terms (f|S — 1|7 (i.e. not the
trivial process where no interaction occurs)

« Draw an external line for each particle in the initial and
final state (choose dotted lines for mesons, solid lines for
nucleons)

« Add an arrow to nucleons to denote charge (incoming
arrow for 1 in initial state)



QFT Feynman Rules

* For our scalar Yukawa theory join lines by trivalent

vertices //@w

Add momenta k to each line

For each vertex (—ig)(2m)*s* | > k; | where momenta
are into vertex i

For each internal line integrate the propagator




QFT Nucleon Scattering

WUl > >
f«J’a kJ'a
SisT Sis
i(—ig)? [ ! +><€ — : +@J(2W)454(p1 +p2— @1 — )

 t and u are Mandelstam variables:
t=(p1—q)'=@p2—@)" u= (pr — q2)° = (p2 — @1)?

s = (p1 +p2)2 = (q1 + 612>2 .



QFT Nucleon-Meson Scattering

P — ¢ U S

P1 —— qgi ——

L 1 1
) TP e T a1 e

* Here the exchange particle is the nucleon rather than the
meson

« Exchange particles do not satisfy the usual energy
dispersion relation (k? = m? for mesons and k* = M* for

nucleons) - we call them virtual particles 9

] T T ——



QFT Nucleon-Anti-Nucleon Scattering

@D??Z — @D?ﬁ D1 qi1 > y >
YLy -— | C
I 7 l \/ P2 ——> qQ2 ——
\( D2 q2 _< : <
i(—ig)z [S — Tnlg T e + P m12 _|_><] (2#)454(191 +P2—¢1— q2)

 If m >2M the s-channel term can diverge. However,
the meson is unstable for this mass.
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QFT Higher Order Terms

- Higher order terms can easily be considered, e.g. O(g*)

e

d1 - qd2 .

>

However, such diagrams involving loop momenta are
often divergent —9 Renormalisation (not covered in
this course) 11




QFT Connected and Amputated Diagrams

We have assumed that the initial and final states are eigenstates
of the free theory Hamiltonian. This is not quite true! However, it
can be dealt with as follows:

We consider only connected diagrams,
where every part is connected to external \/
leg. Related to the fact that the true |

vacuum of the interacting theory is not the
same as that of free theory /\

Do not consider diagrams with loops on \/

external legs. Related to the fact that one-
particle states of the interacting theory are

not the same as those of the free theory /\
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QFT Lorentz Group

So far we have only considered scalar fields

 Under a Lorentz transformation z* — (2')* = A*,z¥ these
transform as ¢(z) — ¢'(z) = ¢(A"'z) . The A~' is because

we are doing an active transformation
« Scalar fields give rise to spin-0 particles

» To describe particles with spin (i.e. they have some
intrinsic angular momentum) look at fields which have

non-trivial transformations under the Lorentz group
« E.g. avector field A*(z) — A", A”(A~'z) . This gives rise
to spin-1 particles
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QFT Lorentz Group

In general a field can transform as
¢"(x) = DIA]",, ¢" (A" )

Here DI[A])®_ is a matrix which depends on the Lorentz
transformation (LT) we are considering. It is a
representation of the Lorentz group

It has the same properties as the Lorentz group, i.e.
D[Al]D[AQ] — D[AlAQ] D[A_l] — D[A]_l

Want to find all possible representations such that these
properties are true

Look at infinitesimal transformations and study Lie
Algebra »



QFT Lorentz Group

Consider transformation A*, = ", + ew",
Using definition of LT A*,n°" A", = nt”

For terms linear in € then w"" + w"" =

For infinitesimal LT the matrix needs to be anti-

symmetric. This has 6 degrees of freedom,
corresponding to the 6 transformations of the Lorentz

group

Introduce basis of 6 anti-symmetric 4x4 matrices
(MPZ) =Pty —n7hnP”

P, o label which matrix, u, v the row/column of each

matrix 15



