## QFT

## Dr Tasos Avgoustidis

(Notes based on Dr A. Moss' lectures)


Lecture 8: Spinors \& Dirac Equation

- Consider transformation $\quad \Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\epsilon w^{\mu}{ }_{\nu}$
- Using definition of LT $\Lambda^{\mu}{ }_{\sigma} \eta^{\sigma \tau} \Lambda^{\nu}{ }_{\tau}=\eta^{\mu \nu}$
- For terms linear in $\epsilon$ then $\quad w^{\mu \nu}+w^{\nu \mu}=0$
- For infinitesimal LT the matrix needs to be antisymmetric. This has 6 degrees of freedom, corresponding to the 6 transformations of the Lorentz group
- Introduce basis of 6 anti-symmetric $4 \times 4$ matrices

$$
\left(\mathcal{M}^{\rho \sigma}\right)^{\mu \nu}=\eta^{\rho \mu} \eta^{\sigma \nu}-\eta^{\sigma \mu} \eta^{\rho \nu}
$$

- $\rho, \sigma$ label which matrix, $\mu, \nu$ the row/column of each matrix


## Lorentz Group

- Lower one index $\left(\mathcal{M}^{\rho \sigma}\right)^{\mu}{ }_{\nu}=\eta^{\rho \mu} \delta^{\sigma}{ }_{\nu}-\eta^{\sigma \mu} \delta^{\rho}{ }_{\nu}$
- Matrices are now no-longer antisymmetric on $\mu, \nu$
- Infinitesimal boosts:

$$
\left(\mathcal{M}^{01}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\mathcal{M}^{02}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\mathcal{M}^{03}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- Infinitesimal rotations:

$$
\left(\mathcal{M}^{12}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\mathcal{M}^{13}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad\left(\mathcal{M}^{23}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

## Lorentz Group

- Can write any infinitesimal LT in terms of this basis

$$
w^{\mu}{ }_{\nu}=\frac{1}{2} \Omega_{\rho \sigma}\left(\mathcal{M}^{\rho \sigma}\right)^{\mu}{ }_{\nu}
$$

- Here $\Omega_{\rho \sigma}$ are six real numbers specifying the LT
- Any finite LT can be written as $\Lambda^{\mu}{ }_{\nu}=\exp \left(\frac{1}{2} \Omega_{\rho \sigma}\left(\mathcal{M}^{\rho \sigma}\right)^{\mu}{ }_{\nu}\right)$
- The six basis matrices obey the Lie algebra

$$
\left[\mathcal{M}^{\rho \sigma}, \mathcal{M}^{\tau \nu}\right]=\eta^{\sigma \tau} \mathcal{M}^{\rho \nu}-\eta^{\rho \tau} \mathcal{M}^{\sigma \nu}+\eta^{\rho \nu} \mathcal{M}^{\sigma \tau}-\eta^{\sigma \nu} \mathcal{M}^{\rho \tau}
$$

- Here the row/column index is suppressed. This equation encapsulates the properties of the Lorentz group. We are interested in other matrices which satisfy this algebra


## Spinor Representation

- Interested in finding other representations of the Lorentz group
- The Clifford algebra is defined as $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} 1$
- $\gamma^{\mu}$ with $\mu=0,1,2,3$ are a set of 4 matrices, so

$$
\left(\gamma^{0}\right)^{2}=1 \quad\left(\gamma^{i}\right)^{2}=-1 \quad \gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu} \quad \nu \neq \mu
$$

- Simplest representation is $4 x 4$ matrices

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

- Where $\sigma^{i}$ are the Pauli matrices


## Spinor Representation

- There is a "unique" (up to a similarity transformation) irreducible representation of the Clifford algebra. These $\gamma^{\mu}$ matrices define the chiral (or Weyl) rep
- Consider the commutator of two $\gamma^{\mu}$

$$
S^{\rho \sigma}=\frac{1}{4}\left[\gamma^{\rho}, \gamma^{\sigma}\right]=\frac{1}{2} \gamma^{\rho} \gamma^{\sigma}-\frac{1}{2} \eta^{\rho \sigma}
$$

- Can show these form a representation of the Lorentz group such that

$$
\left[S^{\rho \sigma}, S^{\tau \nu}\right]=\eta^{\sigma \tau} S^{\rho \nu}-\eta^{\rho \tau} S^{\sigma \nu}+\eta^{\rho \nu} S^{\sigma \tau}-\eta^{\sigma \nu} S^{\rho \tau}
$$

## Dirac Spinor

- Introduce a Dirac spinor, a complex valued object with 4 components which transforms as

$$
\psi^{\alpha}(x) \rightarrow S[\Lambda]^{\alpha}{ }_{\beta} \psi^{\beta}\left(\Lambda^{-1} x\right)
$$

- Here $\alpha=1,2,3,4$ labels the row/column of the $S^{\mu \nu}$ matrices and

$$
\Lambda=\exp \left(\frac{1}{2} \Omega_{\rho \sigma} \mathcal{M}^{\rho \sigma}\right) \quad S[\Lambda]=\exp \left(\frac{1}{2} \Omega_{\rho \sigma} S^{\rho \sigma}\right)
$$

- Particular LT specified by $\Omega_{\rho \sigma}$ - these are the same for both $\Lambda$ and $S[\Lambda]$
- Lets look at $S[\Lambda]$ in the chiral representation


## Dirac Spinor

- For rotations $\quad S^{i j}=\frac{1}{4}\left[\gamma^{i}, \gamma^{j]}\right]=-\frac{i}{2} \frac{i j k}{}\left(\begin{array}{cc}\sigma^{k} & 0 \\ 0 & \sigma^{k}\end{array}\right)$
- Writing rotation as $\Omega_{i j}=-\epsilon_{i j k} \varphi^{k} \quad S[\Lambda]=\left(\begin{array}{cc}e^{i \varphi \sigma / 2 / 2} & 0 \\ 0 & e^{i \varphi \sigma / 2}\end{array}\right)$
- For a rotation of $\varphi=(0,0,2 \pi) \quad S[\Lambda]=\left(\begin{array}{cc}e^{i \pi \sigma^{3}} & 0 \\ 0 & e^{i \pi \sigma^{8}}\end{array}\right)=-1$
- This means that under $2 \pi$ rotations $\psi^{\alpha}(x) \rightarrow-\psi^{\alpha}(x)$ which is not what happens to a vector - different rep
- For rotations in the chiral representation $S[\Lambda]$ is unitary, i.e. $S[\Lambda]^{\dagger} S[\Lambda]=1$


## Dirac Spinor

- For boosts $\quad S^{0 i}=\frac{1}{4}\left[\gamma^{0}, \gamma^{i}\right]=\frac{1}{2}\left(\begin{array}{cc}-\sigma^{i} & 0 \\ 0 & \sigma^{i}\end{array}\right)$
- Writing boost as $\Omega_{i 0}=\chi_{i} \quad S[\Lambda]=\left(\begin{array}{cc}e^{\chi \cdot \sigma / 2} & 0 \\ 0 & e^{-\chi \cdot \sigma / 2}\end{array}\right)$
- For boosts in the chiral representation $S[\Lambda]$ is not unitary, i.e. $S[\Lambda]^{\dagger} S[\Lambda] \neq 1$
- In general there are no finite dimensional unitary representations of the Lorentz group


## Chiral Spinors

- The chiral representation of the Lorentz group is reducible. It decomposes into two irreducible representations

$$
\psi=\binom{u_{+}}{u_{-}}
$$

- 2 component objects $u_{ \pm}$are called Weyl spinors
- Under rotations $u_{ \pm} \rightarrow u_{ \pm} e^{i \varphi \cdot \sigma / 2}$
- Under boosts $u_{ \pm} \rightarrow u_{ \pm} e^{ \pm \varphi \cdot \sigma / 2}$


## Dirac Action

- Want an action which is Lorentz invariant
- Define adjoint in usual way $\psi^{\dagger}(x)=\left(\psi^{\star}\right)^{T}(x)$
- Try and form a Lorentz scalar from $\psi^{\dagger} \psi$ with the spinor index summed over
- Under LT

$$
\psi(x) \rightarrow S[\Lambda] \psi\left(\Lambda^{-1} x\right) \quad \psi^{\dagger}(x) \rightarrow \psi^{\dagger}\left(\Lambda^{-1} x\right) S[\Lambda]^{\dagger}
$$

- Therefore $\psi^{\dagger} \psi$ is not a Lorentz scalar since $S[\Lambda]$ is not unitary


## Dirac Action

- If we choose a representation of the Clifford algebra which satisfies $\left(\gamma^{0}\right)^{\dagger}=\gamma^{0} \quad\left(\gamma^{i}\right)^{\dagger}=-\gamma^{i}$ then $\gamma^{0} \gamma^{\mu} \gamma^{0}=\left(\gamma^{\mu}\right)^{\dagger}$
- Can show this gives $S[\Lambda]^{\dagger}=\gamma^{0} S[\Lambda]^{-1} \gamma^{0}$
- With this in mind define the Dirac conjugate $\bar{\psi}(x)=\psi^{\dagger}(x) \gamma^{0}$
- Can form Lorentz invariant objects from Dirac spinor and its conjugate, e.g. scalars and vectors

$$
\begin{gathered}
\bar{\psi}(x) \psi(x)=\bar{\psi}\left(\Lambda^{-1} x\right) \psi\left(\Lambda^{-1} x\right) \\
\bar{\psi}(x) \gamma^{\mu} \psi(x)=\Lambda_{\nu}^{\mu} \bar{\psi}\left(\Lambda^{-1} x\right) \gamma^{\nu} \psi\left(\Lambda^{-1} x\right)
\end{gathered}
$$

## Dirac Equation

- Can construct a Lorentz invariant action

$$
S=\int d^{4} x \bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)
$$

- After quantization this theory will describe particles of mass $m$ and spin-1/2
- Varying with respect to $\bar{\psi}$ gives the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

- First order in derivatives but Lorentz invariant
- Mixes up components of spinor but can show each individually solves Klein-Gordon equation

$$
\left(\partial_{\mu} \partial^{\mu}+m\right) \psi=0
$$

## Weyl Equation

- Let's decompose the Dirac Lagrangian into chiral spinors

$$
\mathcal{L}=\left(u_{+}^{\dagger}, u_{-}^{\dagger}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left[i\left(\begin{array}{cc}
0 & \partial_{0}+\sigma^{i} \partial_{i} \\
\partial_{0}-\sigma^{i} \partial_{i} & 0
\end{array}\right)-m\right]\binom{u_{+}}{u_{-}}
$$

$$
\mathcal{L}=i u_{-}^{\dagger} \sigma^{\mu} \partial_{\mu} u_{-}+i u_{+}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} u_{+}-m\left(u_{-}^{\dagger} u_{+}+u_{+}^{\dagger} u_{-}\right)
$$

where $\quad \sigma^{\mu}=\left(1, \sigma^{i}\right) \quad \bar{\sigma}^{\mu}=\left(1,-\sigma^{i}\right)$

- For a massless fermion the chiral spinors decouple and they satisfy the Weyl equations of motion

$$
i \sigma^{\mu} \partial_{\mu} u_{-}=0 \quad i \bar{\sigma}^{\mu} \partial_{\mu} u_{+}=0
$$

- The Lorentz transformation matrices $S[\Lambda]$ came out block diagonal in the chiral representation
- How do we define chiral spinors in a general representation of the Clifford algebra?
- Introduce the fifth gamma matrix $\gamma^{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$
- This satisfies $\left\{\gamma^{5}, \gamma^{\mu}\right\}=0 \quad\left(\gamma^{5}\right)^{2}=1$
- Define a projection operator $\quad P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma^{5}\right)$

$$
P_{ \pm}^{2}=P_{ \pm} \quad P_{+} P_{-}=0
$$

- Define chiral spinors by $\psi_{ \pm}=P_{ \pm} \psi$
- In chiral representation $\quad \psi_{+}=\binom{u_{+}}{0} \quad \psi_{-}=\binom{0}{u_{-}}$


## Symmetries

- The Dirac Lagrangian $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ enjoys a number of symmetries
- For space-time translations spinor transforms $\delta \psi=\epsilon^{\mu} \partial_{\mu} \psi$
- Lagrangian depends on $\partial_{\mu} \psi$ not $\partial_{\mu} \bar{\psi}$
- Recall previous definition of energy-momentum tensor

$$
T^{\mu \nu} \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{\nu} \phi_{a}-\eta^{\mu \nu} \mathcal{L}
$$

- Conserved currents arise when equations of motion are satisfied - can set $\mathcal{L}$ to zero
- For Dirac Lagrangian obtain $T^{\mu \nu}=i \bar{\psi} \gamma^{\mu} \partial^{\nu} \psi$


## Symmetries

- Under LT $\psi^{\alpha}(x) \rightarrow S[\Lambda]^{\alpha}{ }_{\beta} \psi^{\beta}\left(\Lambda^{-1} x\right)$
- Work infinitesimally $\Lambda_{\nu}^{\mu}=\delta^{\mu}{ }_{\nu}+w^{\mu}{ }_{\nu}$

$$
\begin{gathered}
\psi^{\alpha}(x)=\left[\delta^{\alpha}{ }_{\beta}+\frac{1}{2} \Omega_{\rho \sigma}\left(S^{\rho \sigma}\right)^{\alpha}{ }_{\beta}+\ldots\right]\left[\psi^{\beta}(x)-w^{\mu}{ }_{\nu} x^{\nu} \partial_{\mu} \psi^{\beta}(x)+\ldots\right] \\
\delta \psi^{\alpha}=-w_{\nu}^{\mu} x^{\nu} \partial_{\mu} \psi^{\alpha}+\frac{1}{2} \Omega_{\rho \sigma}\left(S^{\rho \sigma}\right)^{\alpha}{ }_{\beta} \psi^{\beta}
\end{gathered}
$$

- Remember $w^{\mu}{ }_{\nu}=\frac{1}{2} \Omega_{\rho \sigma}\left(\mathcal{M}^{\rho \sigma}\right)^{\mu}{ }_{\nu},\left(\mathcal{M}^{\rho \sigma}\right)^{\mu}{ }_{\nu}=\eta^{\rho \mu} \delta^{\sigma}{ }_{\nu}-\eta^{\sigma \mu} \delta^{\rho}{ }_{\nu}$
- This means that $w_{\mu \nu}=\Omega_{\mu \nu}$
- Obtain $\delta \psi^{\alpha}=-w^{\mu \nu}\left[x_{\nu} \partial_{\mu} \psi^{\alpha}-\frac{1}{2}\left(S_{\mu \nu}\right)^{\alpha}{ }_{\beta} \psi^{\beta}\right]$


## Symmetries

- Now apply Noether's theorem (again setting $\mathcal{L}=0$ ) to find conserved current

$$
j^{\mu}=-w^{\rho \nu}\left[x_{\nu} T_{\rho}^{\mu}-i \bar{\psi} \gamma^{\mu} S_{\rho \nu} \psi\right]
$$

- Left choice of $w^{\mu \nu}$ explicit. Strip it off to give 6 different currents

$$
\left(\mathcal{J}^{\mu}\right)^{\rho \sigma}=x^{\rho} T^{\mu \sigma}-x^{\sigma} T^{\mu \rho}-i \bar{\psi} \gamma^{\mu} S^{\rho \sigma} \psi
$$

which satisfy $\partial_{\mu}\left(\mathcal{J}^{\mu}\right)^{\rho \sigma}=0$

- After quantization the final term will be responsible for providing single particle states with internal angular momentum


## Symmetries

- Dirac Lagrangian is invariant under rotating phase of spinor $\psi \rightarrow e^{-i \alpha} \psi \quad$ or $\quad \delta \psi=-i \alpha \psi$
- This gives rise to a conserved vector current $j_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi$
- When $\mathrm{m}=0$ Lagrangian has an extra internal symmetry

$$
\psi \rightarrow e^{i \alpha \gamma^{5}} \psi \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma^{5}}
$$

- This gives rise to a conserved axial current $j_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$
- This conserved quantity does not survive the quantization process - an example of anomaly


## Plane Wave Solutions

- Want to solve $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
- Make the ansatz $\psi=u(\mathbf{p}) e^{-i p \cdot x}$
- In chiral representation Dirac equation becomes

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u(\mathbf{p})=\left(\begin{array}{cc}
-m & p_{\mu} \sigma^{\mu} \\
p_{\mu} \bar{\sigma}^{\mu} & -m
\end{array}\right) u(\mathbf{p})=0
$$

where $\quad \sigma^{\mu}=\left(1, \sigma^{i}\right) \quad \bar{\sigma}^{\mu}=\left(1,-\sigma^{i}\right)$

- Use identity $(p \cdot \sigma)(p \cdot \bar{\sigma})=p_{0}^{2}-p_{i} p_{j} \sigma^{i} \sigma^{j}=p_{0}^{2}-p_{i} p^{i}=m^{2}$
- Can easily check the solution is $u(\mathbf{p})=\binom{\sqrt{p \cdot \sigma} \xi}{\sqrt{p \cdot \bar{\sigma}} \xi}$
- Here $\xi$ is a two-component spinor


## Plane Wave Solutions

- Also negative frequency solutions $\psi=v(\mathbf{p}) e^{i p \cdot x}$
with $\quad v(\mathbf{p})=\binom{\sqrt{p \cdot \sigma} \eta}{-\sqrt{p \cdot \bar{\sigma}} \eta}$
- Will be convenient to introduce a basis

$$
\xi^{r \dagger} \xi^{s}=\delta^{r s} \quad \eta^{r \dagger} \eta^{s}=\delta^{r s}
$$

- For example $\xi^{1}=\binom{1}{0} \quad \xi^{2}=\binom{0}{1}$

