Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture 8: Spinors & Dirac Equation




QFT Lorentz Group
(Recap)

Consider transformation A", = §*, + ew”,

* Using definition of LT A*,n°" A", = n""
 Fortermslinearin € then wH*” 4+ w"* =

* Forinfinitesimal LT the matrix needs to be anti-

symmetric. This has 6 degrees of freedom,
corresponding to the 6 transformations of the Lorentz

group
 Introduce basis of 6 anti-symmetric 4x4 matrices
(MPZ) =Pty —n7hnP”
* p,0 label which matrix, u,v the row/column of each
matrix 2



S Lorentz Group

Lower one index (MP)H =nPrs?, —n7to”,
 Matrices are now no-longer antisymmetric on u,v
* Infinitesimal boosts:

0100 (0010) (0001 )
0000 0000
(MOl)MV: 1000 (MOQ)MV: (MOB)M,/:
0000 1000 0000
P \0000) \1000)
* Infinitesimal rotations:

000 0
00 0 0 000 0 ( \

12\ 00 —-10 (Mlg)‘u _ 000—1 (M23)'U’V_ 000 O
M= 01 0 0 " looo o 000 —1
00 0 0 \0 10 0 \001 0 )



QFT Lorentz Group

« Can write any infinitesimal LT in terms of this basis
1

wh = §ng(/\/lp“)“y

« Here (,, are six real numbers specifying the LT
* Any finite LT can be written as  A*, = exp (%Qpawpa)“y)

« The six basis matrices obey the Lie algebra
[MpO’)MTV] — naTMpV . inMau + npl/MO’T . T}O'I/MpT

* Here the row/column index is suppressed. This equation
encapsulates the properties of the Lorentz group. We are
interested in other matrices which satisfy this algebra
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QFT Spinor Representation

* Interested in finding other representations of the Lorentz
group
« The Clifford algebra is defined as {7",7"} = 2n*"1

« v* with ©=0,1,2,3 are a set of 4 matrices, so
() =1 () =-1 Y =" v
« Simplest representation is 4x4 matrices

0 (O 1) ; ( 0 o’i)
Y= Y= ,
10 —o' 0

e Where o' are the Pauli matrices



QFT Spinor Representation

There is a “unique” (up to a similarity transformation)
irreducible representation of the Clifford algebra.
These ¥" matrices define the chiral (or Weyl) rep

Consider the commutator of two "

1 11
S°7 = 1" = 50" = gn”

g

Can show these form a representation of the Lorentz
group such that

[Spa7 STI/] _ naTSpl/ . UPTSUV + anSO‘T . UJVSpT
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QFT

Dirac Spinor

 Introduce a Dirac spinor, a complex valued object with 4
components which transforms as

Y (a) — S[A]%5 ¢ (A" )

« Here a=1,2,3,4 labels the row/column of the S

matrices and

1
A =exp (%Qp(,/\/lpa) S[A] = exp <§QPJSW>

» Particular LT specified by (2, - these are the same for

both A and S

- Lets look at S|

_A_
A

In the chiral representation



QFT Dirac Spinor

. > 1. . . L ok 0
For rotations 5V = _[y',+/] = _%Ew ( )

1po/2
Writing rotation as  Q;; = —e;i10"  S[A] = (M ! )

« For arotation of ¢ =1(0,0,27w) S[A]= (WU SU) =1
« This means that under 27 rotations v%(z) — —¢“(z)

which is not what happens to a vector - different rep

« For rotations in the chiral representation S|A| is unitary,
i.e. S[A]'S[A] =1



QFT Dirac Spinor

For boosts s% = lh‘)mi] _ 1 ( - O. )

0 e xo/2

. exo/2
« Writing boostas 0 = i S[A] = ( )

* For boosts in the chiral representation S|A] is not
unitary, i.e. S[A]TS[A] # 1

* In general there are no finite dimensional unitary
representations of the Lorentz group



QFT Chiral Spinors

* The chiral representation of the Lorentz group is
reducible. It decomposes into two irreducible

representations ( )
U4

« 2 component objects u+ are called Weyl spinors

. Under rotations w4 — uye? /2

. Under boosts  uy — uye™?7/?
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QFT Dirac Action

 \Want an action which is Lorentz invariant
» Define adjoint in usual way ¢'(z) = (¢*)? ()

« Try and form a Lorentz scalar from T with the spinor
Index summed over

« Under LT
Y(z) = SA] (A ) ¢i(z) = T(A 2) S[A]T

+ Therefore 'y is not a Lorentz scalar since S[A] is

not unitary
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QFT Dirac Action

» If we choose a representation of the Clifford algebra
which satisfies (/°)T =+° (v')T=—" then A%4#70 = (44T

 Can show this gives S[A]" =~°S[A] 714"
» With this in mind define the Dirac conjugate 1 (z) = T (2)7°

« Can form Lorentz invariant objects from Dirac spinor and
its conjugate, e.g. scalars and vectors

V() (z) = (A 2)Pp(A x)
(z)yp(z) = A (A )y (A 1)
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QFT Dirac Equation

Can construct a Lorentz invariant action
S = /d4:1: () (iv"0, —m) P(x)
After quantization this theory will describe particles of

mass m and spin-1/2
Varying with respect to 1) gives the Dirac equation

(19" 0y —m)P(x) =0

First order in derivatives but Lorentz invariant

Mixes up components of spinor but can show each
individually solves Klein-Gordon equation

(0,0" +m)y =0
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QFT Weyl Equation

» Let's decompose the Dirac Lagrangian into chiral spinors

£l ul) 01 0  Og+00 R
10 80—01'8@- 0 Uu—

L= iul oo u_ + iul&“@umr —m(uluy + ulu_)

where " = (1,0") o&" =(1,—0")

For a massless fermion the chiral spinors decouple
and they satisfy the Weyl equations of motion

ia“@uu_ =0 7:5’“(9”“4_ = ()
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QFT 75

The Lorentz transformation matrices S|A] came out
block diagonal in the chiral representation

How do we define chiral spinors in a general
representation of the Clifford algebra?
0.1,.2, 3

Introduce the fifth gamma matrix 75 = — 1y Yy
This satisfies {7y°,7*} =0 (7°)* =1

(1£+°)

Define a projection operator Py = %

P =P, P.P_=0
Define chiral spinors by ¢4 = P

u_—

In chiral representation v, - <u0+) Yo = ( ! )
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QFT Symmetries

The Dirac Lagrangian £ = (i7", —m)y enjoys a
number of symmetries

For space-time translations spinor transforms 0y = €/0,v¢

Lagrangian depends on 0,1 not 9,1

Recall previous definition of energy-momentum tensor

oL
TH = O’ ¢, — ' L
00,00 7 "
Conserved currents arise when equations of motion
are satisfied - can set L to zero

For Dirac Lagrangian obtain T+" = )" 9" 1)
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QFT Symmetries

+ Under LT ¢*(z) — S[A]* 5" (A~ ")
« Work infinitesimally A*, = 6", + w",

Y (x) = [0%5 + %QPJ(SPU)O‘B + ... [wﬁ(x) — wh " Mwﬁ(l‘) + .. ]

1
SY* = —w! 2" 0 + £ Qo (577)% 51

1
 Remember w*, = 5Qp(,(/\/lp")“,/, (MPOYE = nPr§?, —n7HsP,
« This meansthat w,, =€,

» Obtain oY~ = —wh” [xuau¢a - %(Suv)agwﬁ]
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QFT Symmetries

* Now apply Noether’s theorem (again setting £ =0 ) to
find conserved current

j'u = —w" [le/T'up - Z&W“Spu%ﬂ

« Left choice of w"” explicit. Strip it off to give 6 different
currents (j,u)pa — pPTHO _ pOTHP _ Z-lz,y,uspaw

which satisfy 9,,(J*)?° =0

« After quantization the final term will be responsible
for providing single particle states with internal

angular momentum
18



QFT Symmetries

- Dirac Lagrangian is invariant under rotating phase of
spinor Y — e Y or oY = —iay

* This gives rise to a conserved vector current ji, = Pyt

 When m=0 Lagrangian has an extra internal symmetry
. 5 — — . 5
w % e’LOA’Y Zp w % we’l,()é’y
. . . . A I V5
 This gives rise to a conserved axial current Ja = ¥7"7"Y

« This conserved quantity does not survive the
quantization process - an example of anomaly
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QFT Plane Wave Solutions

- Want to solve ("9, — m)yY =0

« Make the ansatz ¢ = u(p)e "P*
* |In chiral representation Dirac equation becomes
_ o
(Y¥p,, — m)u(p) = ( b ) u(p) =0
puot —m
where " =(1,0") &"=(1,—0")
- Use identity (p-0)(p-5) = pp — pipjo’o? = pg —pip’ = m’
. Can easily check the solution is u(p)= | V* °¢
VP -o¢
« Here ¢ is a two-component spinor
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QFT Plane Wave Solutions

+ Also negative frequency solutions 1) = v(p)e’?™®

with v(p)( Ve )
—\/P-on

 Will be convenient to introduce a basis
57“[53 — 7S 777”[775 — &7

« For example £1<(1)> 52((1)>
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