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(Notes based on Dr A. Moss’ lectures)

Lecture 9: Quantization of Dirac Field
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(i�µ@µ �m) = 0

 = u(p)e�ip·x

(p · �)(p · �̄) = p20 � pipj�
i�j = p20 � pip

i = m2

Recap: Plane Wave  
Solutions of Dirac eqn

• Want to solve 

2

• Make the ansatz 
• In chiral representation Dirac equation becomes 
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• Can easily check the solution is
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• Use identity

• Here     is a two-component spinor ⇠
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 = v(p)eip·x

⇠r †⇠s = �rs ⌘r †⌘s = �rs

Plane Wave Solutions
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• Also negative frequency solutions 

    with
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• Will be convenient to introduce a basis 

• For example
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• Note this does not involve the time derivative. True for 
equations of motion first order in derivatives - only need 
to specify     ,       on initial time slice 
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L =  ̄(i�µ@µ �m) 

⇡ =
@L
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= i ̄�0 = i †

  †

Dirac Field

• We will now quantize the Dirac field. Recall
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• Will proceed as for scalar field. Define conjugate 
momentum

• Four real degrees of freedom (will end up being spin up 
and spin down for particle and anti-particle)
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Dirac Field

• Try imposing equal-time commutation relations
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• No factor of i due to definition of conjugate momentum 
• Expand field as sum of plane waves 
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• Operators            create particles associated with 

• Operators            create particles associated with 
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Dirac Field
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• The equal-time commutation relations then imply 

• All other commutators vanish. The minus sign will be 
disastrous for our theory 
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• Lets now compute the Hamiltonian of the theory
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• Make use of inner product relations

• Find
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• After normal ordering (will keep in the vacuum 
contribution for now)
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• Minus sign is disastrous - Hamiltonian is unbounded 
below 

• What we missed: Spin 1/2 particles are fermions - by 
applying commutation relations we are missing the minus 
sign under the exchange of two particles 



QFT Fermionic Quantization
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• To have states obeying Fermi-Dirac statistics we need to 
impose equal time anti-commutation relations 
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with all other anti-commutators vanishing 



• After normal ordering (again keeping the vacuum 
contribution)
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• Hamiltonian is now bounded from below  

• Note although we typically throw away the vacuum 
contribution it has the opposite sign to bosons. These 
could in principle partially cancel!

(cf. Cosmological Constant Problem and  
 attempts to address it through Supersymmetry)



• Use to construct tower of energy eigenstates  
• Define one-particle states by                 and  
• Index s tells us the spin 
• Note that if                                                 then                                                                           

• Define vacuum to satisfy 
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Particle States 
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• Can check following commutation relations

• Particles obey Fermi-Dirac statistics 
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Causality 

• We will show that (suppressing indices)
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• Define the propagator (4x4 matrix)

• Use outer product relation

                                                    ,
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Causality 

• Similarly find
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• We can now write the anti-commutator 

• (Compare to bosonic case) 

• It is now the anti-commutator that vanishes for space-like 
separations!   

• Causality? This is enough to guarantee causality as 
observables are bilinears of fermionic fields. 



• Note the important minus sign in the time-ordered product 
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Feynman Propagator 

• Define the Feynman propagator 
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(x� y) = h0|T (x) ¯ (y)|0i =
(
h0| (x) ¯ (y)|0i, if x0 > y0

h0|� ¯ (y) (x)|0i, if y0 > x0 (35)

• This has the 4-momentum integral expression

• Can show                                                     where                                
is the Feynman propagator in the bosonic case
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: cc† := �c†c

Wick’s Theorem 

• Following same procedure as in bosonic case define the 
contraction of two operators to be the difference between 
time and normal ordering 
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• At least away from singularities, the propagator satisfies

(i /∂x − m)S(x − y) = 0 (5.32)

which follows from the fact that ( /∂
2
x + m2)D(x − y) = 0 using the mass shell

condition p2 = m2.

5.5 The Feynman Propagator

By a similar calculation to that above, we can determine the vacuum expectation value,

⟨0|ψα(x)ψ̄β(y) |0⟩ =

∫
d3p

(2π)3

1

2Ep⃗

( /p + m)αβ e−ip·(x−y)

⟨0| ψ̄α(y)ψβ(x) |0⟩ =

∫
d3p

(2π)3

1

2Ep⃗

( /p − m)αβ e+ip·(x−y) (5.33)

We now define the Feynman propagator SF (x − y), which is again a 4 × 4 matrix, as
the time ordered product,

SF (x − y) = ⟨0|Tψ(x)ψ̄(y) |0⟩ ≡

{

⟨0|ψ(x)ψ̄(y) |0⟩ x0 > y0

⟨0|− ψ̄(y)ψ(x) |0⟩ y0 > x0
(5.34)

Notice the minus sign! It is necessary for Lorentz invariance. When (x−y)2 < 0, there is
no invariant way to determine whether x0 > y0 or y0 > x0. In this case the minus sign is
necessary to make the two definitions agree since {ψ(x), ψ̄(y)} = 0 outside the lightcone.

We have the 4-momentum integral representation for the Feynman propagator,

SF (x − y) = i

∫
d4p

(2π)4
e−ip·(x−y) γ · p + m

p2 − m2 + iϵ
(5.35)

which satisfies (i /∂x − m)SF (x − y) = iδ(4)(x − y), so that SF is a Green’s function for

the Dirac operator.

The minus sign that we see in (5.34) also occurs for any string of operators inside
a time ordered product T (. . .). While bosonic operators commute inside T , fermionic

operators anti-commute. We have this same behaviour for normal ordered products as
well, with fermionic operators obeying : ψ1ψ2 := − : ψ2ψ1 :. With the understanding

that all fermionic operators anti-commute inside T and ::, Wick’s theorem proceeds
just as in the bosonic case. We define the contraction

︷ ︸︸ ︷

ψ(x)ψ̄(y) = T (ψ(x)ψ̄(y))− : ψ(x)ψ̄(y) : = SF (x − y) (5.36)

– 114 –

• Fermionic operators anti-commute inside time-ordering T

• The same is true for normal ordering, e.g. 
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• Note that now:                 ,              , 
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@µ�@

µ�� 1
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m2�2 +  ̄ (i�µ@µ �M) � g� ̄ 

[ ] = 3/2 [M ] = 1 [g] = 0

Yukawa Model

• Let’s revisit the toy Yukawa model but now describe the 
nucleons as fermions 
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Nucleon-Anti-Nucleon ScatteringQFT

•                : Initial and final state contains a nucleon-anti-
nucleon pair                                  , 

:  ̄(x) (x) ̄(y) (y) : ��
F (x� y)

  ̄ !   ̄
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r2 †(q2)|0i
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2
h0|

Z
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x d

4
y c

r2(q2)b
r1(q1)T

�
 ̄(x) (x)�(x) ̄(y) (y)�(y)

 
b

s1 †(p1)c
s2 †(p2)|0i
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• Contribution to S-matrix at O(g2)

• As in bosonic case only term which contributes in time-
ordered product is

• Have to be careful with spinor indices - calculation is 
quite tedious (try it!)


