Timescape Cosmology: Modifying the Geometry of the Universe

David L. Wiltshire (University of Canterbury, NZ)

DLW: Class. Quan. Grav. 28 (2011) 164006

New J. Phys. 9 (2007) 377

Phys. Rev. Lett. 99 (2007) 251101

Phys. Rev. D78 (2008) 084032

Phys. Rev. D80 (2009) 123512

B.M. Leith, S.C.C. Ng & DLW:

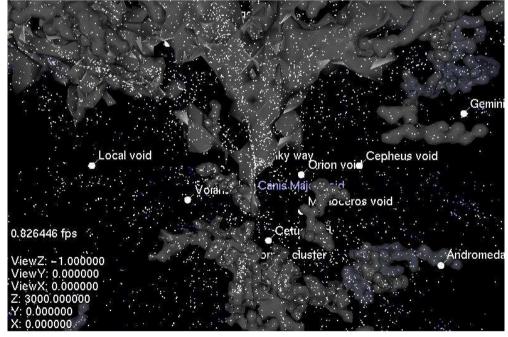
ApJ 672 (2008) L91

P.R. Smale & DLW, **MNRAS 413 (2011) 367**

P.R. Smale, MNRAS 418 (2011) 2779

DLW, P.R. Smale, T. Mattsson & R. Watkins, arXiv:1201.5371

J.A.G. Duley, M.A. Nazer & DLW: arXiv:1306.3208



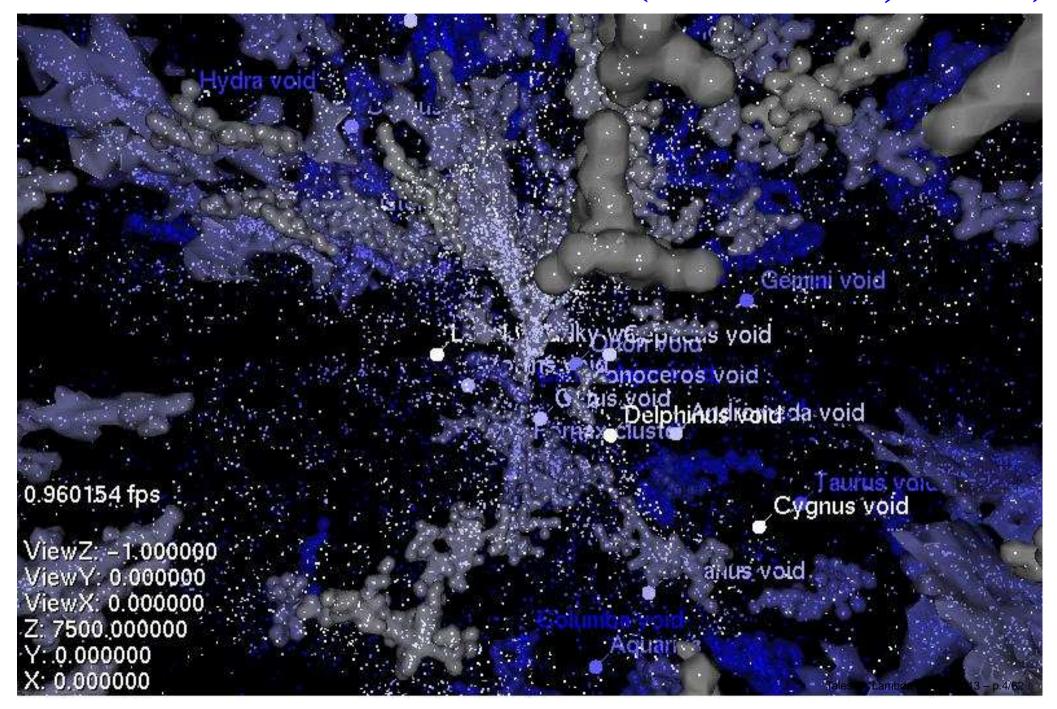
What is "dark energy"?

- Usual explanation: a homogeneous isotropic form of "stuff" which violates the strong energy condition. (Locally pressure $P=w\rho c^2,\,w<-\frac{1}{3}$.) Best-fit close to cosmological constant, $\Lambda,\,w=-1$.
- Cosmic coincidence: Why now? Why $\Omega_{\Lambda0} \sim 2\Omega_{M0}$, so that a universe which has been decelerating for much of its history began accelerating only at $z\sim0.7$?
- Onset of acceleration coincides also with the nonlinear growth of large structures. Are we oversimplifying the geometry?
- My answer, Timescape scenario: Dark energy is a misidentification of gradients in quasilocal kinetic energy of expansion of space.

From smooth to lumpy

- Universe was very smooth at time of last scattering; fluctuations in the fluid were tiny ($\delta \rho/\rho \sim 10^{-5}$ in photons and baryons; $\sim 10^{-4}$, 10^{-3} in non–baryonic dark matter).
- FLRW approximation very good early on.
- Universe is very lumpy or inhomogeneous today.
- PRECENT Surveys estimate that 40–50% of the volume of the universe is contained in voids of diameter $30h^{-1}$ Mpc. [Hubble constant $H_0=100h$ km/s/Mpc] (Hoyle & Vogeley, ApJ 566 (2002) 641; 607 (2004) 751)
- Add some larger voids, and many smaller minivoids, and the universe is *void—dominated* at present epoch.
- Clusters of galaxies are strung in filaments and bubbles around these voids.

6df: voids & bubble walls (A. Fairall, UCT)



Fitting problem (Ellis 1984)

On what scale are Einstein's field equations (EFEs) valid?

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- Scale on which matter fields are coarse—grained to produce the energy—momentum tensor on r.h.s. not prescribed
- general relativity only well tested for isolated systems e.g., solar system or binary pulsars for which $T_{\mu\nu}=0$
- Usual approach: FLRW + Newtonian-style potentials evolved into nonlinear regime by N-body simulations
- Other approaches: cut and paste exact solutions, e.g., Einstein-Straus vacuole (1946) → Swiss cheese models; LTB vacuoles → meatball models

Layers of coarse-graining in cosmology

- 1. Atomic, molecular, ionic or nuclear particles coarse-grained as fluid in early universe, voids, stars etc
- Collapsed objects stars, black holes coarse-grained as isolated objects;
- 3. Stellar systems coarse-grained as dust particles within galaxies;
- 4. Galaxies coarse-grained as dust particles within clusters;
- 5. Clusters of galaxies as bound systems within expanding walls and filaments;
- 6. Voids, walls and filaments combined as regions of different densities in a smoothed out expanding cosmological fluid.

Dilemma of gravitational energy...

In GR spacetime carries energy & angular momentum

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- On account of the strong equivalence principle, $T_{\mu\nu}$ contains localizable energy–momentum only
- Kinetic energy and energy associated with spatial curvature are in $G_{\mu\nu}$: variations are "quasilocal"!
- Newtonian version, T U = -V, of Friedmann equation

$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} = \frac{8\pi G\rho}{3}$$

where
$$T=\frac{1}{2}m\dot{a}^2x^2$$
, $U=-\frac{1}{2}kmc^2x^2$, $V=-\frac{4}{3}\pi G\rho a^2x^2m$; ${\bf r}=a(t){\bf x}$.

What is a cosmological particle (dust)?

- In FLRW one takes observers "comoving with the dust"
- Traditionally galaxies were regarded as dust. However,
 - Neither galaxies nor galaxy clusters are homogeneously distributed today
 - Dust particles should have (on average) invariant masses over the timescale of the problem
- Must coarse-grain over expanding fluid elements larger than the largest typical structures
- ASIDE: Taking galaxies as dust leads to flawed argument against backreaction (Peebles 0910.5142)

$$\Phi_{
m Newton}({
m galaxy}) \sim v_{
m gal}^2/c^2 \sim 10^{-6}$$

∆CDM self-consistent; but galaxies, clusters do not justify FLRW background

Largest typical structures

Survey	Void diameter	Density contrast
PSCz	$(29.8 \pm 3.5)h^{-1}{\rm Mpc}$	$\delta_{\rho} = -0.92 \pm 0.03$
UZC	$(29.2 \pm 2.7) h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.96 \pm 0.01$
2dF NGP	$(29.8 \pm 5.3) h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$
2dF SGP	$(31.2 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole (NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More recent results of Pan et al. (2011) using SDSS Data Release 7 similar.

- Particle size should be a few times greater than largest typical structures (voids with $\delta_{\rho} \equiv (\rho \bar{\rho})/\bar{\rho}$ near -1)
- Coarse grain dust "particles" fluid elements at Scale of Statistical Homogeneity (SSH) $\sim 100/h$ Mpc

Coarse-graining at SSH

- In timescape model we will coarse-grain "dust" at SSH
- Scale at which fluid cell properties from cell to cell remain similar on average throughout evolution of universe
- Notion of "comoving with dust" will require clarification
- Variance of expansion etc relates more to internal degrees of freedom of fluid particle than differences between particles
- Coarse-graining over internal gravitational degrees of freedom means that we no longer deal with a single global geometry: description of geometry is statistical

Averaging and backreaction

• In general $\langle G^{\mu}_{\nu}(g_{\alpha\beta})\rangle \neq G^{\mu}_{\nu}(\langle g_{\alpha\beta}\rangle)$

Three approaches

- Perturbative schemes about a given background geometry;
- 2. Spacetime averages (e.g., Zalaletdinov);
- 3. Spatial averages on hypersurfaces based on a 1+3 foliation (e.g., Buchert).
- Perturbative schemes deal with weak backreaction
- Approaches 2 and 3 can be fully nonlinear giving strong backreaction
- No obvious way to average tensors on a manifold, so extra assumptions or structure needed

Buchert averaging

• Average scalar quantities only on domain in spatial hypersurface $\mathcal{D} \in \Sigma_t$; e.g.,

$$\langle \mathcal{R} \rangle \equiv \left(\int_{\mathcal{D}} d^3 x \sqrt{^3g} \mathcal{R}(t, \mathbf{x}) \right) / \mathcal{V}(t)$$

where
$$\mathcal{V}(t) = \int_{\mathcal{D}} \mathrm{d}^3 x \sqrt{^3g}$$
, $^3g \equiv \det(^3g_{ij}) = -\det(^4g_{\mu\nu})$.

• Now
$$\sqrt{^3\!g}\,\theta=\sqrt{-^4\!g}\,
abla_\mu U^\mu=\partial_\mu(\sqrt{-^4\!g}\,U^\mu)=\partial_t(\sqrt{^3\!g})$$
, so $\langle\theta\rangle=\left(\partial_t\mathcal{V}\right)/\mathcal{V}$

• Generally for any scalar Ψ , get commutation rule

$$\partial_t \langle \Psi \rangle - \langle \partial_t \Psi \rangle = \langle \Psi \theta \rangle - \langle \theta \rangle \langle \Psi \rangle = \langle \Psi \delta \theta \rangle = \langle \theta \delta \Psi \rangle = \langle \delta \Psi \delta \theta \rangle$$

where
$$\delta\Psi \equiv \Psi - \langle\Psi\rangle$$
, $\delta\theta \equiv \theta - \langle\theta\rangle$.

Buchert-Ehlers-Carfora-Piotrkowska -Russ-Soffel-Kasai-Börner equations

For irrotational dust cosmologies, with energy density, $\rho(t,\mathbf{x})$, expansion scalar, $\theta(t,\mathbf{x})$, and shear scalar, $\sigma(t,\mathbf{x})$, where $\sigma^2 = \frac{1}{2}\sigma_{\mu\nu}\sigma^{\mu\nu}$, defining $3\dot{a}/\bar{a} \equiv \langle\theta\rangle$, we find average cosmic evolution described by exact Buchert equations

(1)
$$3\frac{\dot{a}^2}{\bar{a}^2} = 8\pi G\langle\rho\rangle - \frac{1}{2}\langle\mathcal{R}\rangle - \frac{1}{2}\mathcal{Q}$$
(2)
$$3\frac{\ddot{a}}{\bar{a}} = -4\pi G\langle\rho\rangle + \mathcal{Q}$$
(3)
$$\partial_t\langle\rho\rangle + 3\frac{\dot{a}}{\bar{a}}\langle\rho\rangle = 0$$
(4)
$$\partial_t\left(\bar{a}^6\mathcal{Q}\right) + \bar{a}^4\partial_t\left(\bar{a}^2\langle\mathcal{R}\rangle\right) = 0$$

$$\mathcal{Q} \equiv \frac{2}{3}\left(\langle\theta^2\rangle - \langle\theta\rangle^2\right) - 2\langle\sigma^2\rangle$$

Backreaction in Buchert averaging

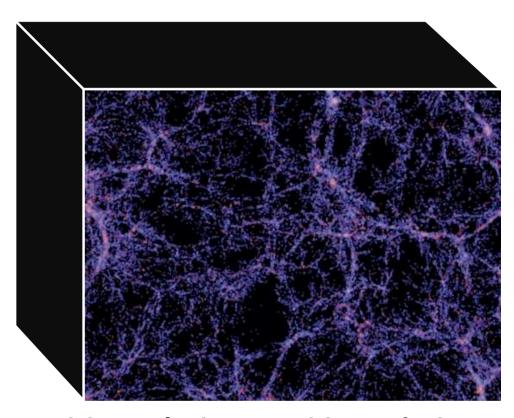
Kinematic backreaction term can also be written

$$Q = \frac{2}{3} \langle (\delta \theta)^2 \rangle - 2 \langle \sigma^2 \rangle$$

i.e., combines variance of expansion, and shear.

- Eq. (6) is required to ensure (3) is an integral of (4).
- Buchert equations look deceptively like Friedmann equations, but deal with statistical quantities
- The extent to which the back-reaction, Q, can lead to apparent cosmic acceleration or not has been the subject of much debate (e.g., Ishibashi & Wald 2006):
 - How do statistical quantities relate to observables?
 - What about the time slicing?
 - How big is Q given reasonable initial conditions?

Within a statistically average cell

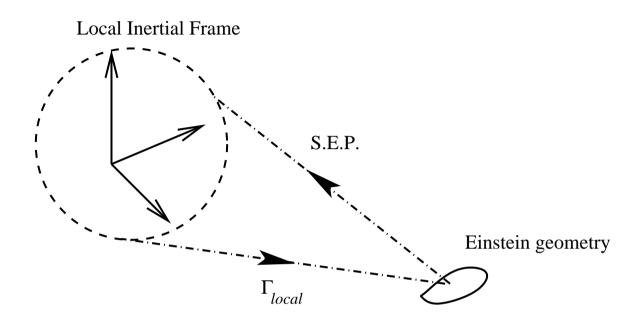


- ▶ Need to consider relative position of observers over scales of tens of Mpc over which $\delta \rho/\rho \sim -1$.
- GR is a local theory: gradients in spatial curvature and gravitational energy can lead to calibration differences between our rulers & clocks and volume average ones

The Copernican principle

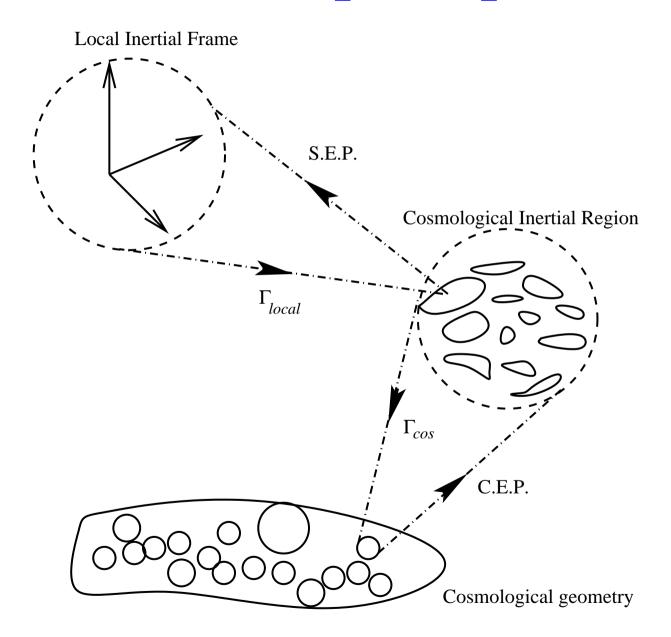
- Retain Copernican Principle we are at an average position for observers in a galaxy
- Observers in bound systems are not at a volume average position in freely expanding space
- By Copernican principle other average observers should see an isotropic CMB
- BUT nothing in theory, principle nor observation demands that such observers measure the same mean CMB temperature nor the same angular scales in the CMB anisotropies
- Average mass environment (galaxy) can differ significantly from volume—average environment (void)

Back to first principles...



- Need to address Mach's principle: "Local inertial frames are determined through the distributions of energy and momentum in the universe by some weighted average of the apparent motions"
- Need to separate non-propagating d.o.f., in particular regional density, from propagating modes: shape d.o.f.

Back to first principles...



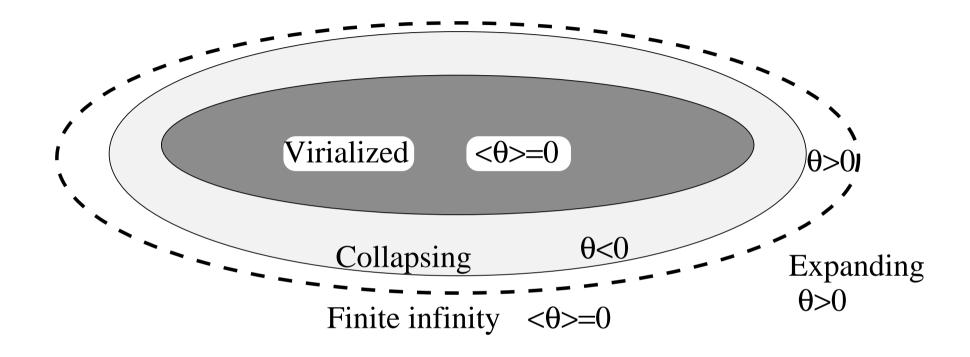
Cosmological Equivalence Principle

In cosmological averages it is always possible to choose a suitably defined spacetime region, the cosmological inertial region, in which average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$ds_{CIF}^2 = a^2(\eta) \left[-d\eta^2 + dr^2 + r^2 d\Omega^2 \right],$$

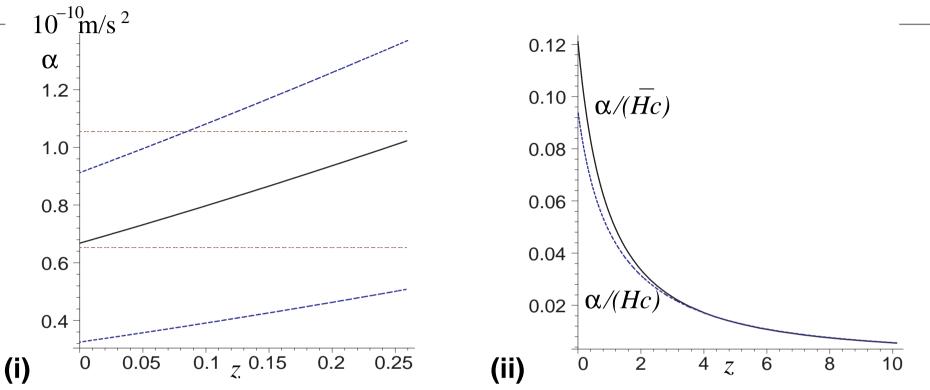
- Defines Cosmological Inertial Frame (CIF)
- Accounts for regional average effect of density in terms of frames for which the state of rest in an expanding space is indistinguishable from decelerating expansion of particles moving in a static space

Finite infinity



- Define *finite infinity*, "*fi*" as boundary to *connected* region within which *average expansion* vanishes $\langle \theta \rangle = 0$ and expansion is positive outside.
- Shape of fi boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Relative deceleration scale



By cosmological equivalence principle the instantaneous relative deceleration of backgrounds gives an instantaneous 4-acceleration of magnitude $\alpha=H_0c\bar{\gamma}\dot{\bar{\gamma}}/(\sqrt{\bar{\gamma}^2-1})$ beyond which weak field cosmological general relativity will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

• Relative volume deceleration of expanding regions of different local density/curvature, leads cumulatively to canonical clocks differing by $\mathrm{d}t = \bar{\gamma}_\mathrm{w}\,\mathrm{d}\tau_\mathrm{w}$

Two/three scale model

• Split spatial volume $\mathcal{V}=\mathcal{V}_i \bar{a}^3$ as disjoint union of negatively curved void fraction with scale factor $a_{\rm v}$ and spatially flat "wall" fraction with scale factor $a_{\rm w}$.

$$\bar{a}^3 = f_{wi}a_w^3 + f_{vi}a_v^3 \equiv \bar{a}^3(f_w + f_v)$$
 $f_w \equiv f_{wi}a_w^3/\bar{a}^3, \qquad f_v \equiv f_{vi}a_v^3/\bar{a}^3$

• $f_{vi} = 1 - f_{wi}$ is the fraction of present epoch horizon volume which was in uncompensated underdense perturbations at last scattering.

$$\bar{H}(t) = \frac{\dot{\bar{a}}}{\bar{a}} = f_{\rm w}H_{\rm w} + f_{\rm v}H_{\rm v}; \qquad H_{\rm w} \equiv \frac{1}{a_{\rm w}}\frac{\mathrm{d}a_{\rm w}}{\mathrm{d}t}, \quad H_{\rm v} \equiv \frac{1}{a_{\rm v}}\frac{\mathrm{d}a_{\rm v}}{\mathrm{d}t}$$

Here t is the Buchert time parameter, considered as a collective coordinate of dust cell coarse-grained at SSH.

Phenomenological lapse functions

- According to Buchert average variance of θ will include internal variance of $H_{\rm w}$ relative to $H_{\rm v}$. Note $h_r \equiv H_{\rm w}/H_{\rm v} < 1$.
- Buchert time, t, is measured at the volume average position: locations where the local Ricci curvature scalar is the same as horizon volume average
- In timescape model, rates of wall and void centre observers who measure an isotropic CMB are fixed by the uniform quasilocal Hubble flow condition, i.e.,

$$\frac{1}{\bar{a}}\frac{\mathrm{d}\bar{a}}{\mathrm{d}t} = \frac{1}{a_\mathrm{w}}\frac{\mathrm{d}a_\mathrm{w}}{\mathrm{d}\tau_\mathrm{w}} = \frac{1}{a_\mathrm{v}}\frac{\mathrm{d}a_\mathrm{v}}{\mathrm{d}\tau_\mathrm{v}}; \qquad \text{or} \qquad \bar{H}(t) = \bar{\gamma}_\mathrm{w}H_\mathrm{w} = \bar{\gamma}_\mathrm{v}H_\mathrm{v}$$

where
$$\bar{\gamma}_{\rm v}=\frac{{
m d}t}{{
m d}\tau_{\rm v}}$$
, $\bar{\gamma}_{\rm w}=\frac{{
m d}t}{{
m d}\tau_{\rm w}}=1+(1-h_r)f_v/h_r$, are phenomenological lapse functions (NOT ADM lapse).

Other ingredients

- $\langle \mathcal{R} \rangle = k_v / a_{\rm v}^{\ 3} = k_{\rm v} f_{\rm vi}^{\ 2/3} f_{\rm v}^{\ 1/3} / \bar{a}^3 \ {\rm since} \ k_{\rm w} = 0$
- Assume that average shear in SSH cell vanishes; more precisely neglect *Q within* voids and walls separately

$$\langle \delta \theta^2 \rangle_{\rm w} = \frac{3}{4} \langle \sigma^2 \rangle_{\rm w} \qquad \langle \delta \theta^2 \rangle_{\rm v} = \frac{3}{4} \langle \sigma^2 \rangle_{\rm v}$$

Justification: for spherical voids expect $\langle \sigma^2 \rangle = \langle \omega^2 \rangle = 0$; for walls expect $\langle \sigma^2 \rangle$ and $\langle \omega^2 \rangle$ largely self-canceling.

Only remaining backreaction is variance of relative volume expansion of walls and voids

volume expansion of walls and voids
$$2\dot{f}_{\rm v}^2$$
 $\mathcal{Q}=6f_{\rm v}(1-f_{\rm v})\left(H_{\rm v}-H_{\rm w}\right)^2=\frac{2\dot{f}_{\rm v}^2}{3f_{\rm v}(1-f_{\rm v})}$

- Solutions known for: dust (DLW 2007);
 - dust + Λ (Viaggiu, 2012), taking $\bar{\gamma}_{\rm w} = \bar{\gamma}_{\rm v} = 1$;
 - dust + radiation (Duley, Nazer + DLW, 1306.3208)

Bare cosmological parameters

■ Buchert equations for volume averaged observer, with $f_{\rm v}(t)=f_{\rm vi}a_{\rm v}^{\ 3}/\bar{a}^3$ (void volume fraction) and $k_{\rm v}<0$

$$\bar{\Omega}_M + \bar{\Omega}_R + \bar{\Omega}_k + \bar{\Omega}_Q = 1,$$

$$\bar{a}^{-6} \partial_t \left(\bar{\Omega}_Q \bar{H}^2 \bar{a}^6 \right) + \bar{a}^{-2} \partial_t \left(\bar{\Omega}_k \bar{H}^2 \bar{a}^2 \right) = 0.$$

where the bare parameters are

$$\bar{\Omega}_{M} = \frac{8\pi G \bar{\rho}_{M0} \bar{a}_{0}^{3}}{3\bar{H}^{2} \bar{a}^{3}}, \qquad \bar{\Omega}_{R} = \frac{8\pi G \bar{\rho}_{R0} \bar{a}_{0}^{4}}{3\bar{H}^{2} \bar{a}^{4}},$$

$$\bar{\Omega}_{k} = \frac{-k_{v} f_{vi}^{2/3} f_{v}^{1/3}}{\bar{a}^{2} \bar{H}^{2}}, \qquad \bar{\Omega}_{Q} = \frac{-\dot{f}_{v}^{2}}{9 f_{v} (1 - f_{v}) \bar{H}^{2}}.$$

Tracker solution

PRL 99 (2007) 251101:

$$\bar{a} = \frac{\bar{a}_0 (3\bar{H}_0 t)^{2/3}}{2 + f_{v0}} \left[3f_{v0}\bar{H}_0 t + (1 - f_{v0})(2 + f_{v0}) \right]^{1/3}$$

$$f_v = \frac{3f_{v0}\bar{H}_0 t}{3f_{v0}\bar{H}_0 t + (1 - f_{v0})(2 + f_{v0})},$$

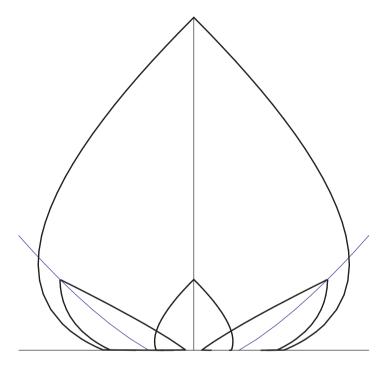
• Other parameters (drop subscript w on $\bar{\gamma}_{\rm w}$):

$$\bar{\gamma} = 1 + \frac{1}{2} f_{v} = \frac{3}{2} \bar{H} t$$

$$\bar{\Omega}_{M} = \frac{4(1 - f_{v})}{(2 + f_{v})^{2}}; \quad \bar{\Omega}_{k} = \frac{9 f_{v}}{(2 + f_{v})^{2}}; \quad \bar{\Omega}_{Q} = \frac{-f_{v} (1 - f_{v})}{(2 + f_{v})^{2}}$$

$$\tau_{w} = \frac{2}{3} t + \frac{2(1 - f_{v0})(2 + f_{v0})}{27 f_{v0} \bar{H}_{0}} \ln \left(1 + \frac{9 f_{v0} \bar{H}_{0} t}{2(1 - f_{v0})(2 + f_{v0})}\right)$$

Past light cone average



Interpret solution of Buchert equations by radial null cone average

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \bar{a}^2(t)\,\mathrm{d}\bar{\eta}^2 + A(\bar{\eta},t)\,\mathrm{d}\Omega^2,$$
 where $\int_0^{\bar{\eta}_{\mathcal{H}}}\mathrm{d}\bar{\eta}\,A(\bar{\eta},t) = \bar{a}^2(t)\mathcal{V}_\mathrm{i}(\bar{\eta}_{\mathcal{H}})/(4\pi)$.

LTB metric but NOT an LTB solution

Physical interpretation

• Conformally match radial null geodesics of spherical Buchert geometry to those of finite infinity geometry with uniform local Hubble flow condition $\mathrm{d}t = \bar{a}\,\mathrm{d}\bar{\eta}$ and $\mathrm{d}\tau_\mathrm{w} = a_\mathrm{w}\mathrm{d}\eta_\mathrm{w}$. But $\mathrm{d}t = \bar{\gamma}\mathrm{d}\tau_\mathrm{w}$ and $a_\mathrm{w} = f_\mathrm{wi}^{-1/3} \left(1 - f_\mathrm{v}\right) \bar{a}$. Hence on radial null geodesics

$$d\eta_{w} = \frac{f_{wi}^{1/3} d\bar{\eta}}{\bar{\gamma} (1 - f_{v})^{1/3}}$$

Define η_w by integral of above on radial null-geodesics.

Extend spatially flat wall geometry to dressed geometry

$$ds^{2} = -d\tau_{w}^{2} + a^{2}(\tau_{w}) \left[d\bar{\eta}^{2} + r_{w}^{2}(\bar{\eta}, \tau_{w}) d\Omega^{2} \right]$$

where
$$r_{\rm w}\equiv \bar{\gamma}\left(1-f_{\rm v}\right)^{1/3}{f_{\rm wi}}^{-1/3}\eta_{\rm w}(\bar{\eta},\tau_{\rm w})$$
, $a=\bar{a}/\bar{\gamma}$.

Dressed cosmological parameters

N.B. The extension is NOT an isometry

N.B.
$$ds_{ff}^2 = -d\tau_{w}^2 + a_{w}^2(\tau_{w}) \left[d\eta_{w}^2 + \eta_{w}^2 d\Omega^2 \right]$$

 $\rightarrow ds^2 = -d\tau_{w}^2 + a^2 \left[d\bar{\eta}^2 + r_{w}^2(\bar{\eta}, \tau_{w}) d\Omega^2 \right]$

- Extended metric is an effective "spherical Buchert geometry" adapted to wall rulers and clocks.
- Since $d\bar{\eta} = dt/\bar{a} = \bar{\gamma} d\tau_w/\bar{a} = d\tau_w/a$, this leads to *dressed* parameters which do not sum to 1, e.g.,

$$\Omega_M = \bar{\gamma}^3 \bar{\Omega}_M \,.$$

Dressed average Hubble parameter

$$H = \frac{1}{a} \frac{\mathrm{d}a}{\mathrm{d}\tau_{\mathrm{w}}} = \frac{1}{\bar{a}} \frac{\mathrm{d}\bar{a}}{\mathrm{d}\tau_{\mathrm{w}}} - \frac{1}{\bar{\gamma}} \frac{\mathrm{d}\bar{\gamma}}{\mathrm{d}\tau_{\mathrm{w}}}$$

Dressed cosmological parameters

H is greater than wall Hubble rate; smaller than void Hubble rate measured by wall (or any one set of) clocks

$$\bar{H}(t) = \frac{1}{\bar{a}} \frac{\mathrm{d}\bar{a}}{\mathrm{d}t} = \frac{1}{a_{\mathrm{v}}} \frac{\mathrm{d}a_{\mathrm{v}}}{\mathrm{d}\tau_{\mathrm{v}}} = \frac{1}{a_{\mathrm{w}}} \frac{\mathrm{d}a_{\mathrm{w}}}{\mathrm{d}\tau_{\mathrm{w}}} < H < \frac{1}{a_{\mathrm{v}}} \frac{\mathrm{d}a_{\mathrm{v}}}{\mathrm{d}\tau_{\mathrm{w}}}$$

- For tracker solution $H = (4f_v^2 + f_v + 4)/6t$
- Dressed average deceleration parameter

$$q = \frac{-1}{H^2 a^2} \frac{\mathrm{d}^2 a}{\mathrm{d}\tau_{\mathrm{w}}^2}$$

Can have q<0 even though $\bar{q}=\frac{-1}{\bar{H}^2\bar{a}^2}\frac{\mathrm{d}^2\bar{a}}{\mathrm{d}t^2}>0$; difference of clocks important.

Redshift, luminosity distance

Cosmological redshift (last term tracker solution)

$$z+1 = \frac{a}{a_0} = \frac{\bar{a}_0 \bar{\gamma}}{\bar{a} \bar{\gamma}_0} = \frac{(2+f_{\rm v}) f_{\rm v}^{1/3}}{3 f_{\rm v0}^{1/3} \bar{H}_0 t} = \frac{2^{4/3} t^{1/3} (t+b)}{f_{\rm v0}^{1/3} \bar{H}_0 t (2t+3b)^{4/3}},$$

where
$$b = 2(1 - f_{v0})(2 + f_{v0})/[9f_{v0}\bar{H}_0]$$

• Dressed luminosity distance relation $d_L=(1+z)D$ where the *effective comoving distance* to a redshift z is $D=a_0r_{\rm w}$, with

$$r_{\rm w} = \bar{\gamma} (1 - f_{\rm v})^{1/3} \int_{t}^{t_0} \frac{\mathrm{d}t'}{\bar{\gamma}(t')(1 - f_{\rm v}(t'))^{1/3} \bar{a}(t')}.$$

Redshift, luminosity distance

Perform integral for tracker solution

$$D_A = \frac{D}{1+z} = \frac{d_L}{(1+z)^2} = (t)^{\frac{2}{3}} \int_t^{t_0} \frac{2dt'}{(2+f_v(t'))(t')^{2/3}}$$
$$= t^{2/3} (\mathcal{F}(t_0) - \mathcal{F}(t))$$

where

$$\mathcal{F}(t) = 2t^{1/3} + \frac{b^{1/3}}{6} \ln \left(\frac{(t^{1/3} + b^{1/3})^2}{t^{2/3} - b^{1/3}t^{1/3} + b^{2/3}} \right) + \frac{b^{1/3}}{\sqrt{3}} \tan^{-1} \left(\frac{2t^{1/3} - b^{1/3}}{\sqrt{3}b^{1/3}} \right).$$

t given implicitly in terms of z by previous relation

Apparent cosmic acceleration

Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2(1 - f_{\rm v})^2}{(2 + f_{\rm v})^2}.$$

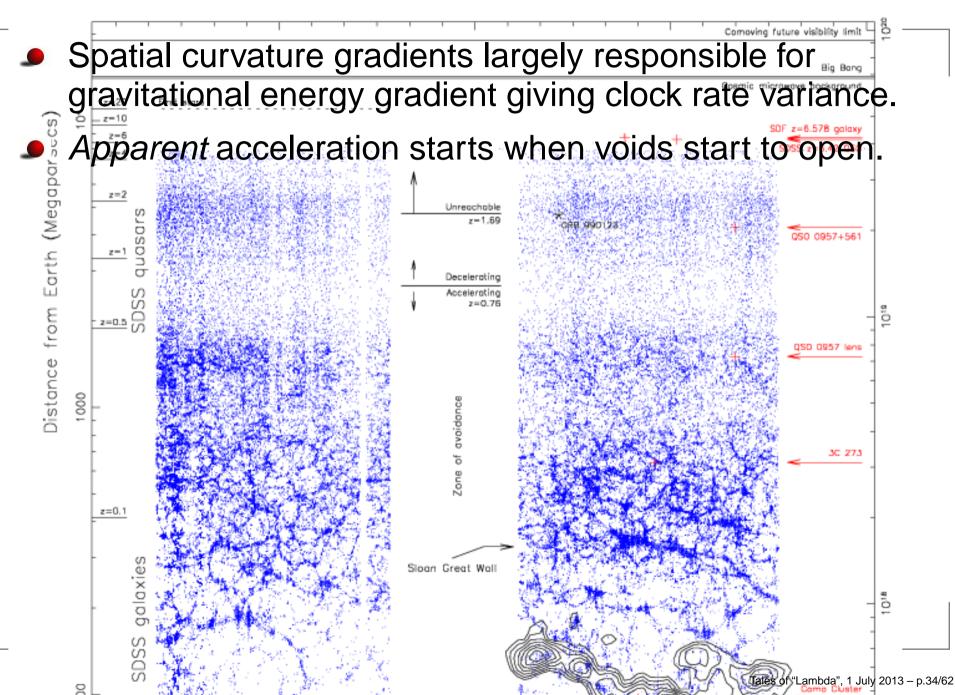
As $t \to \infty$, $f_{\rm v} \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

$$q = \frac{-(1 - f_{\rm v}) (8f_{\rm v}^3 + 39f_{\rm v}^2 - 12f_{\rm v} - 8)}{(4 + f_{\rm v} + 4f_{\rm v}^2)^2},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small $f_{\rm v}$; changes sign when $f_{\rm v} = 0.58670773\ldots$, and approaches $q \to 0^-$ at late times.

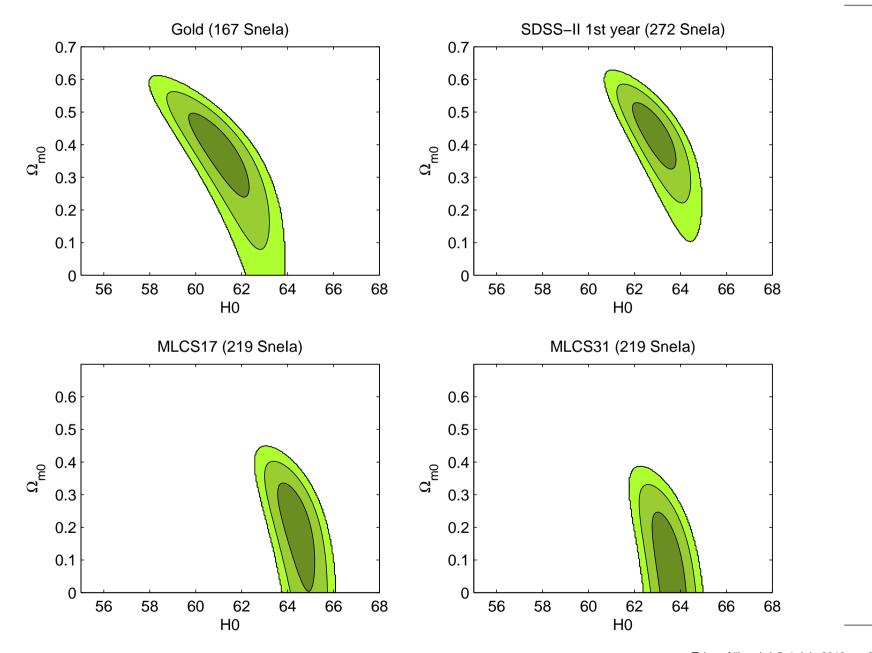
Cosmic coincidence problem solved



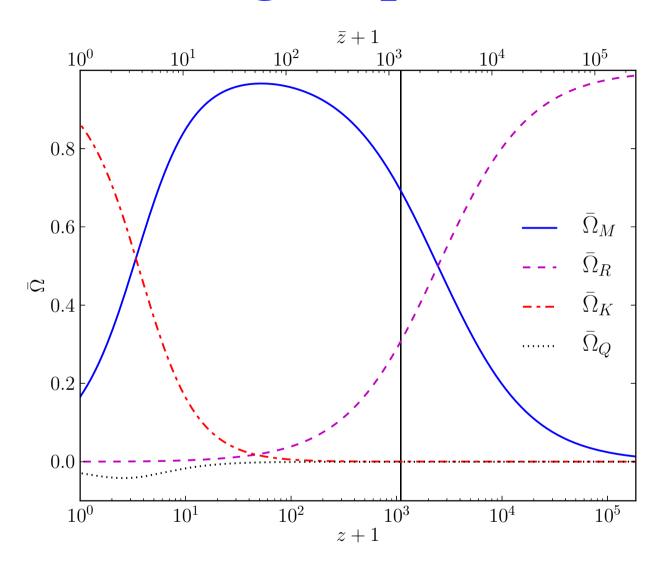
Smale + DLW, MNRAS 413 (2011) 367

- SALT/SALTII fits (Constitution, SALT2, Union2) favour Λ CDM over TS: $\ln B_{\mathrm{TS}:\Lambda\mathrm{CDM}} = -1.06, -1.55, -3.46$
- MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS over ΛCDM: $\ln B_{\rm TS:\Lambda CDM} = 1.37, 1.55, 0.53$
- Different MLCS fitters give different best-fit parameters; e.g. with cut at statistical homogeneity scale, for MLCS31 (Hicken et al 2009) $\Omega_{M0}=0.12^{+0.12}_{-0.11};$ MLCS17 (Hicken et al 2009) $\Omega_{M0}=0.19^{+0.14}_{-0.18};$ SDSS-II (Kessler et al 2009) $\Omega_{M0}=0.42^{+0.10}_{-0.10}$
- Supernovae systematics (reddening/extinction, intrinsic colour variations) must be understood to distinguish models
- Foregrounds, and inclusion of Snela below SSH an important issue

Supernovae systematics



Bare cosmological parameters



J.A.G. Duley, M.A. Nazer & DLW, arXiv:1306.3208:

full numerical solution with matter, radiation

CMB – calibration of sound horizon

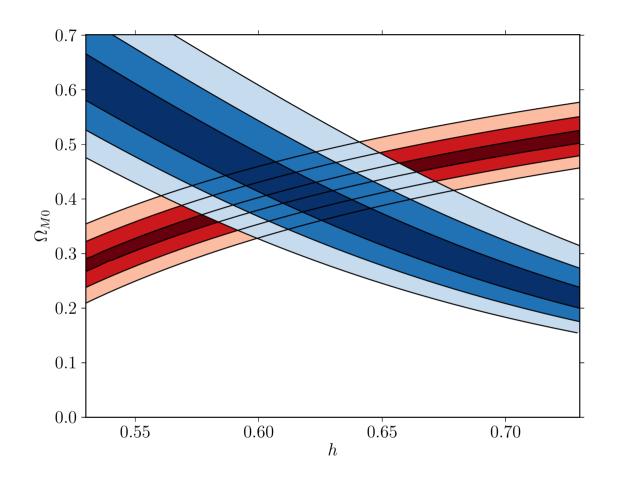
- Physics at last-scattering same as matter + radiation FLRW model. What is changed is relative calibration of parameters.
- Proper distance to comoving scale of the sound horizon at any epoch for volume–average observer [$\bar{x}=\bar{a}/\bar{a}_0$,

so
$$\bar{x}_{\mathrm{dec}} = \bar{\gamma}_0^{-1} (1 + z_{\mathrm{dec}})^{-1}$$
]

$$\bar{D}_{s} = \frac{\bar{a}(t)}{\bar{a}_{0}} \frac{c}{\sqrt{3}} \int_{0}^{\bar{x}_{\text{dec}}} \frac{\mathrm{d}\bar{x}}{\bar{x}^{2} \bar{H} \sqrt{1 + 0.75 \,\bar{x} \,\bar{\Omega}_{B0}/\bar{\Omega}_{\gamma 0}}},$$

- For wall observer $D_s(\tau) = \bar{\gamma}^{-1}D_s$
- Determine epoch of photon decoupling, and baryon drag epoch directly from Peebles equation etc with numerical solution

CMB constraints from Planck



Parameters within the (Ω_{M0}, H_0) plane which fit the angular scale of the sound horizon $\theta_*=0.0104139$ (blue), and its comoving scale at the baryon drag epoch as compared to Planck value $98.88\,h^{-1}{\rm Mpc}$ (red) to within 2%, 4% and 6%, with photon-baryon ratio $\eta_{B\gamma}=4.6$ – 5.6×10^{-10} within 2 σ of all observed light element abundances (including lithium-7).

Parameters using Planck constraints

- ullet Bare Hubble constant $H_{\mathrm{w0}} = \bar{H}_0 = 50.1 \pm 1.7\,\mathrm{km/s/Mpc}$
- ▶ Local max Hubble constant $H_{v0} = 75.2^{+2.0}_{-2.6}$ km/s/Mpc
- Present void fraction $f_{v0} = 0.695^{+0.041}_{-0.051}$
- \blacksquare Bare matter density parameter $\bar{\Omega}_{M0}=0.167^{+0.036}_{-0.037}$
- Bare baryon density parameter $\bar{\Omega}_{B0} = 0.030^{+0.007}_{-0.005}$
- Dressed matter density parameter $\Omega_{M0}=0.41^{+0.06}_{-0.05}$
- Dressed baryon density parameter $\Omega_{\rm B0}=0.074^{+0.013}_{-0.011}$
- Age of universe (galaxy/wall) $\tau_{\rm w0} = 14.2 \pm 0.5 \, {\rm Gyr}$
- Age of universe (volume-average) $t_0 = 17.5 \pm 0.6 \, \mathrm{Gyr}$
- Apparent acceleration onset $z_{\rm acc} = 0.46^{+0.26}_{-0.25}$

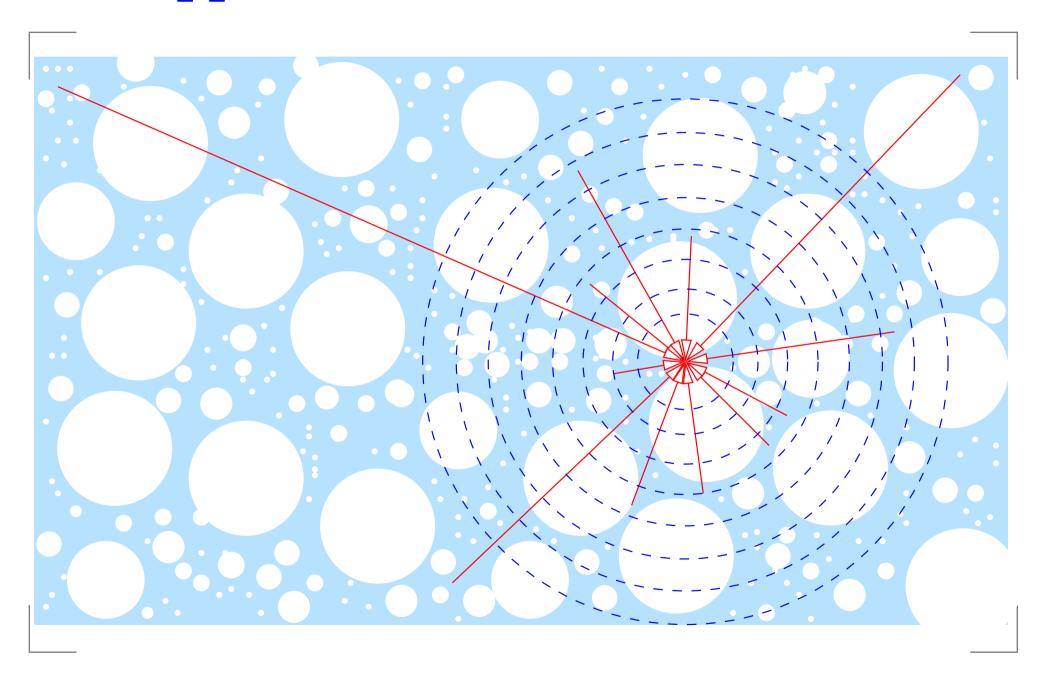
Other tests versus Λ CDM

See Phys. Rev. D80 (2009) 123512 for tests of average observational quantities

- Phenomenological equivalents of w(z), Om(z) statistic etc
- Alcock–Paczyński test
- redshift-time drift (Sandage-Loeb) test
- Clarkson, Bassett and Lu homogeneity test

However, potentially most interesting results are from variance of Hubble flow below scale of statistical homogeneity

Apparent Hubble flow variance



Peculiar velocity formalism

 Standard framework, FLRW + Newtonian perturbations, assumes peculiar velocity field

$$v_{\rm pec} = cz - H_0 r$$

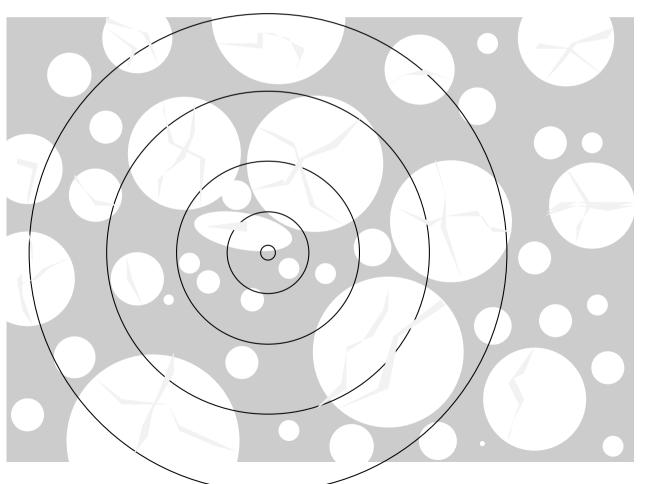
generated by

$$\mathbf{v}(\mathbf{r}) = \frac{H_0 \Omega_{M0}^{0.55}}{4\pi} \int d^3 \mathbf{r}' \, \delta_m(\mathbf{r}') \, \frac{(\mathbf{r}' - \mathbf{r})}{|\mathbf{r}' - \mathbf{r}|^3}$$

- After 3 decades of work, despite contradictory claims, the $\mathbf{v}(\mathbf{r})$ does not to converge to LG velocity w.r.t. CMB
- Agreement on direction, not amplitude or scale (Lavaux et al 2010; Bilicki et al 2011; . . .)
- Suggestions of bulk flows inconsistent with ΛCDM (Watkins, Feldman, Hudson 2009...)

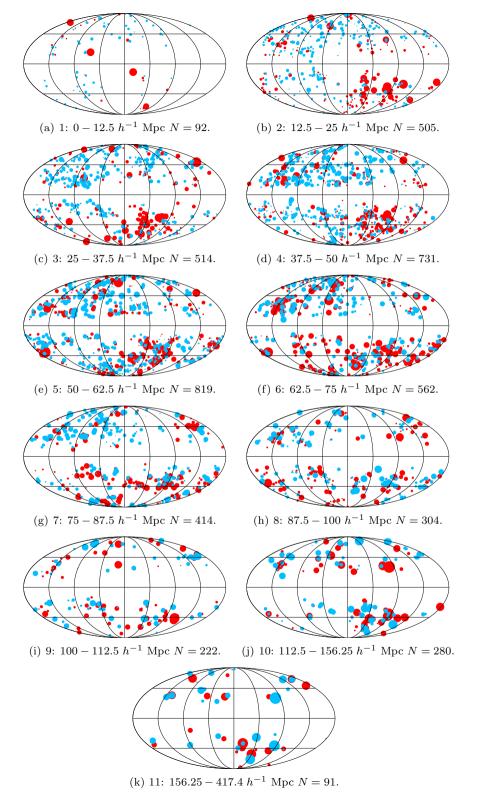
Spherical averages

Determine variation in Hubble flow by determining best-fit linear Hubble law in spherical shells

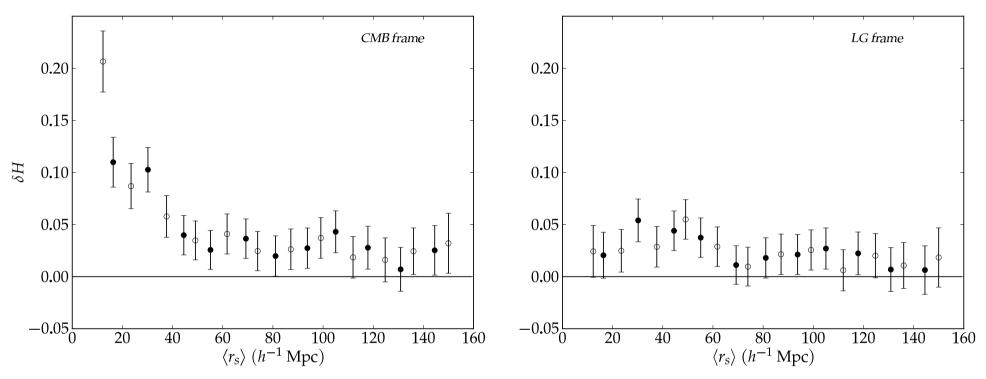


Analysis of COMPOSITE sample

- Use COMPOSITE sample: Watkins, Feldman & Hudson 2009, 2010, with 4,534 galaxy redshifts and distances, includes most large surveys to 2009
- Distance methods: Tully Fisher, fundamental plane, surface brightness fluctuation; 103 supernovae distances.
- average in independent spherical shells
- Compute H_s in $12.5 \, h^{-1}{\rm Mpc}$ shells; combine 3 shells $> 112.5 \, h^{-1}{\rm Mpc}$
- Use data beyond $156.25\,h^{-1}{\rm Mpc}$ as check on H_0 normalisation COMPOSITE sample is normalized to $100\,h\,{\rm km/s/Mpc}$

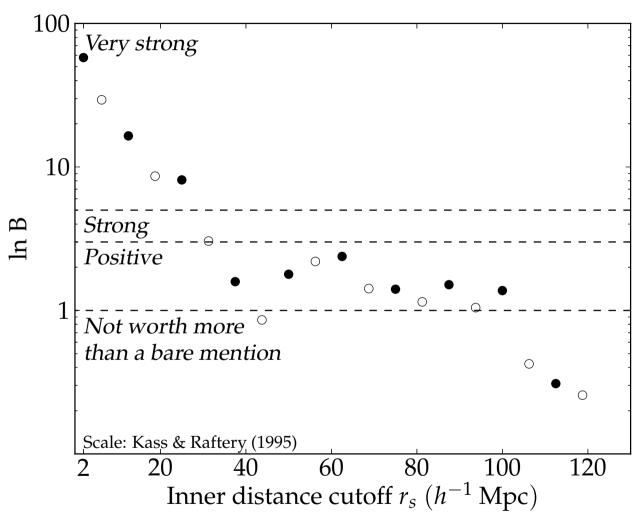


Radial variance $\delta H_s = (H_s - H_0)/H_0$



- Two choices of shell boundaries (closed and open circles); for each choice data points uncorrelated
- Analyse linear Hubble relation in rest frame of CMB; Local Group (LG); Local Sheet (LS). LS result very close to LG result.

Bayesian comparison of uniformity



Hubble flow more uniform in LG frame than CMB frame with very strong evidence

Boosts and spurious monopole variance

ullet H_s determined by linear regression in each shell

$$H_s = \left(\sum_{i=1}^{N_s} \frac{(cz_i)^2}{\sigma_i^2}\right) \left(\sum_{i=1}^{N_s} \frac{cz_i r_i}{\sigma_i^2}\right)^{-1},$$

• Under boost $cz_i \rightarrow cz_i' = cz_i + v\cos\phi_i$ for uniformly distributed data, linear terms cancel on opposite sides of sky

$$H'_{s} - H_{s} \sim \left(\sum_{i=1}^{N_{s}} \frac{(v \cos \phi_{i})^{2}}{\sigma_{i}^{2}} \right) \left(\sum_{i=1}^{N_{s}} \frac{cz_{i}r_{i}}{\sigma_{i}^{2}} \right)^{-1}$$

$$= \frac{\langle (v \cos \phi_{i})^{2} \rangle}{\langle cz_{i}r_{i} \rangle} \sim \frac{v^{2}}{2H_{0}\langle r_{i}^{2} \rangle}$$

Angular variance

Two approaches; fit

 McClure and Dyer (2007) method – can look at higher multipoles

$$H_{\alpha} = \frac{\sum_{i=1}^{N} W_{i \alpha} c z_{i} r_{i}^{-1}}{\sum_{j=1}^{N} W_{j \alpha}}$$

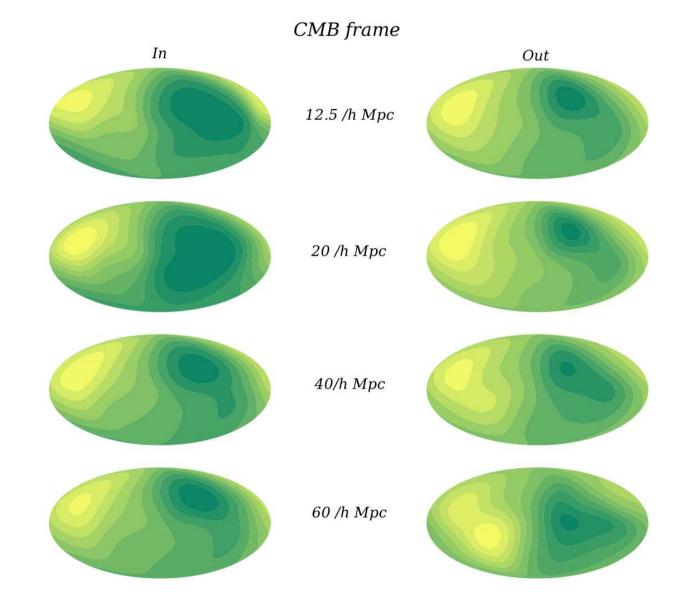
where with $\cos \theta_i = \vec{r}_{\rm grid} \cdot \vec{r_i}$, $\sigma_{\theta} = 25^{\circ}$ (typically)

$$W_{i\alpha} = \frac{1}{\sqrt{2\pi}\sigma_{\theta}} \exp\left(\frac{-\theta_i^2}{2\sigma_{\theta}^2}\right)$$

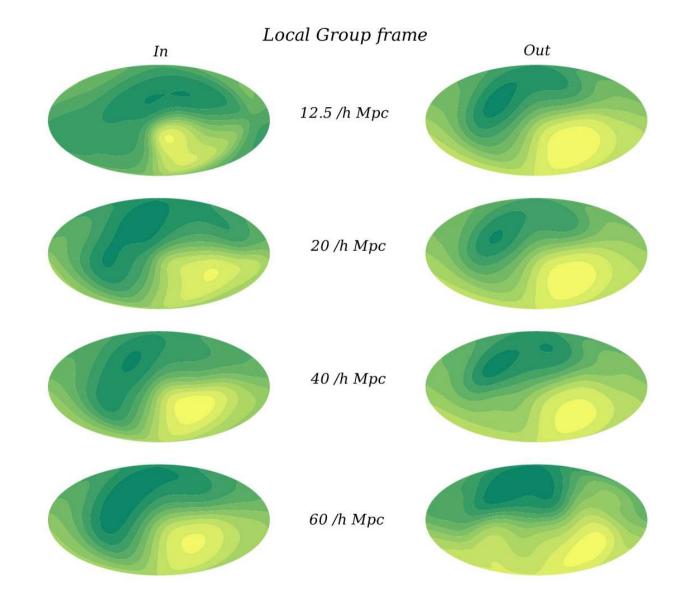
2. Simple dipole

$$\frac{cz}{r} = H_0 + b\cos\phi$$

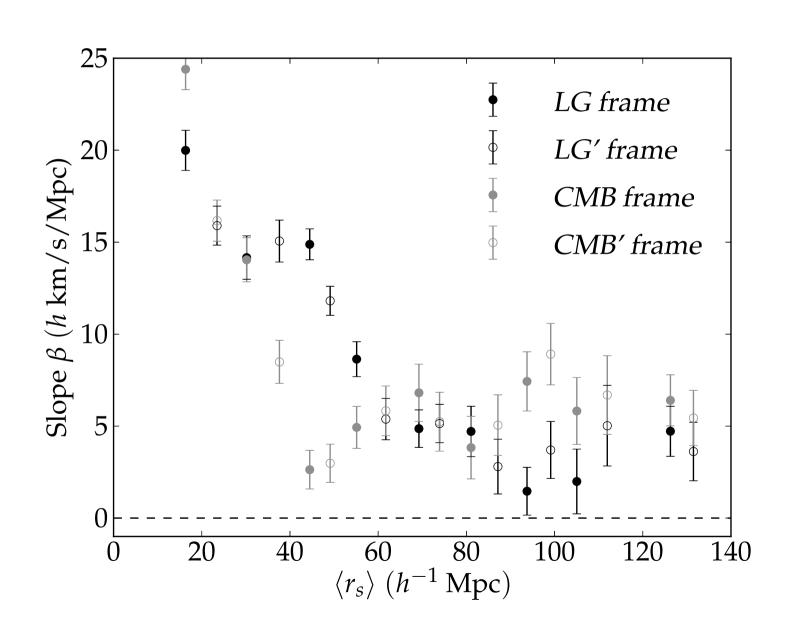
Hubble variance: CMB frame



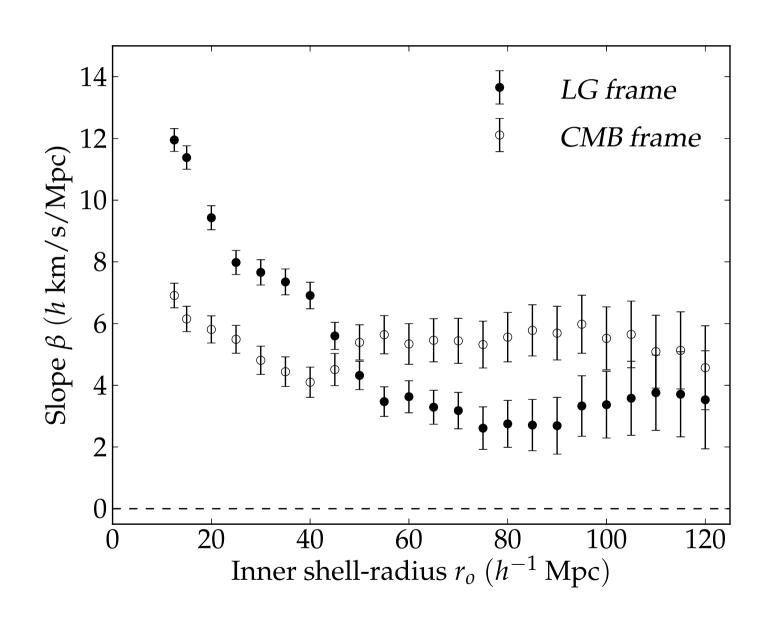
Hubble variance: LG frame



Value of β in $\frac{cz}{r} = H_0 + \beta \cos \phi$

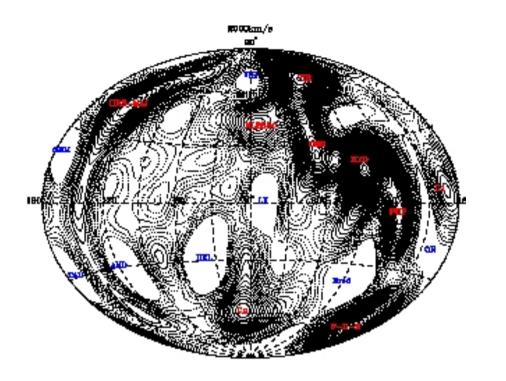


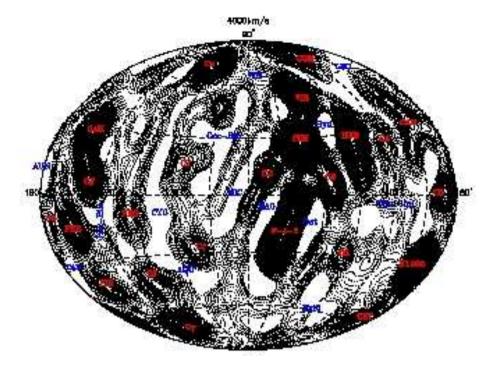
Value of β in $\frac{cz}{r} = H_0 + \beta \cos \phi$

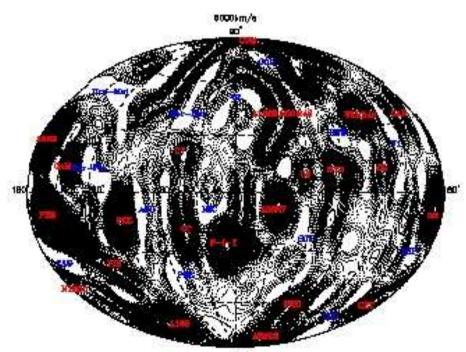


Result: arXiv:1201.5371

- CMB dipole usually interpreted as result of a boost w.r.t. cosmic rest frame, composed of our motion w.r.t. barycentre of Local Group plus a motion of the Local Group of 635 km s⁻¹ towards? Great Attractor? Shapley Concentration???
- But Shapley Supercluster, is at $\gtrsim 138\,h^{-1}{\rm Mpc}$ > Scale of Statistical Homogeneity
- We find Hubble flow is significantly more uniform in rest frame of LG rather than standard "rest frame of CMB"
- Suggests LG is not moving at 635 km s⁻¹; but \exists 0.5% foreground anisotropy in distance-redshift relation from foreground density gradient on $\leq 65 \, h^{-1}$ Mpc scales

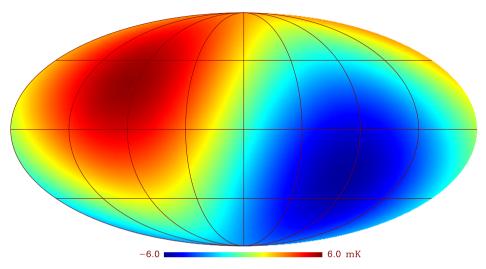






Correlation with residual CMB dipole

Residual CMB temperature dipole T(Sun-CMB) - T(Sun-LG)



Digitize skymaps with HEALPIX, compute

$$\rho_{HT} = \frac{\sqrt{N_p} \sum_{\alpha} \bar{\sigma}_{\alpha}^{-2} (H_{\alpha} - \bar{H}) (T_{\alpha} - \bar{T})}{\sqrt{\left[\sum_{\alpha} \bar{\sigma}_{\alpha}^{-2}\right] \left[\sum_{\alpha} \bar{\sigma}_{\alpha}^{-2} (H_{\alpha} - \bar{H})^2\right] \left[\sum_{\alpha} (T_{\alpha} - \bar{T})^2\right]}}$$

- $\rho_{HT}=-0.92$, (almost unchanged for $15^{\circ}<\sigma_{\theta}<40^{\circ}$)
- Alternatively, t-test on raw data: null hypothesis that maps uncorrelated is rejected at 24.4 σ .

Redshift-distance anisotropy

As long as $T \propto 1/a$, where $a_0/a = 1 + z$ for some appropriate average, not necessarily FLRW, then small change, δz , in the redshift of the surface of photon decoupling – due to foreground structures – will induce a CMB temperature increment $T = T_0 + \delta T$, with

$$\frac{\delta T}{T_0} = \frac{-\delta z}{1 + z_{\text{dec}}}$$

- With $z_{\rm dec}=1089$, $\delta T=\pm (5.77\pm 0.36)$ mK represents an increment $\delta z=\mp (2.31\pm 0.15)$ to last scattering
- **Proposal**: rather than originating in a LG boost the ± 5.77 mK dipole is due to a small anisotropy in the distance-redshift relation on scales ≤ $65 h^{-1}$ Mpc.

Redshift-distance anisotropy

For spatially flat ΛCDM

$$D = \frac{c}{H_0} \int_{1}^{1+z_{\text{dec}}} \frac{dx}{\sqrt{\Omega_{\Lambda 0} + \Omega_{M0} x^3 + \Omega_{R0} x^4}}$$

For standard values $\Omega_{R0}=4.15h^{-2}\times 10^{-5}$, h=0.72

- $\Omega_{M0} = 0.25$, find $\delta D = \mp (0.33 \pm 0.02) \, h^{-1}{\rm Mpc}$;
- $\Omega_{M0} = 0.30$, find $\delta D = \mp (0.32 \pm 0.02) \, h^{-1}{
 m Mpc}$;
- timescape model similar.
- Assuming that the redshift-distance relation anisotropy is due to foreground structures within $65\,h^{-1}{\rm Mpc}$ then $\pm 0.35\,h^{-1}{\rm Mpc}$ represents a $\pm 0.5\%$ effect

Questions, consequences...

- Ray tracing of CMB sky seen by off-centre observer in LTB void gives $|a_{10}|\gg |a_{20}|\gg |a_{30}|$ (Alnes and Amarzguioui 2006). When applied to realistic parameters for our setup the effective "peculiar velocity" of 635 km s⁻¹ is matched with $a_{20}/a_{10}\lesssim$ 1%. Ray-tracing studies are in progress (K. Bolejko)
- Strong evidence for a non-kinematic dipole in radio galaxy data: Rubart and Schwarz, arXiv:1301.5559
- Evidence for Doppler boosting of CMB sky seen at small angles in Planck data, but changes significantly when large angle multipoles included: arXiv:1303.5087
- Clearly will a significant non-kinematic component to the CMB dipole will impact large angle anomalies

Next steps: Modified Geometry

- Characterization of statistical geometry, quasilocal kinetic energy
- Quasilocal conservation laws (Epp, Mann & McGrath 2012) formalism relevant for application to bounding spheres of finite infinity regions
- Shape Dynamics (Gomes, Gryb and Koslowski 2011,2012,...) – a CMC (Constant Mean extrinsic Curvature) formulation of gravity with 3d conformal invariance – might be adapted for statistical geometry
- Ultimately potential links to quantum cosmology, Jacobson hydrodynamic description, holographic cosmology etc

Conclusion

- Apparent cosmic acceleration can be understood purely within general relativity; by (i) treating geometry of universe more realistically; (ii) understanding fundamental aspects of general relativity which have not been fully explored – quasi–local gravitational energy, of gradients in kinetic energy of expansion etc.
- "Timescape" model gives good fit to major independent tests of Λ CDM with new perspectives on many puzzles e.g., primordial lithium abundance anomaly; local/global differences in H_0 ; large angle CMB anomalies
- Many tests can be done to distinguish from \(\Lambda \text{CDM}. \)
 Must be careful not to assume Friedmann equation in any data reduction.