Constraining the effective action with external sources

based on work (1509.07847) in collaboration with Björn Garbrecht, Technische Universität München

Peter Millington, University of Nottingham UK-QFT V; Friday, 15th January, 2016; University of Nottingham

Outline

- Motivation
- Method of external sources [Garbrecht, PM, 1509.07847]
- Example applications:
 - Cornwall-Jackiw-Tomboulis 2PI effective action [Cornwall, Jackiw, Tomboulis, PRD 10 (1974) 2428]
 - Coppens-Verschelde 2PPI effective action [Coppens, Verschelde, PLB 287 (1992) 133; 295 (1992) 83; Z. Phys. C 57 (1993) 349; 58 (1993) 319]
 - Pilaftsis-Teresi symmetry-improved effective action [see talk by Daniele Teresi; Pilaftsis, Teresi, NPB 874 (2013) 594; JPCS 631 (2015) 012008; 1511.05347]
- Concluding remarks

ab initio motivation

- How should we calculate the effective action when the extremal classical and quantum paths are non-perturbatively far away from one-another?
- For instance, what happens when the **classical path** corresponds to a **stable configuration**, but the **quantum path** does **not**?
- This is the case for the decay of meta-stable vacua when a lower, global minimum emerges by virtue of radiative corrections.
 [Garbrecht, PM, PRD 92 (2015) 125022; cf. Weinberg, PRD 47 (1993) 4614;
 cf. talks by Carlos Tamarit and Stephen Stopyra]
- Can we perform the saddle-point approximation of the the path integral itself along the quantum path directly?
 [Garbrecht, PM, PRD 91 (2015) 105021 for the case of the 1PI effective action; cf. talk by Dimitri Skliros; Skliros, 1510.02549; Ellis, Mavromatos, Skliros 1512.02604.]

ab initio motivation

- This is relevant to determining the stability of the **electroweak vacuum** of the SM. [Cabibbo, Maiani, Parisi, Petronzio, NPB 158 (1979) 295; Sher, Phys. Rept. 179 (1989) 273; PLB 317 (1993) 159; Isidori, Ridolfi, Strumia, NPB 609 (2001) 387; **see also talk by Stephen Stopyra**.]
- State-of-the-art calculations are indicative of metastability.

[Elias-Miró, Espinosa, Giudice, Isidori, Riotto, Strumia, PLB 709 (2012) 22; Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia, JHEP 1208 (2012) 098; Alekhin, Djouadi; Moch, PLB 716 (2012) 214; Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia, JHEP 1312 (2013) 089; Bednyakov, Kniehl, Pikelner, Veretin, 1507.08833; Di Luzio, Isidori, Ridolfi, 1509.05028; **see also talk by Stephen Stopyra**.]

• Can we interpret the **imaginary-part** of the **perturbatively-calculated** effective potential in terms of the **decay rate** of an initially homogeneous false-vacuum state? [Weinberg, Wu, PRD 36 (1987) 2474; cf. talk by Jean Alexandre.]

ex post motivation

- Can we move easily between different realisations of the effective action (for there are many more than we will mention in this talk)? [We have seen two so far in the talks by Dimitri Skliros and Daniele Teresi.]
- How can we ensure that truncations of the effective action respect the symmetries that the full effective action does?

[for an introduction to this problem in QED: Reinosa and J. Serreau, JHEP 0711 (2007) 09; for an introduction to this problem for global symmetries: **talk by Daniele Teresi** as well as Pilaftsis, Teresi, NPB 874 (2013) 594; JPCS 631 (2015) 012008; 1511.05347 and references therein.]

In other words, how can we ensure that our truncations respect the **Ward(-Takahashi) identities** in the case of global (local, Abelian) symmetries or the **Slavnov-Taylor identities** for local, non-Abelian symmetries?

• How can we ensure **gauge independence** of quantities that depend on the value of the effective action away from the vacuum? [cf. talk by Carlos Tamarit; Plascencia, Tamarit, 1510.07613.]

Method of external sources

 We consider the Euclidean two-point effective action (for convenience) — the results, however, are general:

$$\Gamma[\phi, \Delta] = -\hbar \ln Z[\mathcal{J}, \mathcal{K}] + \mathcal{J}_x[\phi, \Delta] + \frac{1}{2}\mathcal{K}_{xy}[\phi, \Delta] (\phi_x \phi_y + \hbar \Delta_{xy})$$
$$Z[\mathcal{J}, \mathcal{K}] = \int [\mathrm{d}\Phi] \exp\left[-\frac{1}{\hbar} \left(S[\Phi] - \mathcal{J}_x[\phi, \Delta]\Phi_x - \frac{1}{2}\mathcal{K}_{xy}[\phi, \Delta]\Phi_x \Phi_y\right)\right]$$

where the one- and two-point functions ϕ and Δ are (by definition) **independent** of one-another.

• For concreteness, we consider a real scalar field with quartic self-interactions:

$$\mathcal{L}_x = \frac{1}{2} \left(\partial_\mu \Phi_x \right)^2 + \frac{1}{2} m^2 \Phi_x^2 + \frac{\lambda}{4!} \Phi_x^4$$

- Can we force the system along the extremal quantum path (or indeed any other path) by choosing suitable non-vanishing external sources and, at the same time, obtain a self-consistent realisation of the effective action?
- Note that this contrasts the standard realisations of the effective action, where the **physical vacuum** limit is obtained for **vanishing external sources** \mathcal{J} and \mathcal{K} .

Why is this not off-the-wall crazy?

- For macroscopic systems, the physical limit is obtained for non-vanishing external sources. These encode information about the statistical ensemble from the density matrix. [Jordan, PRD 33 (1986) 444; Calzetta, Hu, PRD 35 (1987) 495; 37 (1988) 2878; see also PM, Pilaftsis, PRD 88 (2013) 085009; Berges, AIP Conf. Proc. 739 (2005) 3-62.]
- 2. The two-point effective action is a double Legendre transform, with conjugate variables

$$(\mathcal{J}_x, \mathcal{K}_{xy}) \longleftrightarrow (\phi_x, \Delta_{xy})$$

In the same way that the Legendre transform from **Lagrangian** to **Hamiltonian dynamics** sets the (generalised) velocity to be a function of the conjugate momentum, i.e.

$$\dot{q} \equiv \dot{q}(p)$$

that of the effective action sets

$$\mathcal{J}_x \equiv \mathcal{J}_x[\phi, \Delta] \qquad \qquad \mathcal{K}_{xy} \equiv \mathcal{K}_{xy}[\phi, \Delta]$$

i.e. non-trivial functionals of ϕ and Δ , such that they remain **independent** of one-another.

 $\Rightarrow \phi$ and Δ cannot be the physical one- and two-point functions, $\varphi \equiv \varphi[\phi, \Delta]$ and $\mathcal{G} \equiv \mathcal{G}[\phi, \Delta]$ say, which **do** and **must depend** on one-another.

Evaluating the effective action

• Saddle-point evaluation of the path integral gives the stationarity condition

$$\frac{\delta S[\Phi]}{\delta \Phi_x} \bigg|_{\Phi=\varphi} - \mathcal{J}_x[\phi, \Delta] - \mathcal{K}_{xy}[\phi, \Delta]\varphi_y = 0$$

• By definition of the **Legendre transform**

$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\phi_x} = \mathcal{J}_x[\phi,\Delta] + \mathcal{K}_{xy}[\phi,\Delta]\phi_y \qquad \qquad \frac{\delta\Gamma[\phi,\Delta]}{\delta\Delta_{xy}} = \frac{\hbar}{2}\mathcal{K}_{xy}[\phi,\Delta]$$

giving the quantum equation of motion

$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\phi_x}\Big|_{\varphi,\mathcal{G}} = \frac{\delta S[\varphi]}{\delta\varphi_x} + \hbar \left.\frac{\delta\Gamma_1[\phi,\Delta]}{\delta\phi_x}\right|_{\varphi,\mathcal{G}} + \mathcal{O}(\hbar^2) = 0$$

• Combining the two gives the **consistency relation**

$$\frac{\delta S[\varphi]}{\delta \varphi_x} = \mathcal{J}_x[\phi, \Delta] + \mathcal{K}_{xy}[\phi, \Delta]\varphi_y = -\hbar \left. \frac{\delta \Gamma_1[\phi, \Delta]}{\delta \phi_x} \right|_{\varphi, \mathcal{G}} - \mathcal{O}(\hbar^2)$$

Evaluating the effective action

• Eliminate ϕ , Δ , \mathcal{J} and \mathcal{K} in favour of the **physical configurations** φ and \mathcal{G} by expanding around $\phi - \varphi = \mathcal{O}(\hbar)$ to obtain the effective action

$$\Gamma[\varphi, \mathcal{G}] = S[\varphi] + \frac{\hbar}{2} \operatorname{tr} \left[\ln \left(\mathcal{G}^{-1} * G_0 \right) + G^{-1} * \mathcal{G} - 1 \right] + \hbar^2 \Gamma_2[\varphi, \mathcal{G}] + \mathcal{O}(\hbar^3)$$
$$\hbar^2 \Gamma_2[\varphi, \mathcal{G}] = - \underbrace{ \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right) - \mathbf{1} \\ \mathbf$$

where all 1PR and 2PR diagrams have cancelled, as we would expect.

• The physical two-point function is defined via

$$\mathcal{G}_{xy}^{-1}[\phi,\Delta] = G_{xy}^{-1}(\varphi) - \mathcal{K}_{xy}[\phi,\Delta] \qquad \qquad G_{xy}^{-1}(\varphi) \equiv \frac{\delta^2 S[\Phi]}{\delta \Phi_x \delta \Phi_y}\Big|_{\varphi}$$

- This is in contrast to the standard evaluation, where one instead eliminates \mathcal{J} , \mathcal{K} and the **classical configuration** φ^{cl} in favour of ϕ and Δ by expanding around $\phi \varphi^{cl} = \mathcal{O}(\hbar)$ [see e.g. Carrington, EPJC 35 (2004) 383-392]
- The result looks exactly like the standard effective action, except that the path integral is evaluated along some quantum path of the system.

 (20π)

- We have two external sources, but the consistency relation imposes only one constraint.
- What is the **other constraint**? Well ... whatever we want from the following non-exhaustive list:
 - 1. Setting the **two-point source** (evaluated at the **unphysical configurations**) to **zero** trivially gives the **Jackiw 1PI** effective action. [Jackiw, PRD 9 (1974) 1686.]
 - 2. Choosing the **two-point source** to **vanish** when evaluated at the **physical configurations** will give the **CJT 2PI** effective action.
 - 3. Choosing a local two-point source will give the CV 2PPI effective action.
 - 4. Inspired by the **PT symmetry-improved** effective action, choosing the **Ward identities** to constrain the two-point source will allow us to **preserve symmetries** in truncations of the effective action.
 - 5. For **statistical systems**, we may take any of the above with an additive contribution to the sources that encodes information about the **statistical ensemble**.

CJT 2PI effective action

- In order to recover the CJT 2PI effective action, we require the physical one- and two-point functions to correspond to the extremal quantum path.
 [Cornwall, Jackiw, Tomboulis, PRD 10 (1974) 2428]
- This requires that

$$\mathcal{J}_x[\varphi,\mathcal{G}] = 0 \qquad \qquad \mathcal{K}_{xy}[\varphi,\mathcal{G}] = 0$$

• Choosing

$$-\mathcal{K}_{xy}[\phi,\Delta] = 2\hbar \left. \frac{\delta\Gamma_2[\phi,\Delta]}{\delta\Delta_{xy}} \right|_{\varphi,\mathcal{G}} = \underbrace{\qquad} + \underbrace{\qquad$$

we obtain the standard **Schwinger-Dyson equation** for the **physical two-point function** and the CJT 2PI effective action.

- By expanding around $\phi \varphi = \mathcal{O}(\hbar)$, we can show that the sources do indeed vanish when evaluated at the physical one- and two-point functions.
- But the kernel of the Gaussian part of the path integral is now the dressed two-point function, i.e. the saddle-point evaluation of the path integral is evaluated along the extremal quantum path directly.

So what?

- Consider the decay of a false vacuum state to a lower, radiatively-generated minimum. [Garbrecht, PM, PRD 91 (2015) 125022; cf. Weinberg, PRD 47 (1993) 4614.]
- The saddle-point evaluation around ...
 - the **classical extremum** contains the following Gaussian integral:

$$Z[0] = e^{-S[\varphi^{\mathrm{cl}}]/\hbar} \int [\mathrm{d}\hat{\Phi}] e^{-\hat{\Phi}_x G_{xy}^{-1}(\varphi^{\mathrm{cl}})\hat{\Phi}_y}$$

• the quantum extremum contains a different Gaussian integral:

$$Z[\mathcal{J},\mathcal{K}] = e^{-S[\varphi]/\hbar} \int [\mathrm{d}\hat{\Phi}] e^{-\hat{\Phi}_x \{G_{xy}^{-1}(\varphi) - \mathcal{K}_{xy}[\phi,\Delta]\}\hat{\Phi}_y} = e^{-S[\varphi]/\hbar} \int [\mathrm{d}\hat{\Phi}] e^{-\hat{\Phi}_x \mathcal{G}_{xy}^{-1}[\phi,\Delta]\hat{\Phi}_y}$$

- The dressed two-point function sees the instability; the tree-level function does not.
- The spectrum of the tree-level inverse two-point function is positive definite; the spectrum of the dressed two-point function contains one negative and four zero eigenvalues, corresponding to dilatations and translational invariance of the nucleated critical bubble. [see e.g. Callan, Coleman, PRD 16 (1977) 1762; see also Langer, Annals Phys. 41 (1967) 108 [Annals Phys. 281 (2000) 941.]
- The analytic structure of the two functional integrals is different. (This is what we mean by "nonperturbatively far away.")

CV 2PPI effective action

 The CV 2PPI effective action resums all point self-energy insertions into the dressed two-point function and is defined as

[Coppens, Verschelde, PLB 287 (1992) 133; 295 (1992) 83; Z. Phys. C 57 (1993) 349; 58 (1993) 319]

$$\Gamma^{2\text{PPI}}[\phi,\Delta] = -\hbar \ln Z[\mathcal{J},\mathcal{K}] + \mathcal{J}_x[\phi,\Delta] + \frac{1}{2}\mathcal{K}_x[\phi,\Delta] \left(\phi_x^2 + \hbar\Delta_{xx}\right)$$

• In the standard approach, this is recast in the form

$$\Gamma^{2\text{PPI}}[\phi, \Delta] = S[\phi] + \hbar \Gamma_1^{2\text{PPI}}[\phi, M^2(\phi, \Delta)] + \hbar^2 \Gamma_2^{2\text{PPI}}[\phi, M^2(\phi, \Delta)] - \frac{\lambda}{8} \hbar^2 \Delta_{xx}^2$$
 where Δ has a squared mass given by

$$M^{2}(\phi, \Delta) = m^{2} + \frac{\lambda}{2}(\phi_{x}^{2} + \hbar \Delta_{xx})$$

and

$$\hbar \Gamma_1^{2\text{PPI}}[\phi, M^2(\phi, \Delta)] = \frac{\hbar}{2} \operatorname{tr} \ln \Delta^{-1} * G_0$$
$$\hbar^2 \Gamma_2^{2\text{PPI}}[\phi, M^2(\phi, \Delta)] = - \star$$

• Notice that that we have **artificially** isolated a term

$$-\frac{\lambda}{8}\hbar^2\Delta_{xx}^2 = \bigcirc$$

CV 2PPI effective action

• The equation of motion for the dressed two-point function (at coincidence) is given by

$$\Delta_{xx} = 2 \frac{\delta \Gamma_1^{2\text{PPI}}[\phi, M^2(\phi, \Delta)]}{\delta M^2(\phi, \Delta)} + 2\hbar \frac{\delta \Gamma_2^{2\text{PPI}}[\phi, M^2(\phi, \Delta)]}{\delta M^2(\phi, \Delta)}$$

 Note that we have had to neglect artificially the double-bubble diagram. This is to prevent doublecounting of

already counted in the resummation.

• Applying the **method of external sources**, we simply choose a **local two-point source**

$$\mathcal{K}_{xy}[\phi,\Delta] = -2\hbar \frac{\delta\Gamma_1[\varphi,\mathcal{G}]}{\delta\varphi_x^2} \delta^{(4)}(x-y) = -2\hbar \frac{$$

applied to the two-point effective action with no need to worry about double-counting. That's it!

Symmetry preservation

• Consider a globally O(2)-invariant model with SSB:

$$\mathcal{L}_{x} = \frac{1}{2} \left(\partial_{\mu} \Phi_{x}^{i} \right)^{2} + \frac{1}{2} m^{2} \left(\Phi_{x}^{i} \right)^{2} + \frac{\lambda}{4} \left(\Phi_{x}^{i} \right)^{2} \left(\Phi_{x}^{j} \right)^{2} \qquad i = 1, 2 \qquad m^{2} < 0$$

• The Ward identities read

$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\phi_x^i}T^a_{ij}\phi_x^j + \frac{\delta\Gamma[\phi,\Delta]}{\delta\Delta^{ij}_{xy}}\left(T^a_{ik}\Delta^{kj}_{xy} + T^a_{jl}\Delta^{il}_{xy}\right) = 0$$

which can be used (in the spirit of the PT symmetry-improved effective action) to constrain the twopoint source

$$\frac{\delta\Gamma[\phi,\Delta]}{\delta\phi_x^i}T^a_{ij}\phi_x^j + \frac{\hbar}{2}\mathcal{K}^{ij}_{xy}[\phi,\Delta]\left(T^a_{ik}\Delta^{kj}_{xy} + T^a_{jl}\Delta^{il}_{xy}\right) = 0$$

 If we expand the first term around the extremal one-point function, we can show that it vanishes, and hence the two-point source must satisfy

$$\mathcal{K}_{xy}^{ij}[\phi,\Delta] \left(T_{ik}^a \Delta_{xy}^{kj} + T_{jl}^a \Delta_{xy}^{il} \right) = 0$$

• But the second term also vanishes when evaluated at the extremal one- and two-point functions, so what have we learnt, if anything at all?

Hartree-Fock approximation

• Take only the local self-energy corrections to the Higgs and Goldstone propagators.

• It is known that the **Goldstone boson** will acquire a **pathological non-zero mass** in the **SSB phase** in the **Hartree-Fock approximation**.

[Baym, Grinstein, PRD 15 (1977) 2897; Amelino-Camelia, PLB 407 (1997) 268; Petropoulos, JPG 25 (1999) 2225 ; Lenaghan, Rischke, JPG 26 (2000) 43.]

• Many authors have suggested solutions to this problem, including the elegant **PT symmetry-improved** effective action.

[Petropoulos, JPG 25 (1999) 2225; Lenaghan, Rischke, JPG 26 (2000) 431; Baacke, Michalski, PRD 67 (2003) 085006; Ivanov, Riek, Knoll, PRD 71 (2005) 105016; Ivanov, Riek, van Hees, Knoll, PRD 72 (2005) 036008; Seel, Struber, Giacosa, Rischke, PRD 86 (2012) 125010; Grahl, Seel, Giacosa, Rischke, PRD 87 (2013) 096014; Markó, Reinosa, Szép, PRD 87 (2013) 105001; Nemoto, Naito, Oka, EPJA 9 (2000) 245; van Hees, Knoll, PRD 66 (2002) 025028; **see talk by Daniele Teresi**; Pilaftsis, Teresi, NPB 874 (2013) 594; JPCS 631 (2015) 012008; 1511.05347]

• The **Ward identities** and **consistency relation** tell us that the choice of two-point sources that preserves Goldstone's theorem is

$$\mathcal{K}^{GG}[\phi, \Delta] = \mathcal{K}^{HH}[\phi, \Delta] = -2\hbar \frac{\delta \Gamma_2^{(\mathrm{HF})}[\phi, \Delta]}{\delta \Delta_{xy}^{HH}} \Big|_{\varphi, \mathcal{G}}$$

i.e. we should take the **local Higgs self-energy** as the correction to the Goldstone propagators **not** the **local Goldstone self-energy**.

Hartree-Fock Approximation

• In the SSB phase, the leading correction to the Higgs vev is given by

$$\delta\varphi_x^H = -\lambda v \mathcal{G}_{xy}^{HH} \left(3\mathcal{G}_{yy}^{HH} + \mathcal{G}_{yy}^{GG} \right) = \frac{\lambda v}{2m^2} \left(3\mathcal{G}_{xx}^{HH} + \mathcal{G}_{xx}^{GG} \right) + \mathcal{O}(\hbar)$$

• The correction to the Goldstone propagator is given by

$$\mathcal{G}_{xy}^{-1,GG} \supset 2\hbar\lambda v \delta\varphi_x^H \delta^{(4)}(x-y) - \mathcal{K}_{xy}^{GG}[\phi,\Delta]$$

The constraint from the Ward identities tell us

$$\mathcal{K}_{xy}^{GG} = -2\hbar \frac{\delta \Gamma_2^{(\mathrm{HF})}[\phi, \Delta]}{\delta \Delta_{xy}^{HH}} \Big|_{\varphi, \mathcal{G}} = -\hbar \lambda \big(3\mathcal{G}_{xx}^{HH} + \mathcal{G}_{xy}^{GG} \big) \delta^{(4)}(x-y)$$

instead of the standard result

$$\mathcal{K}_{xy}^{GG} = -2\hbar \frac{\delta \Gamma_2^{(\mathrm{HF})}[\phi, \Delta]}{\delta \Delta_{xy}^{GG}} \Big|_{\varphi, \mathcal{G}} = -\hbar \lambda \big(\mathcal{G}_{xx}^{HH} + 3 \mathcal{G}_{xy}^{GG} \big) \delta^{(4)}(x - y)$$

 Since the squared mass is negative, the order ħ corrections cancel algebraically, and we find that the Goldstone propagator

$$\mathcal{G}_{xy}^{-1,GG} = -\delta^{(4)}(x-y)\partial_x^2$$

which is clearly **massless**.

• Had we used the standard result, we would instead have found

$$\mathcal{G}_{xy}^{-1,GG} = \delta^{(4)}(x-y) \left[-\partial_x^2 - 2\hbar\lambda \left(\mathcal{G}_{xx}^{HH} - \mathcal{G}_{xx}^{GG} \right) \right]$$

Hartree-Fock approximation

• The algebraic cancellation of the loop corrections to the Goldstone boson in the SSB phase still holds in the presence of the thermal corrections

$$\mathcal{G}_{xx}^{HH}\big|_{\text{therm}} \approx \mathcal{G}_{xx}^{GG}\big|_{\text{therm}} \approx \frac{T^2}{12}$$

with the thermal Higgs mass given by

$$m_H^2 = -2m^2 - \frac{8\lambda T^2}{12}$$

• The mass gap equations for the Higgs and Goldstone bosons read

$$m_H^2 = 3\lambda v_{\rm HF}^2 + m^2 + \lambda (3\mathcal{G}_{xx}^{HH} + \mathcal{G}_{xx}^{GG})$$
$$m_G^2 = \lambda v_{\rm HF}^2 + m^2 + \lambda (3\mathcal{G}_{xx}^{HH} + \mathcal{G}_{xx}^{GG})$$

• It follows algebraically that the dressed Higgs vev is

$$v_{\rm HF}^2 = \frac{m_H^2 - m_G^2}{2\lambda}$$

- Thus, at the critical temperature, $T_c = \sqrt{3}v$, when both the Higgs and Goldstone masses vanish, the vev also vanishes, giving the correct second-order phase transition.
- These results are in complete agreement with those found using the PT symmetry-improved effective action.

Concluding remarks

- We have presented a novel approach to the effective action, which allows a wide range of results to be obtained within a single unique framework.
- We have illustrated ...
 - how one may obtain the usual CJT 2PI effective action, with the advantage that the path integral itself is evaluated along the extremal quantum path directly;
 - how one may obtain the CV 2PPI effective action, without having to worry about double-counting diagrams;
 - how Goldstone's theorem can be preserved in the Hartree-Fock approximation of a globally O(2)-invariant model, in the spirit of the PT symmetry-improved effective action.
- Next steps: local, Abelian and non-Abelian symmetries; gauge dependence; constraint effective potential; coarse-graining?