Gravity and electroweak vacuum stability beyond the fixed background approximation.

UKQFT V at University of Nottingham 15/01/2016

Stephen Stopyra & Arttu Rajantie

Imperial College London

Outline

Introduction and Motivation

Aims of Our Research

Review of Tunnelling

Bounces in the Standard Model Bounces in the Presence of Gravity The Hawking-Moss Solution

Computing Thick-wall Bubbles

Numerical Setup Thin Wall Approximation The Fixed Background Approximation. Thick Wall Bubbles with Backreaction The Problem of Delicate Cancellations The Problem of Differing Scales

Future Directions

Introduction and Motivation

- High precision calculations exist for flat space decay rate. (Isidori et al.[1],Buttazzo et al.[2]).
- Gravitational corrections are potentially significant (Isidori et al.[3]).
- Implications for Inflation. (Kobakhidze and Specer-Smith [4], Herranen et al.[5], Espinosa et al.[6].
- Black holes can seed vacuum decay (Burda, Gregory, Moss[7])

Aims of Our Research

- Numerical study of the effect of gravitational backreaction on vacuum decay.
- Study the effect of non-minimal coupling.

Review of Tunnelling

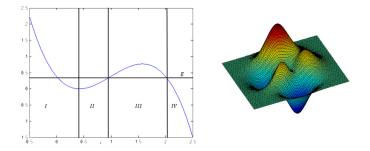


Figure 1: Possible tunnelling potentials

Review of Tunnelling

• Tunnelling in 1D:
$$T = \exp\left(-2\int_{x_1}^{x_2} \mathrm{d}x\sqrt{2(V(x)-E)}\right).$$

• For more degrees of freedom, controlled by dominant path:

$$S = \int d^4x \left[\frac{1}{2} \nabla_\mu \phi \nabla_\mu \phi + V(\phi) \right]$$
(1)

• Decay rate: $\Gamma = A \exp(-(S - S_0))$ where S_0 is the action of the false vacuum solution, $\phi = 0$.

Flat space bounce properties

- Minimal action solutions are O(4) symmetric[8]
- Satisfy $\ddot{\phi} + \frac{3}{\chi}\dot{\phi} V'(\phi) = 0$, with boundary conditions $\dot{\phi}(0) = 0, \phi(\chi \to \infty) \to 0$ required for finite action.
- Field space fluctuations have a single decreasing action direction ("negative mode").
- Associated to an imaginary contribution to vacuum energy, hence decay.
- Solutions with more negative modes are generally subleading.

Bounces in the Standard Model

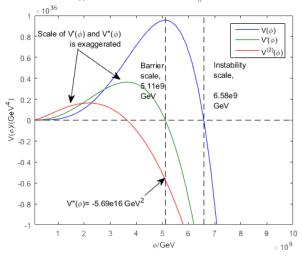
Lee-Weinberg bounce. Assume $V = -|\lambda| \frac{\phi^4}{4}$; solution is:

$$\phi(\chi) = \sqrt{\frac{2}{|\lambda|}} \frac{2R}{R^2 + \chi^2}, S = \frac{8\pi^2}{3|\lambda|}.$$
 (2)

- R arbitrary. In the Standard Model, dominant bounce has $R \approx \mu_{min}^{-1}$, the scale where λ is minimised.
- For $m_t = 173.34$ GeV and $m_h = 125.15$ GeV, $\mu_{min} = 2.79 \times 10^{17}$ GeV, just below the Planck scale[1].
- It is reasonable to expect gravitational corrections to be important. Perturbative estimations of their size appears to confirm this[3].

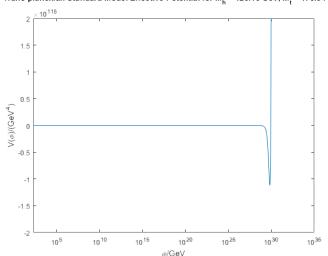
Bounces in the Standard Model

Standard Model Higgs Potential and its derivatives, M_h = 125.15 GeV,Mt = 173.34 GeV



Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

Bounces in the Standard Model



Trans-planckian Standard Model Effective Potential for M_h = 125.15 GeV, M_t = 173.34 GeV

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

Curved space bounces minimise:

$$S = \int d^4x \sqrt{|g|} \left[\frac{1}{2} \nabla_\mu \phi \nabla_\mu \phi + V(\phi) - \frac{M_p^2}{2} (1 - \frac{\xi \phi^2}{M_p^2}) R\right].$$
(3)

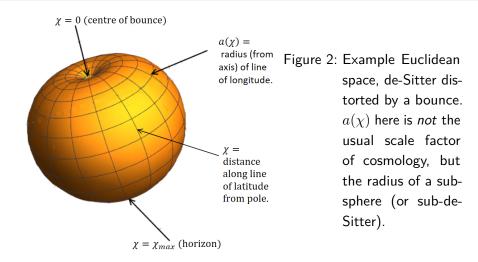
 Where ξ is the possible non-minimal coupling. Minimum action solutions are assumed to be O(4) symmetric, giving a (Euclidean) metric ansatz:

$$ds^{2} = d\chi^{2} + a^{2}(\chi) d\Omega_{n-1}^{2},$$
(4)

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 12/44

Neglecting ξ terms, the instanton equations are:

$$\dot{a}^{2} = 1 - \frac{a^{2}}{3M_{p}^{2}} \left(-\frac{\dot{\phi}^{2}}{2} + V(\phi) \right)$$
(5)
$$\ddot{\phi} + \frac{3\dot{a}}{a} \dot{\phi} - V'(\phi) = 0$$
(6)



Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

14/44

Interpretation:

- Boundary conditions: φ(0) = φ(χ_{max}) = 0, a(0) = 0 where χ_{max} > 0 defined by a(χ_{max}) = 0.
- Looking for a decay *rate* so need a notion of time.
- Formulate the problem on a static patch, and then switch to O(4) symmetric co-ordinates.
- Metric (Lorentzian) on static patch:

$$\mathrm{d}s_n^2 = \mathrm{d}\chi^2 + a^2(\chi)(-(1-r^2)\mathrm{d}t^2 + (1-r^2)^{-1}\mathrm{d}r^2 + r^2\mathrm{d}\Omega_{n-3}^2) \quad (7)$$

- In de-Sitter space, $a(\chi) = \frac{1}{H}\sin(H\chi)$
- χ is the radial distance from the origin.

- χ_{max} finite \rightarrow compact Euclidean space \rightarrow periodic Euclidean time \rightarrow tunnelling at non-zero temperature.[9].
- $T = T_{GH} = \frac{H}{2\pi}$ for de-Sitter space.

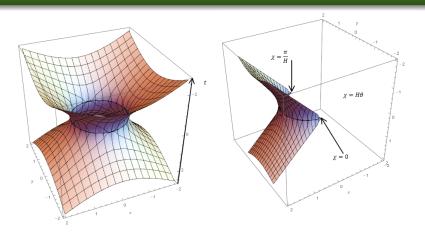


Figure 3: De Sitter space.

Figure 4: Static Patch of de Sitter space.

17/44

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

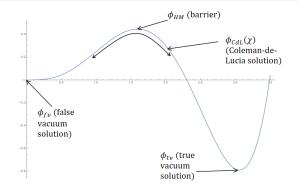


Figure 5: Various solutions in the presence of gravity. The true and false vacuum, and Hawking-Moss solutions are constant, while the CdL solution varies with χ .

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 18/44

- Analytic solution, $\phi(\chi)={\rm const.}=\phi_{HM}.$ Field sits at the top of the barrier.

- Action is
$$S = 24\pi^2 M_p^4 \left(\frac{1}{V_0} - \frac{1}{V(\phi_{HM})}\right)$$
 where $V_0 = V(\phi_{fv})$.

- If $\Delta V(\phi_{HM}) = V(\phi_{HM}) V_0 \ll V_0$ then this is approximately $S = \frac{4\pi}{3} \left(\frac{1}{H_0}\right)^3 \frac{\Delta V(\phi_{HM})}{\left(\frac{H_0}{2\pi}\right)}$, where H_0 is the background Hubble rate, $H_0^2 = \frac{V_0}{3M_p^2}$.
- Decay rate of $\Gamma \approx \exp\left(-\frac{\text{Energy in one Hubble Volume}}{\text{Gibbons Hawking Temperature}}\right)$ a Boltzmann distribution. Hawking-Moss is a thermal transition.

19/44

Count negative eigenvalues to see if a valid bounce. Radial part of eigenvalue equation:

$$\frac{\mathrm{d}^2 R_{nl}}{\mathrm{d}\chi^2} + 3H_{HM} \cot H_{HM} \chi \frac{\mathrm{d}R_{nl}}{\mathrm{d}\chi} - \frac{H_{HM}^2}{\sin^2 H_{HM} \chi} l(l+2)R_{nl} - (V''(\phi_{HM}) - \lambda)R_{nl} = 0,$$
(8)

- where
$$H_{HM}^2 = \frac{V(\phi_{HM})}{3M_p^2}$$
, $n, l = 0, 1, 2, \ldots$ Resulting eigenvalues are:

$$\lambda_{nl} = V''(\phi_{HM}) + [n+l]([n+l]+3)H_{HM}^2,$$
(9)

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

• Define N = n + l. $V''(\phi_{HM}) < 0$ so N = 0 is always negative. Extra negative eigenvalue for N = 1 if:

$$V''(\phi_{HM}) + 4H_{HM}^2 < 0 \implies \frac{8\pi G_N V(\phi_{HM})}{3} < -\frac{V''(\phi_{HM})}{4}.$$
 (10)

• At this critical threshold, the l = 0, n = 1 mode obeys:

$$\ddot{R_{10}} + 3H_{HM}\cot(H_{HM}\chi)\dot{R_{10}} + 4H_{HM}^2R_{10} = 0,$$
(11)

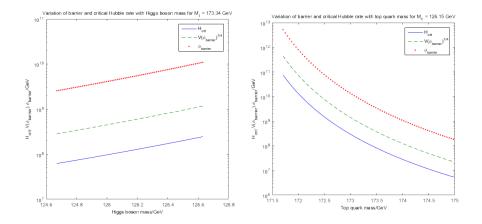
• Same as Coleman-de-Lucia linearised fluctuations about top of barrier:

$$\ddot{\delta\phi} + 3H_{HM}\cot(H_{HM}\chi)\dot{\delta\phi} - V''(\phi_{HM})\delta\phi = 0.$$
 (12)

- N = 1 direction points towards CdL solution which is thus lower action below this threshold.
- Expect that for $H < H_{crit}$, CdL instantons dominate vacuum decay, and for $H > H_{crit}$, Hawking-Moss instantons dominate.
- If background Hubble rate is $H_0^2 = \frac{V_0}{3M_p^2}$ then the critical threshold for H_0 is:

$$H_{crit}^2 = -\frac{V''(\phi_{HM})}{4} - \frac{\Delta V(\phi_H M)}{3M_p^2}.$$
 (13)

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham



Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

Computing Thick-wall Bubbles

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

24/44

Numerical Setup

Equations to solve:

$$\dot{a}^{2} = 1 - \frac{a^{2}}{3M_{p}^{2}} \left(-\frac{\dot{\phi}^{2}}{2} + V(\phi) - \frac{6\xi \dot{a}}{a}\phi \dot{\phi} \right)$$
(14)

$$\ddot{\phi} + \frac{3a}{a}\dot{\phi} - V'(\phi_{HM}) - \xi R(\phi, \dot{\phi}, \ddot{\phi})\phi = 0$$
⁽¹⁵⁾

$$\dot{\phi}(0) = \dot{\phi}(\chi_{max}) = 0, a(0) = 0, \chi_{max} > 0$$
 defined by $a(\chi_{max}) = 0.$ (16)

Two approximations which fail for the Standard Model:

- Fixed background approximation. Assume that *a* is dominated by the background spacetime and ignore any backreaction.
- Thin wall approximation. Assume that gradient terms do not contribute significantly except in a thin region, the 'bubble wall'.

Thin Wall Approximation

The Thin wall approximation splits the bounce solution into three regions:

- The bubble interior, where $\phi\approx\phi_{tv}.$ Gives a negative contribution to the action as V<0.
- The bubble wall, where ϕ has a gradient. Gives a positive contribution to the action.
- The bubble exterior, where $\phi \approx \phi_{fv}$. Gives little contribution.
- Size of bubble determined by interplay of 'surface tension' (supresses bubbles) and 'bubble interior' (encourages bubble growth).
- Not valid if energy difference between vacua large [10], such as in the Standard Model.

Thin Wall Approximation

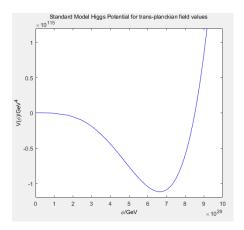


Figure 6: Standard Model potential for very large field values. Note the vast difference in scale between the true minimum and the barrier, which is not visible on this scale.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 27/44

Qualitative interpreation - volume distorted by curvature, chaging surface area to volume ratio:

- If R<0, then $V<\frac{4\pi r^3}{3}$ —need to nucleate larger bubbles—supresses decay.
- If R>0, then $V>\frac{4\pi r^3}{3}\to {\rm can}$ nucleate smaller bubbles $\to {\rm enhances}$ decay.

The Fixed Background Approximation.

The Fixed Background Approximation.

- Assume that the background dominates.
- $a = \frac{1}{H_0} \sin(H_0 \chi)$ and $\chi_{max} = \frac{\pi}{H_0}$.
- Single ode:

$$\ddot{\phi} + 3H_0 \cot(H_0\chi)\dot{\phi} - V'(\phi) = 0.$$
 (17)

- Solve by overshoot/undershoot method, introduced by Coleman[11]. Guess ϕ_0 :
 - If ϕ_0 is too close to the barrier, then it will undershoot $\dot{\phi}$ crosses zero before $\chi = \frac{\pi}{H_0}$.
 - If ϕ_0 is too far from the barrier it will overshoot $\dot{\phi}$ does not reach zero before $\chi = \frac{\pi}{H_0}$.

- True solution is somewhere inbetween \rightarrow bisect until ϕ_0 found.
- See Balek and Demetrian for detailed discussion[12].
- Not valid for the Standard Model. Gravitational backreaction is significant[3].

Thick Wall Bubbles with Backreaction

Thick Wall Bubbles with Backreaction

- Thick wall bubbles gradient terms significant, include *a* evolution.
- Problem 1 $\frac{1}{a}$ terms diverge at the boundaries.
- Taylor expand for small $\chi, \chi \chi_{max}$. Choose initial step $\delta \chi$ such that leading order term dominates.
- Problem 2 χ_{max} is unknown before computing the solution.
- Define a new independent variable, $t=\frac{\chi}{\chi_{max}}.$ Add a new equation $\chi_{max}=0.$
- Fix χ_{max} by Newton-Raphson such that solutions integrated from both poles match in the middle.

Thick Wall Bubbles with Backreaction

- This is faster than bisection, which has only linear convergence.
- However, it can fail if the initial guess is far from the correct guess.
- Hybrid use bisection where Newton-Raphson fails.
- Problem 3 interpolation too inaccurate.
- Add extra equation for S:

$$S(t) = 2\pi^2 \int_0^{t\chi_{max}} d\chi a^3(\chi) (\frac{1}{2}\dot{\phi}^2 + V(\phi) - \frac{M_p^2}{2}(1 - \xi\frac{\phi^2}{M_p^2})R) \quad (18)$$
$$\frac{dS}{dt} = 2\pi^2 \chi_{max} a^3(\chi) (\frac{1}{2}\dot{\phi}^2 + V(\phi) - \frac{M_p^2}{2}(1 - \xi\frac{\phi^2}{M_p^2})R). \quad (19)$$

- Boundary conditions S(0) = 0, S(1) = S. Fix S, χ_{max} by Newton-Raphson, until $\phi, \dot{\phi}, a, S$ all match.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 32/44

• Action comptation involves delicate cancellation. E.g. for Hawking-Moss:

$$\Delta S_{HM} = S_{HM} - S_0$$

$$= \frac{24\pi^2 M_p^4}{V_0} - \frac{24\pi^2 M_p^4}{V_0 + \Delta V(\phi_H M)}$$

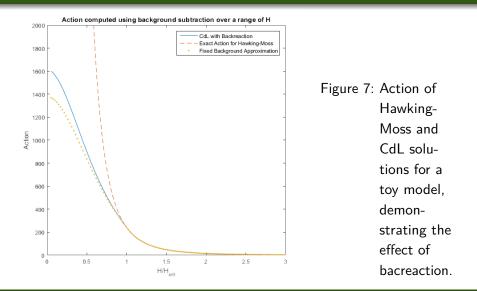
$$= 24\pi^2 M_p^4 \left(\frac{1}{V_0} - \frac{1}{V_0} (1 - \frac{\Delta V(\phi_{HM})}{V_0} + O\left(\left(\frac{\Delta V(\phi_{HM})}{V_0} \right)^2 \right) \right) \right)$$

$$= \frac{24\pi^2 M_p^4 \Delta V(\phi_{HM})}{V_0^2} (1 + O\left(\frac{\Delta V(\phi_{HM})}{V_0} \right)). \tag{20}$$

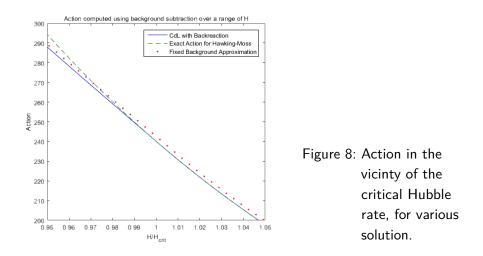
• But $\frac{M_p^4}{V_0}$ is large. CdL is similar - but disastrous if any small errors in a.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 33/44

- Fix by splitting $a(\chi) = \frac{1}{H}\sin(H\chi) + \delta a(\chi)$, $H = \frac{\pi}{\chi_{max}}$. Cancel large parts of S_0 explicitly.
- Round-off error is reduced, improving accuracy of S calculation.



Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 35/44



Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

The Problem of Differing Scales

The Problem of Differing Scales

- The most severe problem is that the Standard Model potential varies over a wide range of scales:
 - Minimum of λ , $\mu_{min} \approx 10^{17}$ GeV.
 - Barrier scale, $\approx 10^{10}$ GeV.
 - True minimum, $\approx 10^{30}$ GeV.
- Bounce solutions are very narrow spikes precision impossible without very small step sizes and very many steps.
- But high precision is *essential*:
 - Overshoot/undershoot very sensitive to initial ϕ_0 .

- Decay exponent formed from delicate cancellation of false vacuum and bounce actions.
- Currently beyond the limit of double precision numbers. But possible in principle with multi-precision arithmetic.

Future Directions

- We are developing a high precision modification of the odeint c++ library[13], optimised for our hybrid overshoot/undershoot search, and implementing multi-precision variables.
- We aim to invesit gate the effect of non-minimal coupling, $\xi,$ on the decay rate.
- And ultimately try to develop methods for computing the functional determinant prefactor in the decay rate, $\Gamma = A \exp(-\Delta S)$, to investigate the effect of graviton loops.

References

- [1] Gino Isidori, Giovanni Ridolfi, and Alessandro Strumia. On the metastability of the standard model vacuum. *Nuclear Physics B*, 609(3):387 409, 2001.
- [2] Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F. Giudice, Filippo Sala, Alberto Salvio, and Alessandro Strumia. Investigating the nearcriticality of the higgs boson. *Journal of High Energy Physics*, 2013(12):1–49, 2013.
- [3] Gino Isidori, Vyacheslav S. Rychkov, Alessandro Strumia, and Nikolaos Tetradis. Gravitational corrections to standard model vacuum decay. *Phys. Rev. D*, 77:025034, Jan 2008.

- [4] Archil Kobakhidze and Alexander Spencer-Smith. Electroweak vacuum (in)stability in an inflationary universe. *Physics Letters B*, 722(1âĂŞ3):130 – 134, 2013.
- [5] Matti Herranen, Tommi Markkanen, Sami Nurmi, and Arttu Rajantie. Spacetime curvature and higgs stability after inflation. *Physical review letters*, 115(24):241301, 2015.
- [6] José R. Espinosa, Gian F. Giudice, Enrico Morgante, Antonio Riotto, Leonardo Senatore, Alessandro Strumia, and Nikolaos Tetradis. The cosmological higgstory of the vacuum instability. *Journal of High Energy Physics*, 2015(9):1–56, 2015.
- [7] Philipp Burda, Ruth Gregory, and IanG. Moss. Vacuum metastability with black holes. *Journal of High Energy Physics*, 2015(8), 2015.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

- [8] S. Coleman, V. Glaser, and A. Martin. Action minima among solutions to a class of euclidean scalar field equations. *Communications in Mathematical Physics*, 58(2):211–221, 1978.
- [9] Adam R. Brown and Erick J. Weinberg. Thermal derivation of the coleman-de luccia tunneling prescription. *Phys. Rev. D*, 76:064003, Sep 2007.
- [10] David A. Samuel and William A. Hiscock. âĂIJthin-wallâĂİ approximations to vacuum decay rates. *Physics Letters B*, 261(3):251 – 256, 1991.
- [11] Sidney Coleman. Erratum: Fate of the false vacuum: semiclassical theory. *Phys. Rev. D*, 16:1248–1248, Aug 1977.
- [12] V. Balek and M. Demetrian. Criterion for bubble formation in a de sitter universe. *Phys. Rev. D*, 69:063518, Mar 2004.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham

[13] Karsten Ahnert and Mario Mulansky. Odeint âĂȘ solving ordinary differential equations in c++. *AIP Conference Proceedings*, 1389(1), 2011.

Questions?