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Introduction and Motivation

Introduction and Motivation

• High precision calculations exist for flat space decay rate. (Isidori et
al.[1],Buttazzo et al.[2]).

• Gravitational corrections are potentially significant (Isidori et al.[3]).

• Implications for Inflation. (Kobakhidze and Specer-Smith [4], Herranen et
al.[5], Espinosa et al.[6].

• Black holes can seed vacuum decay (Burda, Gregory, Moss[7])
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Aims of Our Research

Aims of Our Research

• Numerical study of the effect of gravitational backreaction on vacuum
decay.

• Study the effect of non-minimal coupling.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 5/44



Review of Tunnelling

Review of Tunnelling

Figure 1: Possible tunnelling potentials

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 6/44



Review of Tunnelling

• Tunnelling in 1D: T = exp
(
−2
∫ x2
x1

dx
√

2(V (x)− E)
)
.

• For more degrees of freedom, controlled by dominant path:

S =
∫

d4x

[
1
2∇µφ∇µφ+ V (φ)

]
(1)

• Decay rate: Γ = A exp(−(S − S0)) where S0 is the action of the false
vacuum solution, φ = 0.
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Review of Tunnelling

Flat space bounce properties

• Minimal action solutions are O(4) symmetric[8]

• Satisfy φ̈+ 3
χ φ̇− V

′(φ) = 0, with boundary conditions φ̇(0) = 0, φ(χ→
∞)→ 0 required for finite action.

• Field space fluctuations have a single decreasing action direction (“negative
mode”).

• Associated to an imaginary contribution to vacuum energy, hence decay.

• Solutions with more negative modes are generally subleading.
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Bounces in the Standard Model

Bounces in the Standard Model

Lee-Weinberg bounce. Assume V = −|λ|φ
4

4 ; solution is:

φ(χ) =

√
2
|λ|

2R
R2 + χ2 , S = 8π2

3|λ| . (2)

• R arbitrary. In the Standard Model, dominant bounce has R ≈ µ−1
min, the

scale where λ is minimised.

• For mt = 173.34GeV and mh = 125.15GeV, µmin = 2.79 × 1017GeV,
just below the Planck scale[1].

• It is reasonable to expect gravitational corrections to be important.Perturbative
estimations of their size appears to confirm this[3].
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Bounces in the Standard Model
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Bounces in the Standard Model
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Bounces in the Presence of Gravity

Bounces in the Presence of Gravity

• Curved space bounces minimise:

S =
∫

d4x
√
|g|[ 12∇µφ∇µφ+ V (φ)−

M2
p

2 (1− ξφ2

M2
p

)R]. (3)

• Where ξ is the possible non-minimal coupling. Minimum action solutions
are assumed to be O(4) symmetric, giving a (Euclidean) metric ansatz:

ds2 = dχ2 + a2(χ)dΩ2
n−1, (4)
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Bounces in the Presence of Gravity

• Neglecting ξ terms, the instanton equations are:

ȧ2 = 1− a2

3M2
p

(
− φ̇

2

2 + V (φ)
)

(5)

φ̈+ 3ȧ
a
φ̇− V ′(φ) = 0 (6)
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Bounces in the Presence of Gravity

Figure 2: Example Euclidean
space, de-Sitter dis-
torted by a bounce.
a(χ) here is not the
usual scale factor
of cosmology, but
the radius of a sub-
sphere (or sub-de-
Sitter).
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Bounces in the Presence of Gravity

Interpretation:

• Boundary conditions: φ̇(0) = φ̇(χmax) = 0, a(0) = 0 where χmax > 0
defined by a(χmax) = 0.

• Looking for a decay rate so need a notion of time.

• Formulate the problem on a static patch, and then switch toO(4) symmetric
co-ordinates.

• Metric (Lorentzian) on static patch:

ds2
n = dχ2 + a2(χ)(−(1− r2)dt2 + (1− r2)−1dr2 + r2dΩ2

n−3) (7)

• In de-Sitter space, a(χ) = 1
H sin(Hχ)

• χ is the radial distance from the origin.
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Bounces in the Presence of Gravity

• χmax finite→compact Euclidean space→periodic Euclidean time→tunnelling
at non-zero temperature.[9].

• T = TGH = H
2π for de-Sitter space.
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Bounces in the Presence of Gravity

Figure 3: De Sitter space.
Figure 4: Static Patch of de Sitter

space.
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Bounces in the Presence of Gravity

Figure 5: Various solutions in the presence of gravity. The true and false
vacuum, and Hawking-Moss solutions are constant, while the
CdL solution varies with χ.
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The Hawking-Moss Solution

The Hawking-Moss Solution

• Analytic solution, φ(χ) = const. = φHM . Field sits at the top of the
barrier.

• Action is S = 24π2M4
p

(
1
V0
− 1

V (φHM )

)
where V0 = V (φfv).

• If ∆V (φHM ) = V (φHM ) − V0 � V0 then this is approximately S =
4π
3

(
1
H0

)3 ∆V (φHM )
(H0

2π ) , where H0 is the background Hubble rate, H2
0 = V0

3M2
p
.

• Decay rate of Γ ≈ exp
(
− Energy in one Hubble Volume

Gibbons Hawking Temperature

)
- a Boltzmann distri-

bution. Hawking-Moss is a thermal transition.
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The Hawking-Moss Solution

• Count negative eigenvalues to see if a valid bounce. Radial part of eigen-
value equation:

d2Rnl
dχ2 + 3HHM cotHHMχ

dRnl
dχ − H2

HM

sin2HHMχ
l(l + 2)Rnl

− (V ′′(φHM )− λ)Rnl = 0, (8)

• where H2
HM = V (φHM )

3M2
p

, n, l = 0, 1, 2, . . .. Resulting eigenvalues are:

λnl = V ′′(φHM ) + [n+ l]([n+ l] + 3)H2
HM , (9)
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The Hawking-Moss Solution

• Define N = n + l. V ′′(φHM ) < 0 so N = 0 is always negative. Extra
negative eigenvalue for N = 1 if:

V ′′(φHM ) + 4H2
HM < 0 =⇒ 8πGNV (φHM )

3 < −V
′′(φHM )

4 . (10)

• At this critical threshold, the l = 0, n = 1 mode obeys:

R̈10 + 3HHM cot(HHMχ) ˙R10 + 4H2
HMR10 = 0, (11)

• Same as Coleman-de-Lucia linearised fluctuations about top of barrier:

δ̈φ+ 3HHM cot(HHMχ) ˙δφ− V ′′(φHM )δφ = 0. (12)
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The Hawking-Moss Solution

• N = 1 direction points towards CdL solution - which is thus lower action
below this threshold.

• Expect that for H < Hcrit, CdL instantons dominate vacuum decay, and
for H > Hcrit, Hawking-Moss instantons dominate.

• If background Hubble rate is H2
0 = V0

3M2
p
then the critical threshold for H0

is:
H2
crit = −V

′′(φHM )
4 − ∆V (φHM)

3M2
p

. (13)
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The Hawking-Moss Solution
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Computing Thick-wall Bubbles

Computing Thick-wall Bubbles

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 24/44



Numerical Setup

Numerical Setup
Equations to solve:

ȧ2 = 1− a2

3M2
p

(
− φ̇

2

2 + V (φ)− 6ξȧ
a
φφ̇

)
(14)

φ̈+ 3ȧ
a
φ̇− V ′(φHM )− ξR(φ, φ̇, φ̈)φ = 0 (15)

φ̇(0) = φ̇(χmax) = 0, a(0) = 0, χmax > 0 defined by a(χmax) = 0. (16)

Two approximations which fail for the Standard Model:

• Fixed background approximation. Assume that a is dominated by the
background spacetime and ignore any backreaction.

• Thin wall approximation. Assume that gradient terms do not contribute
significantly except in a thin region, the ‘bubble wall’.
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Thin Wall Approximation

Thin Wall Approximation
The Thin wall approximation splits the bounce solution into three regions:

• The bubble interior, where φ ≈ φtv. Gives a negative contribution to the
action as V < 0.

• The bubble wall, where φ has a gradient. Gives a positive contribution to
the action.

• The bubble exterior, where φ ≈ φfv. Gives little contribution.

• Size of bubble determined by interplay of ‘surface tension’ (supresses
bubbles) and ‘bubble interior’ (encourages bubble growth).

• Not valid if energy difference between vacua large [10], such as in the
Standard Model.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 26/44



Thin Wall Approximation

Figure 6: Standard Model potential
for very large field values.
Note the vast difference
in scale between the true
minimum and the barrier,
which is not visible on this
scale.
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Thin Wall Approximation

Qualitative interpreation - volume distorted by curvature, chaging surface area to
volume ratio:

• If R < 0, then V < 4πr3

3 →need to nucleate larger bubbles→supresses
decay.

• If R > 0, then V > 4πr3

3 →can nucleate smaller bubbles→enhances decay.
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The Fixed Background Approximation.

The Fixed Background Approximation.
• Assume that the background dominates.

• a = 1
H0

sin(H0χ) and χmax = π
H0

.

• Single ode:
φ̈+ 3H0 cot(H0χ)φ̇− V ′(φ) = 0. (17)

• Solve by overshoot/undershoot method, introduced by Coleman[11]. Guess
φ0:

– If φ0 is too close to the barrier, then it will undershoot - φ̇ crosses
zero before χ = π

H0
.

– If φ0 is too far from the barrier it will overshoot - φ̇ does not reach
zero before χ = π

H0
.
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Thick Wall Bubbles with Backreaction

• True solution is somewhere inbetween→bisect until φ0 found.

• See Balek and Demetrian for detailed discussion[12].

• Not valid for the Standard Model. Gravitational backreaction is significant[3].
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Thick Wall Bubbles with Backreaction

Thick Wall Bubbles with Backreaction
• Thick wall bubbles - gradient terms significant, include a evolution.

• Problem 1 - 1
a terms diverge at the boundaries.

• Taylor expand for small χ, χ − χmax. Choose initial step δχ such that
leading order term dominates.

• Problem 2 - χmax is unknown before computing the solution.

• Define a new independent variable, t = χ
χmax

. Add a new equation
˙χmax = 0.

• Fix χmax by Newton-Raphson such that solutions integrated from both
poles match in the middle.
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Thick Wall Bubbles with Backreaction

• This is faster than bisection, which has only linear convergence.

• However, it can fail if the initial guess is far from the correct guess.

• Hybrid - use bisection where Newton-Raphson fails.

• Problem 3 - interpolation too inaccurate.

• Add extra equation for S:

S(t) = 2π2
∫ tχmax

0
dχa3(χ)(1

2 φ̇
2 + V (φ)−

M2
p

2 (1− ξ φ
2

M2
p

)R) (18)

dS
dt = 2π2χmaxa

3(χ)(1
2 φ̇

2 + V (φ)−
M2
p

2 (1− ξ φ
2

M2
p

)R). (19)

• Boundary conditions S(0) = 0, S(1) = S. Fix S, χmax by Newton-Raphson,
until φ, φ̇, a, S all match.
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The Problem of Delicate Cancellations

The Problem of Delicate Cancellations
• Action comptation involves delicate cancellation. E.g. for Hawking-Moss:

∆SHM = SHM − S0

=
24π2M4

p

V0
−

24π2M4
p

V0 + ∆V (φHM)

= 24π2M4
p

(
1
V0
− 1
V0

(1− ∆V (φHM )
V0

+O

((
∆V (φHM )

V0

)2
)

)
)

=
24π2M4

p∆V (φHM )
V 2

0
(1 +O

(
∆V (φHM )

V0

)
). (20)

• But M4
p

V0
is large. CdL is similar - but disastrous if any small errors in a.
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The Problem of Delicate Cancellations

• Fix by splitting a(χ) = 1
H sin(Hχ)+δa(χ), H = π

χmax
. Cancel large parts

of S0 explicitly.

• Round-off error is reduced, improving accuracy of S calculation.
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The Problem of Delicate Cancellations

Figure 7: Action of
Hawking-
Moss and
CdL solu-
tions for a
toy model,
demon-
strating the
effect of
bacreaction.
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The Problem of Delicate Cancellations

Figure 8: Action in the
vicinty of the
critical Hubble
rate, for various
solution.
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The Problem of Differing Scales

The Problem of Differing Scales
• The most severe problem is that the Standard Model potential varies over

a wide range of scales:

– Minimum of λ, µmin ≈ 1017 GeV.

– Barrier scale, ≈ 1010 GeV.

– True minimum, ≈ 1030 GeV.

• Bounce solutions are very narrow spikes - precision impossible without very
small step sizes and very many steps.

• But high precision is essential :

– Overshoot/undershoot very sensitive to initial φ0.
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The Problem of Differing Scales

– Decay exponent formed from delicate cancellation of false vacuum
and bounce actions.

• Currently beyond the limit of double precision numbers. But possible in
principle with multi-precision arithmetic.
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Future Directions

Future Directions

• We are developing a high precision modification of the odeint c++ library[13],
optimised for our hybrid overshoot/undershoot search, and implementing
multi-precision variables.

• We aim to invesitgate the effect of non-minimal coupling, ξ, on the decay
rate.

• And ultimately try to develop methods for computing the functional deter-
minant prefactor in the decay rate, Γ = A exp(−∆S), to investigate the
effect of graviton loops.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 39/44



References

[1] Gino Isidori, Giovanni Ridolfi, and Alessandro Strumia. On the metastability
of the standard model vacuum. Nuclear Physics B, 609(3):387 – 409, 2001.

[2] Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F. Giudice,
Filippo Sala, Alberto Salvio, and Alessandro Strumia. Investigating the near-
criticality of the higgs boson. Journal of High Energy Physics, 2013(12):1–49,
2013.

[3] Gino Isidori, Vyacheslav S. Rychkov, Alessandro Strumia, and Nikolaos
Tetradis. Gravitational corrections to standard model vacuum decay. Phys.
Rev. D, 77:025034, Jan 2008.



[4] Archil Kobakhidze and Alexander Spencer-Smith. Electroweak vacuum
(in)stability in an inflationary universe. Physics Letters B, 722(1âĂŞ3):130 –
134, 2013.

[5] Matti Herranen, Tommi Markkanen, Sami Nurmi, and Arttu Rajantie. Space-
time curvature and higgs stability after inflation. Physical review letters,
115(24):241301, 2015.

[6] José R. Espinosa, Gian F. Giudice, Enrico Morgante, Antonio Riotto,
Leonardo Senatore, Alessandro Strumia, and Nikolaos Tetradis. The cosmo-
logical higgstory of the vacuum instability. Journal of High Energy Physics,
2015(9):1–56, 2015.

[7] Philipp Burda, Ruth Gregory, and IanG. Moss. Vacuum metastability with
black holes. Journal of High Energy Physics, 2015(8), 2015.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 41/44



[8] S. Coleman, V. Glaser, and A. Martin. Action minima among solutions to a
class of euclidean scalar field equations. Communications in Mathematical
Physics, 58(2):211–221, 1978.

[9] Adam R. Brown and Erick J. Weinberg. Thermal derivation of the coleman-de
luccia tunneling prescription. Phys. Rev. D, 76:064003, Sep 2007.

[10] David A. Samuel and William A. Hiscock. âĂĲthin-wallâĂİ approximations
to vacuum decay rates. Physics Letters B, 261(3):251 – 256, 1991.

[11] Sidney Coleman. Erratum: Fate of the false vacuum: semiclassical theory.
Phys. Rev. D, 16:1248–1248, Aug 1977.

[12] V. Balek and M. Demetrian. Criterion for bubble formation in a de sitter
universe. Phys. Rev. D, 69:063518, Mar 2004.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 42/44



Future Directions

[13] Karsten Ahnert and Mario Mulansky. Odeint âĂŞ solving ordinary differential
equations in c++. AIP Conference Proceedings, 1389(1), 2011.

Stephen Stopyra & Arttu Rajantie | UKQFT V: University of Nottingham 43/44



Questions?


