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With the population increasing and expected to 
reach 9 billion within the next four decades, it is no 
wonder that demand for food is increasing (Sticklen, 
2007; Faaij, 2008; Paproki et al., 2012). Moreover, devel-
oping countries, such as China and India, are increas-
ing food intake per capita and driving the demand for 
a richer, more varied diet, such as meats and dairy. 
Climate change, leading to more frequent and severe 
flooding, and a shortage of arable land constitute ad-
ditional challenges. Furthermore, it has been predicted 
that, without crop climate adaptation, the production 
of food will deteriorate (Adeloye, 2010; Challinor et al., 

2014). In order to deal with such demands, innovative 
approaches to increasing agricultural production are 
necessary.

Connections between the underlying genetic code 
and the visible physical structures and functions of 
plants (i.e. phenotyping) can aid in the identification 
of more productive crop species. A comprehensive 
understanding of plant phenotypes informs breeding 
and genetic selection, facilitating, for example, more 
effective nutrient use and photosynthetic activity, 
thereby increasing crop yield and stability across more 
extreme environments (Quan et al., 2006). The relation-
ship between phenotype and genotype has received 
an increased amount of attention in recent years, with 
significant progress made in the study of genetics. The 
recovery and analysis of traits such as plant growth, 
development, and tolerance, however, remains a se-
rious bottleneck (Furbank and Tester, 2011). Two- 
dimensional (2D) approaches to plant phenotyping 
have been used extensively, although they have nu-
merous limitations, most notably the inability to ac-
curately reflect 3D quantities. For example, a curved 
leaf in a 2D image will have a significantly smaller 
surface area than in a 3D model. 2D methods struggle 
to capture plant structure, and accurate measurement 
of growth is challenging. The use of 3D models over-
comes many of these difficulties, allowing more and 
more traits to be obtained accurately. Once a 3D model 
of a given plant has been built, it can be reanalyzed, 
should new trait measurements be required. This may 

Plant Phenotyping: An Active Vision Cell for  
Three-Dimensional Plant Shoot Reconstruction1[OPEN]

Jonathon A. Gibbs,a,2 Michael Pound,a Andrew P. French,a Darren M. Wells,b Erik Murchie,b and 
Tony Pridmorea,3

aSchool of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, United Kingdom
bSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire 
LE12 5RD, United Kingdom
ORCID IDs: 0000‑0002‑2772‑2201 (J.A.G.); 0000‑0002‑5016‑1078 (M.P.); 0000‑0002‑8313‑2898 (A.P.F.); 0000‑0002‑4246‑4909 (D.M.W.); 
0000‑0002‑7465‑845X (E.M.); 0000‑0002‑9485‑1978 (T.P.)

Three-dimensional (3D) computer-generated models of plants are urgently needed to support both phenotyping and simula-
tion-based studies such as photosynthesis modeling. However, the construction of accurate 3D plant models is challenging, as 
plants are complex objects with an intricate leaf structure, often consisting of thin and highly reflective surfaces that vary in 
shape and size, forming dense, complex, crowded scenes. We address these issues within an image-based method by taking an 
active vision approach, one that investigates the scene to intelligently capture images, to image acquisition. Rather than use the 
same camera positions for all plants, our technique is to acquire the images needed to reconstruct the target plant, tuning camera 
placement to match the plant’s individual structure. Our method also combines volumetric- and surface-based reconstruction 
methods and determines the necessary images based on the analysis of voxel clusters. We describe a fully automatic plant 
modeling/phenotyping cell (or module) comprising a six-axis robot and a high-precision turntable. By using a standard color 
camera, we overcome the difficulties associated with laser-based plant reconstruction methods. The 3D models produced are 
compared with those obtained from fixed cameras and evaluated by comparison with data obtained by x-ray microcomputed 
tomography across different plant structures. Our results show that our method is successful in improving the accuracy and 
quality of data obtained from a variety of plant types.

1This work was funded by Engineering and Physical Sciences 
Research Council PhD Studentship Award 1499261 (to J.A.G.) and 
Biotechnology and Biological Sciences Research Council Grant BB/
R004633/1, “The 4-Dimensional Plant: Enhanced Mechanical Canopy  
Excitation for Improved Crop Performance.”

2Author for contact: psxjg6@nottingham.ac.uk.
3Senior author.
The author responsible for distribution of materials integral to 

the findings presented in this article in accordance with the policy 
described in the Instructions for Authors (www.plantphysiol.org) is: 
Jonathon A. Gibbs (psxjg6@nottingham.ac.uk).

J.A.G. designed and implemented the system, performed the ex-
periments, and wrote the article; M.P. supported with 3D reconstruc-
tions; A.P.F., D.M.W., and E.M. supported with biological relevance 
and fit for purpose; T.P. supervised the project.

[OPEN]Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.18.00664

Breakthrough Technologies

 www.plantphysiol.orgon April 21, 2020 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1104/pp.18.00664&domain=pdf
https://orcid.org/0000-0002-2772-2201
https://orcid.org/0000-0002-5016-1078
https://orcid.org/0000-0002-8313-2898
https://orcid.org/0000-0002-4246-4909
https://orcid.org/0000-0002-7465-845X
https://orcid.org/0000-0002-9485-1978
http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100000266
http://www.plantphysiol.org
http://www.plantphysiol.org/cgi/doi/10.1104/pp.18.00664
http://www.plantphysiol.org


not be possible in 2D approaches, where image acqui-
sition often is designed to provide a particular, limited 
set of data. Access to accurate 3D models also supports 
simulation-based studies of plant functions, such as 
photosynthesis (Burgess et al., 2015, 2017).

The construction of accurate 3D models of plants 
is extremely challenging. Existing approaches fall 
into the two categories of rule based or image based  
(Remondino and El-Hakim, 2006). Rule-based ap-
proaches use knowledge of plant structure, forming 
and generating example models consistent with that 
knowledge. Although rule-based approaches can pro-
duce satisfactory results, their use often requires expert 
knowledge, and rules usually are targeted toward spe-
cific plant types. Plant structure also varies significant-
ly across species and environments, making it difficult 
to predict structures a priori. More importantly, al-
though they can generate visually realistic models, the 
representations produced may not correspond to any 
real, existing plant. Consequently, rule-based models 
are unsuitable for high-resolution phenotyping tasks. 
In contrast, image-based methods develop accurate 
3D models of real, viewed plants. These models can 

be used to support both simulations of plant function 
and the extraction of trait measurements (Burgess  
et al., 2015, 2017).

One of the more popular approaches to 3D modeling 
is multi-view stereo (MVS). Here, a number of images 
(several tens) are captured from distinct viewpoints. 
Given sufficient overlap between views, it is possible 
to match features between images and produce a 3D 
point cloud, to which a surface can be fitted. Although 
MVS has been successful in a variety of domains, 
plants are particularly challenging objects to model. 
Individual leaves can be very similar in appearance 
and densely packed, occluding each other from many 
viewpoints. They often lack the surface texture needed 
when matching image features, assuming local coher-
ence and smoothness. The leaves of many species also 
are highly reflective, making alternative laser scanning 
approaches less effective. For a review of 3D modeling 
algorithms for plants, readers are encouraged to see 
Gibbs et al. (2017).

The high-throughput phenotyping systems deployed 
in plant and crop science are now routinely gathering 
large numbers of images from which 3D models might 

Figure 1.  The AVC, composed a Canon 650D camera, a UR5 universal robot, and an LT360EX turntable upon which the plant 
is placed.

Figure 2.  Initial representation. Left, an original image of a target plant (bromeliad); middle, the initial representation after 10 
images; right, the final voxel model showing more object features after acquiring additional viewpoints.
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be obtained. Current installations, however, typically 
rely on fixed viewpoints that are not adapted to the 
specific plant being examined or are designed with one 
species in mind. Some systems rotate the plant during 
imaging but still use static camera positions. The rela-
tion between viewpoints and plant, therefore, remains 
fixed, regardless of the structure of the plant, which 
may vary widely. This means that, in many cases,  
the images captured are far from optimal for the given 
plant. In order to capture 3D models useful for phe-
notyping, there is a need for a more intelligent image- 
capture system optimized for 3D reconstruction and 
sensitive to variations in plant architecture.

In this work, we show that active computer vision 
(Aloimonos et al., 1988) can aid the reconstruction of 
complex plants by providing reactive, and therefore 
improved, image-acquisition strategies. Active vision 
systems automatically control and manipulate cam-
era viewpoints to gather information to best support 
the task at hand. Active vision methods already have 
played a role in other plant-related tasks. For example, 
Hemming et al. (2014b) attached a camera to a robot 
arm in order to identify peppers (Capsicum annuum) to 
be collected. The effect of camera placement on fruit 
picking also has been investigated (Hemming et al., 
2014a), with active vision used to address the problem 
of occlusion. However, the process of capturing images  
for 3D reconstruction, known as image selection, cur-
rently is an insufficiently considered resource in image- 
based 3D reconstruction (Hornung et al., 2008).

We propose a framework to automatically capture a 
set of images suitable for use in 3D modeling, via MVS, 
of different and contrasting plant structures. This work 
directly addresses the competing demands placed on 

image acquisition: too many images can introduce 
redundancy and result in excessive processing times, 
while too few images result in an incomplete model. 
We identify a set of viewpoints that enable a reliable 
3D model to be reconstructed without scanning the 
plant excessively. We present a solution suitable for 
deployment in an automated, high-throughput pheno-
typing system. This article describes a fully automated, 
active vision cell (AVC) that is capable of manipulating 
a camera’s viewpoint to produce high-quality 3D mod-
els of a wide range of plants by adapting to the visual 
information available, without user intervention. The 
approach described here offers more flexibility than 
existing large-scale phenotyping systems by adapting 
to the natural variation of individual plants. This is 
achieved by investigating an initial, crude representa-
tion of plant structure in order to reposition the camera 
and obtain improved data.

SETUP/METHOD DEVELOPMENT

The accuracy and reliability of 3D models depend 
heavily on the quality of images, while its computa-
tional requirements are dependent on the number of 
images. Images do not contribute equally to the quality  
of a reconstruction: some are redundant, while oth-
ers add large amounts of high-quality, necessary data 
(Seitz et al., 2006). Here, we propose an AVC designed 
to provide sufficient data to ensure a reliable represen-
tation without the need for specific expertise on the 
part of the user, with the ability to adapt to different 

Figure 3.  The view sphere representation, which encloses the plant 
being modeled such that it is centered. The red dot is an example of an 
initial optimal viewpoint; should this fail, it is expanded to green, then 
to yellow, and so on.

Figure 4.  Experiment 1 conducted on a bromeliad. The first column 
is the x-ray data, obtained using a CT scanner. The top row presents a 
side view and the bottom row presents a top-down view. The second 
column is a point set obtained using the AVC proposed here.
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plant structures, and without analyzing excess num-
bers of images.

Cell Design and Calibration

Our AVC is composed of three main components: a 
high-precision turntable (LT360EX; Linear X Systems) 
with a resolution of 0.0015°, a robot arm providing 6° 
of freedom (UR5; Universal Robots), and a standard 
color camera (Canon 650D; Canon) mounted on the ro-
bot arm (Fig. 1). A single software interface is used to 
control each of the hardware components. The UR5 is 
sent commands using strings via sockets, the LT360EX 
is controlled using serial communications, and the 
Canon 650D is controlled via a Software Development 
Kit.

Calibration, the process of obtaining reliable 3D cam-
era parameters for each view, is an important first step 
in any 3D reconstruction pipeline. Calibration usually  
is an automatic process, determining the physical pa-
rameters of each hardware component and quantify-
ing the relationships between them and the viewed 
environment. The calibration process can be organized 
into four stages: camera calibration, robot calibration, 
calibration of the remaining unknowns, and turnta-
ble calibration. All four calibration steps are required 
to determine the position of the camera for active vi-
sion. In simple terms, the calibration aims to estimate 
the position and orientation of each component in the  
setup (the robot and turntable) and the camera lens 
and sensor.

Camera Calibration

Camera calibration is used to estimate the intrinsic 
and extrinsic parameters of the camera, which are used 
to determine its location for the calibration of the robot. 
A standard checkerboard calibration target, in which 
the dimensions of the squares are known, is placed 
on the turntable. Given a series of images of this cal-
ibration object at distinct viewpoints, it is possible to 
recover the position, orientation, and internal param-
eters of the camera that captured each image. Internal 
parameters often are termed intrinsic parameters and 
consist of the focal length, offset, and axis skew. The 3D 
plant models produced are expressed in world coordi-
nates with respect to a coordinate frame located on the 
checkerboard. The bottom right corner of the checker-
board is the world origin (0, 0, 0). Camera calibration 
provides a transformation between world coordinates 
and a coordinate frame centered on the camera. This 

transformation can be used to project any 3D world 
position into a 2D camera position in its image frame.

Robot Calibration

Robot calibration estimates the position and orienta-
tion of the end of the robot arm (i.e. the end effector). 
Also known as forward kinematics, robot calibration is 
achieved using a simultaneous closed-form quaternion 
approach (Dornaika and Horaud, 1998). This produc-
es a transformation matrix specifying the relationship 
between the base of the robot and the end effector. 
This transformation matrix provides the rotation and 
translation needed to transform one robot position to 
another.

Calibration of Unknowns

After transformations linking the base of the robot to 
the camera and the camera to the world (turntable) are 
available, it is possible to calculate the relationship be-
tween the base of the robot and the turntable (world). 
The remaining calibrations can be calculated as a lin-
ear equation in the form AX = YB, where A (the world 
to camera) and B (the robot base to the end effector) 
are now known and where Y (the world to robot base) 
and X (the camera to the end effector) are the two un-
knowns. A closed-form approach to the linear equation 

Table 1.  Experiment 1 results, bromeliad

Method Mean sd Points Images Per Image

One static 0.3574 1.1795 141,073 40 3,526.80
Two static 0.3442 0.7450 155,396 40 3,884.90
Arbitrary 0.2693 1.1267 227,338 40 5,683.50
AVC 0.1959 0.6773 290,236 36 7,637.80

Figure 5.  Experiment 2 conducted on aloe. The first column is the 
x-ray data, obtained using a CT scanner. The top row presents a side 
view and the bottom row presents a top-down view. The second col-
umn is a point set obtained using the AVC proposed here.
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has been used to determine the remaining unknowns 
(Dornaika and Horaud, 1998).

Turntable Calibration

Rotating the turntable, which is necessary to provide 
complete access to the plant, changes the relationship 
between robot/camera and world coordinates. To cal-
ibrate the turntable, it is rotated by 90° four times. The 
camera is recalibrated each time, giving four positions 
for the world coordinate origin. Plotting the four ori-
gins obtained from the calibration in two dimensions 
and connecting the diagonal origins using a straight 
line allows the center of rotation to be solved as a line 
intersection problem. The center of rotation is used to 
calculate a new world coordinate frame each time the 
turntable is rotated. At this point, we have a fully pa-
rameterized relationship between the camera system, 
robotic arm, and turntable.

Active Image Acquisition

There are two stages to 3D modeling within the 
AVC: the first requires the creation of a crude, initial 
plant model, represented by a series of voxels; the 
second stage involves an analysis of this initial repre-
sentation to identify undersampled and oversampled 
(imaged) regions of the plant. The robot arm then is 
directed automatically to acquire more data, while un-
necessary images are removed. Note that the images 
used to construct the volumetric proxy also are deter-
mined automatically, on the basis of 2D image features, 
as described below.

An Initial Volumetric Plant Representation

To acquire an initial volumetric representation of a 
plant, we capture a series of images. These are taken 
from automatically determined camera locations cir-
cling the plant at three different heights. The first im-
age is acquired after positioning the camera so that its 
principal axis (line of sight) lies in the plane of the turn-
table and passes through its center of rotation. A Eu-
clidean color filter, which filters pixels where the color 
is inside or outside of a red, green, and blue sphere 
with a specified center and radius, is applied to sepa-
rate plant pixels from the white background. We then 
apply three simple rules to move the camera to center 
the plant (which may be of arbitrary size, asymmet-
ric, etc.) within the camera’s field of view (FOV): (1) if 
there is too much white space surrounding the plant 

region (i.e. if the distance from the plant region to the 
edge of the image is greater than a specified threshold), 
move the camera forward; (2) if one side of the plant is 
outside the camera’s FOV, move the camera laterally 
to ensure it is inside; and (3) if more than one side is 
outside the camera’s FOV, move the camera backward. 
The resulting camera location forms the starting point 
for image acquisition. Once an acceptable viewpoint 
has been determined a series of images is captured by 
rotating the plant and acquiring an image every 36°, 
producing 10 images with the camera fixed at the ini-
tial elevation.

Space carving (Seitz, 2000) is used to generate the 
initial 3D model from the first image sequence. Space 
carving operates by projecting the silhouette of the 
target object (the plant) into 3D space to define the 
volume possibly occupied by the object. Projecting sil-
houettes extracted from multiple images, and taking 
the intersection of the volumes they produce, reduce 
the size of this volume, creating an increasingly more 
accurate model.

This 10-image model of a complex plant (Fig. 2) is of 
limited value, but it does allow an estimate of the plant 
height to be made. The camera is raised to be level  
with the top of the plant, automatically recentered as 
described above, and another 10 images are acquired 
by rotating the turntable. This is known as the level 

Table 2.  Experiment 2 results, aloe

Method Mean sd Points Images Per Image

One static 1.4517 3.6624 159,870 40 3,996.80
Two static 1.6911 3.6143 160,592 40 4,014.80
Arbitrary 1.8963 4.5674 183,027 40 4,575.70
AVC 1.3329 3.5930 216,791 31 5,705.00

Figure 6.  Experiment 3 conducted on a cordyline. The first column is 
the x-ray data, obtained using a CT scanner. The top row presents a 
side view and the bottom row presents a top-down view. The second 
column is a point set obtained using the AVC proposed here.
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2 position, having moved up along the z axis in one 
increment, where the first set of images were captured 
at level 1, in line with the turntable. To improve cover-
age, the turntable is rotated 12° before image acquisi-
tion begins. This means that the level 1 and 2 camera 
positions are not aligned vertically but offset by 12°. 
The new images then are used to refine the volumetric 
model and, therefore, plant height estimation.

To complete the volumetric representation, the cam-
era is raised to twice the newly estimated height of the 
plant, a further 12° offset is added, and a final 10 images  
are acquired. By increasing the height of the camera to 
above the height of the plant, it is possible to get a set 
of top-down images uncovering new information, par-
ticularly useful for plants with wide flat leaves, such 
as broadleaf species including legumes and squashes.

This image-acquisition strategy is designed to achieve 
a set of varying viewpoints that sample the area 
around the plant while keeping the plant in view. Note 
that we do not recenter the plant in each image, only 
in the first image captured at each level. However,  
given plants with a high degree of asymmetry, the 
rules above could be applied after each rotation of the 
turntable.

The final volumetric model remains comparatively 
crude and low resolution, giving a blocky appearance, 
and is unable to represent some features at all, such as 
concavities. However, it does provide a sufficient in-
termediate representation for evaluation via forward 
ray tracing (Vasquez-Gomez et al., 2013), in which 
rays from the camera are projected into the scene to 
determine the intersection with the object, and so de-
termines which cameras can see which parts of the de-
veloping 3D model.

Plant Model Refinement

The next step is the automatic refinement of the im-
age set, removing those that are unnecessary and ob-
taining further images of underrepresented sections of 
the plant. Images are removed if each voxel in the plant 
proxy representation is still seen by more than three 
cameras after their removal. In practice, MVS produces 
higher quality results when an area has been seen three 
times or more.

View planning is then performed to determine which 
additional data to capture. Traditionally, view plan-
ning evaluates each possible view on a per voxel basis: 
each voxel is evaluated independently for every pos-
sible camera position in the view sphere (Massios and 
Fisher, 1998; Wong et al., 1999). If we were to do this 
in our cell, and if we limit robot movements in whole 

degrees, it is possible to move 180 points from top to 
bottom and 360 points around the view sphere, result-
ing in 64,800 camera positions that would require eval-
uation. We reduce this complexity by clustering voxels 
together and evaluating specific views on a per-cluster 
basis. There are four stages here: (1) clustering, (2) 
cluster evaluation, (3) camera placement, and (4) data  
acquisition.
1. Clustering. Each voxel is represented by a single point 
lying at its center, and the k nearest neighbor (k-NN) 
algorithm is used to cluster the point set. k-NN is a 
simple machine-learning algorithm that clusters the 
point set into a series of k nearest neighbors. That is, 
points are added to some cluster that are within the 
range of the centroid when given some radius. k-NN 
finds the k nearest neighbors to a point that are with-
in some radius of the center of the cluster, the starting 
point. We implement this algorithm using a KD-tree 
data structure, which significantly improves perfor-
mance when applying nearest-neighbor searchers to 
points in k dimensions.
2. Cluster Evaluation. Each cluster must be evaluated to 
determine whether additional images need to be cap-
tured and, thus, to ensure that the object is sufficiently 
scanned. We propose a simple evaluation method that 
operates on the number of views in which a cluster is 
visible and the angle between the cameras that have 
seen the cluster (Furukawa and Ponce, 2010). If a cluster 
has a low score, then we mark the cluster as requiring 

Table 3.  Experiment 3 results, cordyline

Method Mean sd Points Images Per Image

One static 0.7565 2.0167 122,851 40 3,071.30
Two static 0.8638 2.8122 94,193 40 2,354.80
Arbitrary 1.0284 4.7614 80,154 40 2,003.90
AVC 0.7384 2.0691 143,049 26 3,764.40

Figure 7.  Experiment 4 conducted on brassica. The first column is the 
x-ray data, obtained using a CT scanner. The top row presents a side 
view and the bottom row presents a top-down view. The second col-
umn is a point set obtained using the AVC proposed here.
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additional viewpoints. The evaluation metric used is 
given in Equation 1:

​Score  =    ​ 1 _ ​C​ 
n
​​​   ​ ∑​ 

j=1
​ 

​C​ n​​
 ​​​(​​​seen​​(​​​C​ j​​​)​​​ _ imgCrit ​ + ​maxAngle​​(​​​C​ cam​​,   ​C​ cam​​​)​​​ ___________ angleCrit  ​​)​​​  ×  0.5 ​	 (1).

where ​seen(​C​ j​​)​ refers to the number of times each voxel 
has been seen in the cluster and ​imgCrit​ is the number 
of times a point must be seen to ensure an accurate rep-
resentation (we use 3 to match our Patch Based Multi- 
View Stereo (PMVS) settings). ​maxAngle(​C​ cam​​,   ​C​ cam​​)​ is 
the maximum angle between any of the cameras that 
can see the voxel, and ​angleCrit​ is the minimal angle 
difference between cameras, to ensure different views 
(we use 20°, determined empirically).

We determine whether a cluster has been seen by a 
given camera via ray tracing. This simulates the pro-
jection of a ray of light from the camera to the cluster 
centroid. In order to improve performance, we imple-
ment a hierarchical ray tracing (HRT; Vasquez-Gomez 
et al., 2013) approach rather than a uniform ray tracing 
method. Uniform ray tracing traces dense rays through 
the scene irrespective of whether an intersection with 
a voxel occurs. HRT traces sparse rays, only increas-
ing the resolution when voxels are touched by a ray. 
Starting at a coarse resolution, HRT continues until the 
maximum resolution is reached.

3. Camera Placement. Given a series of undersampled clus-
ters, we proceed to calculate a series of viewpoints that 
can be used to capture additional information. We first 
determine the distance the camera is required to be 
from the object to ensure that the plant is completely  
within the FOV, without excess white space, using the 
camera parameters and object size. The size of our 
view sphere (Fig. 3) then is determined by Equation 2:

	
​​
FOV   =   2  ⋅  atan(​1 _ 2​ ⋅   ​s _ f ​)​  

Distance   = ​ 1 _ 2​ ⋅   ​
max(w, h) _ sin(FOV) ​

 ​​	
(2)

where s is the sensor size and f is the focal length, 
both of which are obtainable from the camera  

specification. ​max(w, h)​ returns the maximum value  
of the object with respect to the height, h, and  
width, w.

Traditional view-planning methods evaluate every 
possible position on the view sphere; we significantly  
reduce the heavy computational requirements this 
brings by incrementally expanding our search should 
a view fail. A starting camera position is defined as 
the intersection of the normal of the cluster with the 
view sphere. The view is evaluated for correctness in 
two ways: the first is to perform inverse kinematics to 
ensure that the robot is able to reach the position, the 
second is ray tracing from the camera position into the 
scene to ensure that the cluster is not occluded from 
this viewpoint. If either of the evaluations fails, we in-
crementally expand over the view sphere, first evalu-
ating positions in green (Fig. 3) and then yellow, and 
so on, expanding outward from the starting position 
until an acceptable viewpoint is found. This process 
is performed for each cluster that requires additional 
viewpoints to be captured, until views of all clusters 
have been obtained.
4. Data Acquisition. Once we have a series of camera 
positions, additional images are captured as neces-
sary, and PMVS (Furukawa and Ponce, 2010) is used 
to generate a point cloud that can support surface  
reconstruction.

EVALUATION AND DISCUSSION

Active Cell Evaluation

Having a more accurate set of points that closely rep-
resent the surface of some unknown object significantly 
improves the quality of any subsequent 3D model, as 
it more faithfully represents the actual shape of the 
object. Moreover, a larger number of points further fa-
cilitates the faithful reconstruction by providing more 
detail of the plant structure.

Table 4.  Experiment 4 results, brassica

Method Mean sd Points Images Per Image

One static 0.2007 0.7208 97,191 40 2,429.8
Two static 0.0867 0.4427 146,743 40 3,668.6
Arbitrary 0.1682 0.5466 178,418 40 4,460.5
AVC 0.0354 0.3912 349,311 21 16,633.9

Table 5.  Experiment 5 results, chilli

Method Mean sd Points Images Per Image

One static 0.2380 0.9420 113,284 40 2,832.1
Two static 0.1843 0.4245 247,442 40 6,186.1
Arbitrary 0.2536 2.2226 199,023 40 4,975.6
AVC 0.1022 0.4584 285,381 28 10,192.2
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Ground Truth Model

In order to evaluate our AVC’s point clouds, x-ray 
images of our target plants were obtained using a GE 
v|tome|x M scanner housed in the University of Not-
tingham’s Hounsfield Facility. The v|tome|x M pro-
vides volumetric images with a voxel resolution of 5 
to 150 µm and, more importantly, is not subject to the 
occlusion problems faced by visible light imaging. Al-
though some x-ray segmentation tasks are highly chal-
lenging, plant material and air are easily separated in 
the density data provided by microcomputed tomog-
raphy (µCT), and, following noise reduction with a me-
dian filter, plant material was identified by applying a 
user-defined threshold. A complete image of the plant 
is formed. The surface of each plant is then represented 
in a standard triangular mesh format, providing a data 
structure (i.e. a ground truth model) against which 
point clouds obtained from the AVC can be compared.

It is worth noting that, while the µCT scanner pro-
duces accurate, highly detailed models, it is ill suit-
ed for general use in phenotyping shoots due to size  

restrictions, time requirements (typically taking hours 
to scan a single object, in comparison with minutes 
taken by the method here), and the exceptionally high 
startup costs. Moreover, thin structural areas of the plant 
still can be missed, resulting in an incomplete recon-
struction. However, it is useful for creating 3D ground 
truth models with which to compare a visual imaging 
system, as occlusion is not a problem for x-ray µCT.

Comparative Image-Based Models

The AVC-derived model was compared with tradi-
tional static and arbitrary camera placements. Static 
setups use one or more cameras that remain fixed in 
place, irrespective of the plant being modeled. Typically,  
the plant is rotated and images are captured. In the 
experiments conducted in this work, the method one 
static refers to the use of a single static camera placed 
horizontally alongside the plant, such that the whole 
plant is visible in the camera’s FOV. Two static uses 
two fixed cameras, using the same placement as one 
static and adding another camera placed higher, ver-
tically, above the other such that a top-down view of 
the plant is obtained. Arbitrary refers to the process of 

Table 6.  Experiment 6 results, pumpkin

Method Mean sd Points Images Per Image

One static 1.1220 1.8674 715,222 40 17,880.6
Two static 1.2104 3.4723 517,039 40 12,926.0
Arbitrary 0.6982 1.8200 852,426 40 21,310.7
AVC 0.3588 1.3823 1,048,576 30 34,952.5

Figure 8.  Experiment 5 conducted on a chilli plant. The first column 
is the x-ray data, obtained using a CT scanner. The top row presents a 
side view and the bottom row presents a top-down view. The second 
column is a point set obtained using the AVC proposed here.

Figure 9.  Experiment 6 conducted on pumpkin. The first column is 
the x-ray data, obtained using a CT scanner. The top row presents a 
side view and the bottom row presents a top-down view. The second 
column is a point set obtained using the AVC proposed here.
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capturing images of the plant at distinct random posi-
tions and is commonly the method used when users 
manually capture images of plants.

Two evaluation metrics were employed: the number 
of points obtained and the distance from those points 
to the surface of the x-ray µCT ground truth. Euclidean 
distance was used to determine the error of a point in the 
gathered data with respect to the surface of the ground 
truth. Six experiments were performed on plants 
varying in size, structure, and complexity: bromeliad 
(Vriesea sp.), aloe (Aloe vera), cordyline (Cordyline sp.),  
brassica (Brassica napus), chilli (Capsicum sp.), and 
pumpkin (Cucurbita pepo). The method is not limited to 
these plants and can be applied to plants that are much 
larger, such as wheat (Triticum sp.), maize (Zea mays), 
and barley (Hordeum vulgare), or other important crop 
species, with the only size restrictions relating to the 
reach of the robot arm.

Experiment 1

Experiment 1 was conducted on a bromeliad (Fig. 4). 
The Bromeliaceae are a family of monocot flowering 
plants in which over 3,400 species are known, native 
to the tropical Americas. While foliage takes different 
shapes and forms, the one used in this experiment is 
thin, broad, and flat. Consequently, views from above 
the plant, clearly seeing the wide leaves, will offer a 
great amount of insight into the plant size and struc-
ture. Occlusion, however, makes this problematic for 
static cameras that may be unable to see underlying 
leaf surfaces.

Table 1 compares the AVC approach with a static 
camera configuration. Mean refers to the distance of 
the points relative to the ground truth model; sd refers 
to the error of that distance; points refers to the number 
of points representing the 3D model and the number 
of points generated per image captured. When using a 
point cloud to drive a surface reconstruction approach 
(Pound et al., 2014), higher numbers of points allow a 
finer granularity on reconstructed surface patches, and 
a higher number of points per image indicates that 
more data can be generated for each image captured. 
Lower mean and sd also impact the quality of the sur-
face reconstruction, where lower values illustrate a 
more accurate representation when compared with the 
ground truth. For the bromeliad, the AVC cell proposed 
here significantly outperforms the two static methods, 
obtaining more than 115% of the points in the first case, 
primarily due to the structure of the leaves, making it 
challenging for static cameras to view the leaf surface. 
In comparison with the arbitrary viewpoints, we see 
that we can increase the points per image by almost 
35%, showing that intelligently selecting viewpoints in 
AVC improves performance despite fewer images; that 
is, we are obtaining more data per image. Furthermore, 
the reduction in the mean value by 27% shows that a 
more accurate point cloud is being produced (Supple-
mental Fig. S1).

Experiment 2

Experiment 2 was conducted on aloe (Fig. 5). The 
upward leaves occlude plant structure that lie directly  
behind them, making it challenging for views that are 
side on. Like the bromeliad from experiment 1, it con-
sists of flat wide surfaces with little texture. Table 2  
illustrates the results of the four image-acquisition 
methods.

From Table 2, we see that our AVC outperforms each 
of the standard methods, obtaining at least 18% more 
points while using 22.5% fewer images. The one static  
view obtains the fewest points, unable to deal with the 
concavities caused by the wide upright leaves. Two 
static also has fewer points; despite having two views, 
it is unable to obtain the data occluded by the outer 
leaves. Arbitrary viewpoints do overcome some of the 
occlusions but do not capture enough to deal with it 
completely. The AVC deals with the occlusions and re-
covers more accurate points with a reduced image set.

Experiment 3

Experiment 3 uses a cordyline, from a genus of ap-
proximately 15 species of monocotyledonous flower-
ing plants in the family Asparagaceae (Fig. 6). Unlike 
the previous two experiments, experiment 3 focuses on 
a thin upright plant that is particularly crowded and 
occluded toward the base but relatively sparse toward 
the tips of the stems.

From Table 3, we see that our AVC significantly out-
performs the arbitrary and two static views, but unlike 
the previous experiments, it has a smaller improve-
ment over the traditional one static view. This high-
lights the fact that randomly adding images does not 
necessarily lead to an improvement and, in some cases, 
additional noise is added. As the plant contains few 
occlusions and has very thin nondrooping leaves, it is 
possible to capture a significant amount of information 
from a side view. However, despite the similarity of re-
sults between one static and our AVC points, our AVC 
uses 35% fewer images (26 relative to 40) than the sin-
gle camera and obtains, on average, 22% more data per 
image used. This again shows that manipulating the 
viewpoint can improve accessibility to data and, thus, 
optimizes the processing power and time required to 
create a 3D model.

Experiment 4

Experiment 4 was conducted on brassica, an agricul-
turally important member of the Brassicaceae family 
(Fig. 7). This is a very small plant and, to avoid missing 
plant data, views need to be taken much closer than 
in the previous experiments. A traditional static im-
age-acquisition strategy may struggle if not designed 
specifically for small plant species, as the camera will 
be positioned much farther away from the plant than 
necessary.
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Table 4 indicates that the AVC captures more data 
despite using only half the images. This confirms that 
images in MVS reconstruction do not contribute evenly  
to the success of a reconstruction; rather, it is the qual-
ity of the images that has the greatest effect on the  
results.

Experiment 5

Experiment 5 was conducted using a chilli, which 
are grown widely in many countries as a cash crop 
(Fig. 8). Similar to experiment 4, the plant used was 
at an early developmental stage and, thus, of small 
size. Static cameras may miss data, particularly as the 
leaves and stems are thin.

Table 5 indicates again that the AVC is capable of 
capturing more, and, importantly, more accurate, data 
points from fewer images when compared with tra-
ditional methods. Although the two static camera 
approach does have a lower sd, it achieves this with 
many additional images.

Experiment 6

Experiment 6 was conducted using pumpkin (Fig. 9). 
The large flat leaves make occlusions for data acquisi-
tion a major problem, with the leaves often blocking 
the stem. Moreover, flat surfaces of plants often are 
problematic to reconstruct due to a lack of texture.  
Table 6 shows the results of the four approaches to im-
age acquisition.

The large surface area results in the high number of 
points produced for this model (Table 6). As a result 
of the large surface area, with minimal texture, the sd 
for all methods is greater than that for previous experi-
ments (see above). This is due to the difficulties associ-
ated with feature matching in PMVS. Despite this, the 
AVC still is able to produce an improved set of images 
with a smaller mean and larger set of points per image 
than any of the other methods.

Biological Application of the AVC Approach

Methods for the accurate 3D representation of plants 
(that also are accessible to many research groups) are 
increasingly important to basic and applied research 
for making new discoveries about plant function in ad-
dition to providing new traits for crop improvement. 
We still do not have a full understanding of how mo-
lecular and leaf-level events are scaled to the whole 
plant and field level and how this limits productivity. 
For example, there is a disconnect between phenotypes 
in growth rooms and those in more challenging field 
environments (Poorter et al., 2016). Nor is there a com-
plete understanding of the canopy factors that cause 
variation in radiation use efficiency (Reynolds et al., 
2000). The display of leaves to the sun and the way in 
which they influence the level of saturation of photo-
synthesis at each level is of huge importance to crop 
yield and optimizing architecture (e.g. by combining 

leaf angle traits with leaf density and possibly move-
ment; Long et al., 2006; Burgess et al., 2015, 2016, 2017). 
Rapid and accurate means to achieve high-resolution 
3D reconstructions, such as the AVC described here, 
combined with more accurate ray tracing and physio-
logical models will enable us to do that.

The approach described here requires minimal user 
input and can be applied to any plant type or struc-
ture, with the only limitation on size being the reach 
of the robot arm. It is more accurate and requires few-
er images than previous, static imaging approaches  
(Tables 1–6) and offers more flexibility than existing 
large-scale phenotyping systems by adapting to the 
natural variation of individual plants. The method 
is automatic, with user input limited to changing the 
plant, and is relatively quick in image capture and 
analysis relative to other methods, taking minutes as 
opposed to hours. Moreover, the method has reduced 
setup and running costs compared with some pheno-
typing systems, such as x-ray µCT scanning.

CONCLUSION

We proposed an AVC for automatically capturing 
color images of plants in a controlled environment, 
with a view to using them for 3D model reconstruction 
from multiple views. We have evaluated our method 
on varying plant structures and compared it with more 
traditional methods using arbitrary camera positions 
and static cameras, in terms of the number of points 
obtained and the accuracy of these with respect to the 
Euclidean distance to the ground truth.

In all experiments, our AVC produces more data of 
higher accuracy, with a reduced image set. More points 
help ensure that the plant has been scanned adequately 
and that the amount of unknown object data are mini-
mal. More accurate points ensure that the 3D model can 
be reconstructed with increased fidelity, which is vital 
for accurate plant phenotyping. The AVC acquires more 
points per image, indicating that the images captured 
provide more value toward reconstruction. While static 
camera placement can be effective, there are clear data 
gains to be made by employing active vision.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. 3D reconstructions generated by the comparable 
imaging methods.
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