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Three-dimensional (3D) computer-generated models of plants are urgently needed to support both phenotyping and simula-
tion-based studies such as photosynthesis modeling. However, the construction of accurate 3D plant models is challenging, as
plants are complex objects with an intricate leaf structure, often consisting of thin and highly reflective surfaces that vary in
shape and size, forming dense, complex, crowded scenes. We address these issues within an image-based method by taking an
active vision approach, one that investigates the scene to intelligently capture images, to image acquisition. Rather than use the
same camera positions for all plants, our technique is to acquire the images needed to reconstruct the target plant, tuning camera
placement to match the plant’s individual structure. Our method also combines volumetric- and surface-based reconstruction
methods and determines the necessary images based on the analysis of voxel clusters. We describe a fully automatic plant
modeling/phenotyping cell (or module) comprising a six-axis robot and a high-precision turntable. By using a standard color
camera, we overcome the difficulties associated with laser-based plant reconstruction methods. The 3D models produced are
compared with those obtained from fixed cameras and evaluated by comparison with data obtained by x-ray microcomputed
tomography across different plant structures. Our results show that our method is successful in improving the accuracy and

quality of data obtained from a variety of plant types.

With the population increasing and expected to
reach 9 billion within the next four decades, it is no
wonder that demand for food is increasing (Sticklen,
2007; Faaij, 2008; Paproki et al., 2012). Moreover, devel-
oping countries, such as China and India, are increas-
ing food intake per capita and driving the demand for
a richer, more varied diet, such as meats and dairy.
Climate change, leading to more frequent and severe
flooding, and a shortage of arable land constitute ad-
ditional challenges. Furthermore, it has been predicted
that, without crop climate adaptation, the production
of food will deteriorate (Adeloye, 2010; Challinor et al.,
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2014). In order to deal with such demands, innovative
approaches to increasing agricultural production are
necessary.

Connections between the underlying genetic code
and the visible physical structures and functions of
plants (i.e. phenotyping) can aid in the identification
of more productive crop species. A comprehensive
understanding of plant phenotypes informs breeding
and genetic selection, facilitating, for example, more
effective nutrient use and photosynthetic activity,
thereby increasing crop yield and stability across more
extreme environments (Quan et al., 2006). The relation-
ship between phenotype and genotype has received
an increased amount of attention in recent years, with
significant progress made in the study of genetics. The
recovery and analysis of traits such as plant growth,
development, and tolerance, however, remains a se-
rious bottleneck (Furbank and Tester, 2011). Two-
dimensional (2D) approaches to plant phenotyping
have been used extensively, although they have nu-
merous limitations, most notably the inability to ac-
curately reflect 3D quantities. For example, a curved
leaf in a 2D image will have a significantly smaller
surface area than in a 3D model. 2D methods struggle
to capture plant structure, and accurate measurement
of growth is challenging. The use of 3D models over-
comes many of these difficulties, allowing more and
more traits to be obtained accurately. Once a 3D model
of a given plant has been built, it can be reanalyzed,
should new trait measurements be required. This may
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Active Vision Cell for 3D Plant Reconstruction

Figure 1. The AVC, composed a Canon 650D camera, a UR5 universal robot, and an LT360EX turntable upon which the plant
is placed.

not be possible in 2D approaches, where image acqui-
sition often is designed to provide a particular, limited
set of data. Access to accurate 3D models also supports
simulation-based studies of plant functions, such as
photosynthesis (Burgess et al., 2015, 2017).

The construction of accurate 3D models of plants
is extremely challenging. Existing approaches fall
into the two categories of rule based or image based
(Remondino and El-Hakim, 2006). Rule-based ap-
proaches use knowledge of plant structure, forming
and generating example models consistent with that
knowledge. Although rule-based approaches can pro-
duce satisfactory results, their use often requires expert
knowledge, and rules usually are targeted toward spe-
cific plant types. Plant structure also varies significant-
ly across species and environments, making it difficult
to predict structures a priori. More importantly, al-
though they can generate visually realistic models, the
representations produced may not correspond to any
real, existing plant. Consequently, rule-based models
are unsuitable for high-resolution phenotyping tasks.
In contrast, image-based methods develop accurate
3D models of real, viewed plants. These models can

be used to support both simulations of plant function
and the extraction of trait measurements (Burgess
etal., 2015, 2017).

One of the more popular approaches to 3D modeling
is multi-view stereo (MVS). Here, a number of images
(several tens) are captured from distinct viewpoints.
Given sufficient overlap between views, it is possible
to match features between images and produce a 3D
point cloud, to which a surface can be fitted. Although
MVS has been successful in a variety of domains,
plants are particularly challenging objects to model.
Individual leaves can be very similar in appearance
and densely packed, occluding each other from many
viewpoints. They often lack the surface texture needed
when matching image features, assuming local coher-
ence and smoothness. The leaves of many species also
are highly reflective, making alternative laser scanning
approaches less effective. For a review of 3D modeling
algorithms for plants, readers are encouraged to see
Gibbs et al. (2017).

The high-throughput phenotyping systems deployed
in plant and crop science are now routinely gathering
large numbers of images from which 3D models might

Figure 2. Initial representation. Left, an original image of a target plant (bromeliad); middle, the initial representation after 10
images; right, the final voxel model showing more object features after acquiring additional viewpoints.
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Figure 3. The view sphere representation, which encloses the plant
being modeled such that it is centered. The red dot is an example of an
initial optimal viewpoint; should this fail, it is expanded to green, then
to yellow, and so on.

be obtained. Current installations, however, typically
rely on fixed viewpoints that are not adapted to the
specific plant being examined or are designed with one
species in mind. Some systems rotate the plant during
imaging but still use static camera positions. The rela-
tion between viewpoints and plant, therefore, remains
fixed, regardless of the structure of the plant, which
may vary widely. This means that, in many cases,
the images captured are far from optimal for the given
plant. In order to capture 3D models useful for phe-
notyping, there is a need for a more intelligent image-
capture system optimized for 3D reconstruction and
sensitive to variations in plant architecture.

In this work, we show that active computer vision
(Aloimonos et al., 1988) can aid the reconstruction of
complex plants by providing reactive, and therefore
improved, image-acquisition strategies. Active vision
systems automatically control and manipulate cam-
era viewpoints to gather information to best support
the task at hand. Active vision methods already have
played a role in other plant-related tasks. For example,
Hemming et al. (2014b) attached a camera to a robot
arm in order to identify peppers (Capsicum annuum) to
be collected. The effect of camera placement on fruit
picking also has been investigated (Hemming et al.,
2014a), with active vision used to address the problem
of occlusion. However, the process of capturing images
for 3D reconstruction, known as image selection, cur-
rently is an insufficiently considered resource in image-
based 3D reconstruction (Hornung et al., 2008).

We propose a framework to automatically capture a
set of images suitable for use in 3D modeling, via MVS,
of different and contrasting plant structures. This work
directly addresses the competing demands placed on
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image acquisition: too many images can introduce
redundancy and result in excessive processing times,
while too few images result in an incomplete model.
We identify a set of viewpoints that enable a reliable
3D model to be reconstructed without scanning the
plant excessively. We present a solution suitable for
deployment in an automated, high-throughput pheno-
typing system. This article describes a fully automated,
active vision cell (AVC) that is capable of manipulating
a camera’s viewpoint to produce high-quality 3D mod-
els of a wide range of plants by adapting to the visual
information available, without user intervention. The
approach described here offers more flexibility than
existing large-scale phenotyping systems by adapting
to the natural variation of individual plants. This is
achieved by investigating an initial, crude representa-
tion of plant structure in order to reposition the camera
and obtain improved data.

SETUP/METHOD DEVELOPMENT

The accuracy and reliability of 3D models depend
heavily on the quality of images, while its computa-
tional requirements are dependent on the number of
images. Images do not contribute equally to the quality
of a reconstruction: some are redundant, while oth-
ers add large amounts of high-quality, necessary data
(Seitz et al., 2006). Here, we propose an AVC designed
to provide sufficient data to ensure a reliable represen-
tation without the need for specific expertise on the
part of the user, with the ability to adapt to different

Figure 4. Experiment 1 conducted on a bromeliad. The first column
is the x-ray data, obtained using a CT scanner. The top row presents a
side view and the bottom row presents a top-down view. The second
column is a point set obtained using the AVC proposed here.
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Table 1. Experiment 1 results, bromeliad

Method Mean sD Points Images Per Image
One static 0.3574 1.1795 141,073 40 3,526.80
Two static 0.3442 0.7450 155,396 40 3,884.90
Arbitrary 0.2693 1.1267 227,338 40 5,683.50
AVC 0.1959 0.6773 290,236 36 7,637.80

plant structures, and without analyzing excess num-
bers of images.

Cell Design and Calibration

Our AVC is composed of three main components: a
high-precision turntable (LT360EX; Linear X Systems)
with a resolution of 0.0015°, a robot arm providing 6°
of freedom (UR5; Universal Robots), and a standard
color camera (Canon 650D; Canon) mounted on the ro-
bot arm (Fig. 1). A single software interface is used to
control each of the hardware components. The URS5 is
sent commands using strings via sockets, the LT360EX
is controlled using serial communications, and the
Canon 650D is controlled via a Software Development
Kit.

Calibration, the process of obtaining reliable 3D cam-
era parameters for each view, is an important first step
in any 3D reconstruction pipeline. Calibration usually
is an automatic process, determining the physical pa-
rameters of each hardware component and quantify-
ing the relationships between them and the viewed
environment. The calibration process can be organized
into four stages: camera calibration, robot calibration,
calibration of the remaining unknowns, and turnta-
ble calibration. All four calibration steps are required
to determine the position of the camera for active vi-
sion. In simple terms, the calibration aims to estimate
the position and orientation of each component in the
setup (the robot and turntable) and the camera lens
and sensor.

Camera Calibration

Camera calibration is used to estimate the intrinsic
and extrinsic parameters of the camera, which are used
to determine its location for the calibration of the robot.
A standard checkerboard calibration target, in which
the dimensions of the squares are known, is placed
on the turntable. Given a series of images of this cal-
ibration object at distinct viewpoints, it is possible to
recover the position, orientation, and internal param-
eters of the camera that captured each image. Internal
parameters often are termed intrinsic parameters and
consist of the focal length, offset, and axis skew. The 3D
plant models produced are expressed in world coordi-
nates with respect to a coordinate frame located on the
checkerboard. The bottom right corner of the checker-
board is the world origin (0, 0, 0). Camera calibration
provides a transformation between world coordinates
and a coordinate frame centered on the camera. This
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transformation can be used to project any 3D world
position into a 2D camera position in its image frame.

Robot Calibration

Robot calibration estimates the position and orienta-
tion of the end of the robot arm (i.e. the end effector).
Also known as forward kinematics, robot calibration is
achieved using a simultaneous closed-form quaternion
approach (Dornaika and Horaud, 1998). This produc-
es a transformation matrix specifying the relationship
between the base of the robot and the end effector.
This transformation matrix provides the rotation and
translation needed to transform one robot position to
another.

Calibration of Unknowns

After transformations linking the base of the robot to
the camera and the camera to the world (turntable) are
available, it is possible to calculate the relationship be-
tween the base of the robot and the turntable (world).
The remaining calibrations can be calculated as a lin-
ear equation in the form AX = YB, where A (the world
to camera) and B (the robot base to the end effector)
are now known and where Y (the world to robot base)
and X (the camera to the end effector) are the two un-
knowns. A closed-form approach to the linear equation

Figure 5. Experiment 2 conducted on aloe. The first column is the
x-ray data, obtained using a CT scanner. The top row presents a side
view and the bottom row presents a top-down view. The second col-
umn is a point set obtained using the AVC proposed here.
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Table 2. Experiment 2 results, aloe

Method Mean D Points Images Per Image
One static 1.4517 3.6624 159,870 40 3,996.80
Two static 1.6911 3.6143 160,592 40 4,014.80
Arbitrary 1.8963 4.5674 183,027 40 4,575.70
AVC 1.3329 3.5930 216,791 31 5,705.00

has been used to determine the remaining unknowns
(Dornaika and Horaud, 1998).

Turntable Calibration

Rotating the turntable, which is necessary to provide
complete access to the plant, changes the relationship
between robot/camera and world coordinates. To cal-
ibrate the turntable, it is rotated by 90° four times. The
camera is recalibrated each time, giving four positions
for the world coordinate origin. Plotting the four ori-
gins obtained from the calibration in two dimensions
and connecting the diagonal origins using a straight
line allows the center of rotation to be solved as a line
intersection problem. The center of rotation is used to
calculate a new world coordinate frame each time the
turntable is rotated. At this point, we have a fully pa-
rameterized relationship between the camera system,
robotic arm, and turntable.

Active Image Acquisition

There are two stages to 3D modeling within the
AVC: the first requires the creation of a crude, initial
plant model, represented by a series of voxels; the
second stage involves an analysis of this initial repre-
sentation to identify undersampled and oversampled
(imaged) regions of the plant. The robot arm then is
directed automatically to acquire more data, while un-
necessary images are removed. Note that the images
used to construct the volumetric proxy also are deter-
mined automatically, on the basis of 2D image features,
as described below.

An Initial Volumetric Plant Representation

To acquire an initial volumetric representation of a
plant, we capture a series of images. These are taken
from automatically determined camera locations cir-
cling the plant at three different heights. The first im-
age is acquired after positioning the camera so that its
principal axis (line of sight) lies in the plane of the turn-
table and passes through its center of rotation. A Eu-
clidean color filter, which filters pixels where the color
is inside or outside of a red, green, and blue sphere
with a specified center and radius, is applied to sepa-
rate plant pixels from the white background. We then
apply three simple rules to move the camera to center
the plant (which may be of arbitrary size, asymmet-
ric, etc.) within the camera’s field of view (FOV): (1) if
there is too much white space surrounding the plant

528

Downloaded from on April 21, 2020 - Published by www.plantphysiol.org

region (i.e. if the distance from the plant region to the
edge of the image is greater than a specified threshold),
move the camera forward; (2) if one side of the plant is
outside the camera’s FOV, move the camera laterally
to ensure it is inside; and (3) if more than one side is
outside the camera’s FOV, move the camera backward.
The resulting camera location forms the starting point
for image acquisition. Once an acceptable viewpoint
has been determined a series of images is captured by
rotating the plant and acquiring an image every 36°,
producing 10 images with the camera fixed at the ini-
tial elevation.

Space carving (Seitz, 2000) is used to generate the
initial 3D model from the first image sequence. Space
carving operates by projecting the silhouette of the
target object (the plant) into 3D space to define the
volume possibly occupied by the object. Projecting sil-
houettes extracted from multiple images, and taking
the intersection of the volumes they produce, reduce
the size of this volume, creating an increasingly more
accurate model.

This 10-image model of a complex plant (Fig. 2) is of
limited value, but it does allow an estimate of the plant
height to be made. The camera is raised to be level
with the top of the plant, automatically recentered as
described above, and another 10 images are acquired
by rotating the turntable. This is known as the level

Figure 6. Experiment 3 conducted on a cordyline. The first column is
the x-ray data, obtained using a CT scanner. The top row presents a
side view and the bottom row presents a top-down view. The second
column is a point set obtained using the AVC proposed here.
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Table 3. Experiment 3 results, cordyline

Method Mean sD Points Images Per Image
One static 0.7565 2.0167 122,851 40 3,071.30
Two static 0.8638 2.8122 94,193 40 2,354.80
Arbitrary 1.0284 4.7614 80,154 40 2,003.90
AVC 0.7384 2.0691 143,049 26 3,764.40

2 position, having moved up along the z axis in one
increment, where the first set of images were captured
at level 1, in line with the turntable. To improve cover-
age, the turntable is rotated 12° before image acquisi-
tion begins. This means that the level 1 and 2 camera
positions are not aligned vertically but offset by 12°.
The new images then are used to refine the volumetric
model and, therefore, plant height estimation.

To complete the volumetric representation, the cam-
era is raised to twice the newly estimated height of the
plant, a further 12° offset is added, and a final 10 images
are acquired. By increasing the height of the camera to
above the height of the plant, it is possible to get a set
of top-down images uncovering new information, par-
ticularly useful for plants with wide flat leaves, such
as broadleaf species including legumes and squashes.

This image-acquisition strategy is designed to achieve
a set of varying viewpoints that sample the area
around the plant while keeping the plant in view. Note
that we do not recenter the plant in each image, only
in the first image captured at each level. However,
given plants with a high degree of asymmetry, the
rules above could be applied after each rotation of the
turntable.

The final volumetric model remains comparatively
crude and low resolution, giving a blocky appearance,
and is unable to represent some features at all, such as
concavities. However, it does provide a sufficient in-
termediate representation for evaluation via forward
ray tracing (Vasquez-Gomez et al.,, 2013), in which
rays from the camera are projected into the scene to
determine the intersection with the object, and so de-
termines which cameras can see which parts of the de-
veloping 3D model.

Plant Model Refinement

The next step is the automatic refinement of the im-
age set, removing those that are unnecessary and ob-
taining further images of underrepresented sections of
the plant. Images are removed if each voxel in the plant
proxy representation is still seen by more than three
cameras after their removal. In practice, MVS produces
higher quality results when an area has been seen three
times or more.

View planning is then performed to determine which
additional data to capture. Traditionally, view plan-
ning evaluates each possible view on a per voxel basis:
each voxel is evaluated independently for every pos-
sible camera position in the view sphere (Massios and
Fisher, 1998; Wong et al., 1999). If we were to do this
in our cell, and if we limit robot movements in whole

Plant Physiol. Vol. 178, 2018

degrees, it is possible to move 180 points from top to
bottom and 360 points around the view sphere, result-
ing in 64,800 camera positions that would require eval-
uation. We reduce this complexity by clustering voxels
together and evaluating specific views on a per-cluster
basis. There are four stages here: (1) clustering, (2)
cluster evaluation, (3) camera placement, and (4) data
acquisition.

1. Clustering. Each voxel is represented by a single point
lying at its center, and the k nearest neighbor (k-NN)
algorithm is used to cluster the point set. k-NN is a
simple machine-learning algorithm that clusters the
point set into a series of k nearest neighbors. That is,
points are added to some cluster that are within the
range of the centroid when given some radius. k-NN
finds the k nearest neighbors to a point that are with-
in some radius of the center of the cluster, the starting
point. We implement this algorithm using a KD-tree
data structure, which significantly improves perfor-
mance when applying nearest-neighbor searchers to
points in k dimensions.

2. Cluster Evaluation. Each cluster must be evaluated to
determine whether additional images need to be cap-
tured and, thus, to ensure that the object is sufficiently
scanned. We propose a simple evaluation method that
operates on the number of views in which a cluster is
visible and the angle between the cameras that have
seen the cluster (Furukawa and Ponce, 2010). If a cluster
has a low score, then we mark the cluster as requiring

Figure 7. Experiment 4 conducted on brassica. The first column is the
x-ray data, obtained using a CT scanner. The top row presents a side
view and the bottom row presents a top-down view. The second col-
umn is a point set obtained using the AVC proposed here.
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Table 4. Experiment 4 results, brassica

Method Mean D Points Images Per Image
One static 0.2007 0.7208 97,191 40 2,429.8
Two static 0.0867 0.4427 146,743 40 3,668.6
Arbitrary 0.1682 0.5466 178,418 40 4,460.5
AVC 0.0354 0.3912 349,311 21 16,633.9

additional viewpoints. The evaluation metric used is
given in Equation 1:

¢ c
Score = Cl EXTZ;&? +

maxAngle(C..,, C..)
angleCrit x 0.5 (1)

where seen(C ].) refers to the number of times each voxel
has been seen in the cluster and imgCrit is the number
of times a point must be seen to ensure an accurate rep-
resentation (we use 3 to match our Patch Based Multi-
View Stereo (PMVS) settings). maxAngle(C_ , C_ )is
the maximum angle between any of the cameras that
can see the voxel, and angleCrit is the minimal angle
difference between cameras, to ensure different views
(we use 20°, determined empirically).

We determine whether a cluster has been seen by a
given camera via ray tracing. This simulates the pro-
jection of a ray of light from the camera to the cluster
centroid. In order to improve performance, we imple-
ment a hierarchical ray tracing (HRT; Vasquez-Gomez
et al., 2013) approach rather than a uniform ray tracing
method. Uniform ray tracing traces dense rays through
the scene irrespective of whether an intersection with
a voxel occurs. HRT traces sparse rays, only increas-
ing the resolution when voxels are touched by a ray.
Starting at a coarse resolution, HRT continues until the
maximum resolution is reached.

3. Camera Placement. Given a series of undersampled clus-
ters, we proceed to calculate a series of viewpoints that
can be used to capture additional information. We first
determine the distance the camera is required to be
from the object to ensure that the plant is completely
within the FOV, without excess white space, using the
camera parameters and object size. The size of our
view sphere (Fig. 3) then is determined by Equation 2:

FOV = 2 - atan(;- 3)

. St max(w, h)
Distance = 3+ szmow (2)

where s is the sensor size and f is the focal length,
both of which are obtainable from the camera

specification. max(w, h) returns the maximum value
of the object with respect to the height, i, and
width, w.

Traditional view-planning methods evaluate every
possible position on the view sphere; we significantly
reduce the heavy computational requirements this
brings by incrementally expanding our search should
a view fail. A starting camera position is defined as
the intersection of the normal of the cluster with the
view sphere. The view is evaluated for correctness in
two ways: the first is to perform inverse kinematics to
ensure that the robot is able to reach the position, the
second is ray tracing from the camera position into the
scene to ensure that the cluster is not occluded from
this viewpoint. If either of the evaluations fails, we in-
crementally expand over the view sphere, first evalu-
ating positions in green (Fig. 3) and then yellow, and
so on, expanding outward from the starting position
until an acceptable viewpoint is found. This process
is performed for each cluster that requires additional
viewpoints to be captured, until views of all clusters
have been obtained.

4. Data Acquisition. Once we have a series of camera
positions, additional images are captured as neces-
sary, and PMVS (Furukawa and Ponce, 2010) is used
to generate a point cloud that can support surface
reconstruction.

EVALUATION AND DISCUSSION

Active Cell Evaluation

Having a more accurate set of points that closely rep-
resent the surface of some unknown object significantly
improves the quality of any subsequent 3D model, as
it more faithfully represents the actual shape of the
object. Moreover, a larger number of points further fa-
cilitates the faithful reconstruction by providing more
detail of the plant structure.

Table 5. Experiment 5 results, chilli

Method Mean SD Points Images Per Image
One static 0.2380 0.9420 113,284 40 2,832.1
Two static 0.1843 0.4245 247,442 40 6,186.1
Arbitrary 0.2536 2.2226 199,023 40 4,975.6
AVC 0.1022 0.4584 285,381 28 10,192.2
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Table 6. Experiment 6 results, pumpkin

Method Mean SD Points Images Per Image
One static 1.1220 1.8674 715,222 40 17,880.6
Two static 1.2104 3.4723 517,039 40 12,926.0
Arbitrary 0.6982 1.8200 852,426 40 21,310.7
AVC 0.3588 1.3823 1,048,576 30 34,952.5

Ground Truth Model

In order to evaluate our AVC’s point clouds, x-ray
images of our target plants were obtained using a GE
v | tome | x M scanner housed in the University of Not-
tingham’s Hounsfield Facility. The v | tome |x M pro-
vides volumetric images with a voxel resolution of 5
to 150 um and, more importantly, is not subject to the
occlusion problems faced by visible light imaging. Al-
though some x-ray segmentation tasks are highly chal-
lenging, plant material and air are easily separated in
the density data provided by microcomputed tomog-
raphy (uCT), and, following noise reduction with a me-
dian filter, plant material was identified by applying a
user-defined threshold. A complete image of the plant
is formed. The surface of each plant is then represented
in a standard triangular mesh format, providing a data
structure (i.e. a ground truth model) against which
point clouds obtained from the AVC can be compared.

It is worth noting that, while the uCT scanner pro-
duces accurate, highly detailed models, it is ill suit-
ed for general use in phenotyping shoots due to size

Figure 8. Experiment 5 conducted on a chilli plant. The first column
is the x-ray data, obtained using a CT scanner. The top row presents a
side view and the bottom row presents a top-down view. The second
column is a point set obtained using the AVC proposed here.

Plant Physiol. Vol. 178, 2018

restrictions, time requirements (typically taking hours
to scan a single object, in comparison with minutes
taken by the method here), and the exceptionally high
startup costs. Moreover, thin structural areas of the plant
still can be missed, resulting in an incomplete recon-
struction. However, it is useful for creating 3D ground
truth models with which to compare a visual imaging
system, as occlusion is not a problem for x-ray nCT.

Comparative Image-Based Models

The AVC-derived model was compared with tradi-
tional static and arbitrary camera placements. Static
setups use one or more cameras that remain fixed in
place, irrespective of the plantbeing modeled. Typically,
the plant is rotated and images are captured. In the
experiments conducted in this work, the method one
static refers to the use of a single static camera placed
horizontally alongside the plant, such that the whole
plant is visible in the camera’s FOV. Two static uses
two fixed cameras, using the same placement as one
static and adding another camera placed higher, ver-
tically, above the other such that a top-down view of
the plant is obtained. Arbitrary refers to the process of

Figure 9. Experiment 6 conducted on pumpkin. The first column is
the x-ray data, obtained using a CT scanner. The top row presents a
side view and the bottom row presents a top-down view. The second
column is a point set obtained using the AVC proposed here.
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capturing images of the plant at distinct random posi-
tions and is commonly the method used when users
manually capture images of plants.

Two evaluation metrics were employed: the number
of points obtained and the distance from those points
to the surface of the x-ray uCT ground truth. Euclidean
distance was used to determine the error of a pointin the
gathered data with respect to the surface of the ground
truth. Six experiments were performed on plants
varying in size, structure, and complexity: bromeliad
(Vriesea sp.), aloe (Aloe vera), cordyline (Cordyline sp.),
brassica (Brassica napus), chilli (Capsicum sp.), and
pumpkin (Cucurbita pepo). The method is not limited to
these plants and can be applied to plants that are much
larger, such as wheat (Triticum sp.), maize (Zea mays),
and barley (Hordeum vulgare), or other important crop
species, with the only size restrictions relating to the
reach of the robot arm.

Experiment 1

Experiment 1 was conducted on a bromeliad (Fig. 4).
The Bromeliaceae are a family of monocot flowering
plants in which over 3,400 species are known, native
to the tropical Americas. While foliage takes different
shapes and forms, the one used in this experiment is
thin, broad, and flat. Consequently, views from above
the plant, clearly seeing the wide leaves, will offer a
great amount of insight into the plant size and struc-
ture. Occlusion, however, makes this problematic for
static cameras that may be unable to see underlying
leaf surfaces.

Table 1 compares the AVC approach with a static
camera configuration. Mean refers to the distance of
the points relative to the ground truth model; sp refers
to the error of that distance; points refers to the number
of points representing the 3D model and the number
of points generated per image captured. When using a
point cloud to drive a surface reconstruction approach
(Pound et al., 2014), higher numbers of points allow a
finer granularity on reconstructed surface patches, and
a higher number of points per image indicates that
more data can be generated for each image captured.
Lower mean and sp also impact the quality of the sur-
face reconstruction, where lower values illustrate a
more accurate representation when compared with the
ground truth. For the bromeliad, the AVC cell proposed
here significantly outperforms the two static methods,
obtaining more than 115% of the points in the first case,
primarily due to the structure of the leaves, making it
challenging for static cameras to view the leaf surface.
In comparison with the arbitrary viewpoints, we see
that we can increase the points per image by almost
35%, showing that intelligently selecting viewpoints in
AVC improves performance despite fewer images; that
is, we are obtaining more data per image. Furthermore,
the reduction in the mean value by 27% shows that a
more accurate point cloud is being produced (Supple-
mental Fig. S1).
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Experiment 2

Experiment 2 was conducted on aloe (Fig. 5). The
upward leaves occlude plant structure that lie directly
behind them, making it challenging for views that are
side on. Like the bromeliad from experiment 1, it con-
sists of flat wide surfaces with little texture. Table 2
illustrates the results of the four image-acquisition
methods.

From Table 2, we see that our AVC outperforms each
of the standard methods, obtaining at least 18% more
points while using 22.5% fewer images. The one static
view obtains the fewest points, unable to deal with the
concavities caused by the wide upright leaves. Two
static also has fewer points; despite having two views,
it is unable to obtain the data occluded by the outer
leaves. Arbitrary viewpoints do overcome some of the
occlusions but do not capture enough to deal with it
completely. The AVC deals with the occlusions and re-
covers more accurate points with a reduced image set.

Experiment 3

Experiment 3 uses a cordyline, from a genus of ap-
proximately 15 species of monocotyledonous flower-
ing plants in the family Asparagaceae (Fig. 6). Unlike
the previous two experiments, experiment 3 focuses on
a thin upright plant that is particularly crowded and
occluded toward the base but relatively sparse toward
the tips of the stems.

From Table 3, we see that our AVC significantly out-
performs the arbitrary and two static views, but unlike
the previous experiments, it has a smaller improve-
ment over the traditional one static view. This high-
lights the fact that randomly adding images does not
necessarily lead to an improvement and, in some cases,
additional noise is added. As the plant contains few
occlusions and has very thin nondrooping leaves, it is
possible to capture a significant amount of information
from a side view. However, despite the similarity of re-
sults between one static and our AVC points, our AVC
uses 35% fewer images (26 relative to 40) than the sin-
gle camera and obtains, on average, 22% more data per
image used. This again shows that manipulating the
viewpoint can improve accessibility to data and, thus,
optimizes the processing power and time required to
create a 3D model.

Experiment 4

Experiment 4 was conducted on brassica, an agricul-
turally important member of the Brassicaceae family
(Fig. 7). This is a very small plant and, to avoid missing
plant data, views need to be taken much closer than
in the previous experiments. A traditional static im-
age-acquisition strategy may struggle if not designed
specifically for small plant species, as the camera will
be positioned much farther away from the plant than
necessary.
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Table 4 indicates that the AVC captures more data
despite using only half the images. This confirms that
images in MVS reconstruction do not contribute evenly
to the success of a reconstruction; rather, it is the qual-
ity of the images that has the greatest effect on the
results.

Experiment 5

Experiment 5 was conducted using a chilli, which
are grown widely in many countries as a cash crop
(Fig. 8). Similar to experiment 4, the plant used was
at an early developmental stage and, thus, of small
size. Static cameras may miss data, particularly as the
leaves and stems are thin.

Table 5 indicates again that the AVC is capable of
capturing more, and, importantly, more accurate, data
points from fewer images when compared with tra-
ditional methods. Although the two static camera
approach does have a lower sp, it achieves this with
many additional images.

Experiment 6

Experiment 6 was conducted using pumpkin (Fig. 9).
The large flat leaves make occlusions for data acquisi-
tion a major problem, with the leaves often blocking
the stem. Moreover, flat surfaces of plants often are
problematic to reconstruct due to a lack of texture.
Table 6 shows the results of the four approaches to im-
age acquisition.

The large surface area results in the high number of
points produced for this model (Table 6). As a result
of the large surface area, with minimal texture, the sp
for all methods is greater than that for previous experi-
ments (see above). This is due to the difficulties associ-
ated with feature matching in PMVS. Despite this, the
AVC still is able to produce an improved set of images
with a smaller mean and larger set of points per image
than any of the other methods.

Biological Application of the AVC Approach

Methods for the accurate 3D representation of plants
(that also are accessible to many research groups) are
increasingly important to basic and applied research
for making new discoveries about plant function in ad-
dition to providing new traits for crop improvement.
We still do not have a full understanding of how mo-
lecular and leaf-level events are scaled to the whole
plant and field level and how this limits productivity.
For example, there is a disconnect between phenotypes
in growth rooms and those in more challenging field
environments (Poorter et al., 2016). Nor is there a com-
plete understanding of the canopy factors that cause
variation in radiation use efficiency (Reynolds et al.,
2000). The display of leaves to the sun and the way in
which they influence the level of saturation of photo-
synthesis at each level is of huge importance to crop
yield and optimizing architecture (e.g. by combining
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leaf angle traits with leaf density and possibly move-
ment; Long et al., 2006; Burgess et al., 2015, 2016, 2017).
Rapid and accurate means to achieve high-resolution
3D reconstructions, such as the AVC described here,
combined with more accurate ray tracing and physio-
logical models will enable us to do that.

The approach described here requires minimal user
input and can be applied to any plant type or struc-
ture, with the only limitation on size being the reach
of the robot arm. It is more accurate and requires few-
er images than previous, static imaging approaches
(Tables 1-6) and offers more flexibility than existing
large-scale phenotyping systems by adapting to the
natural variation of individual plants. The method
is automatic, with user input limited to changing the
plant, and is relatively quick in image capture and
analysis relative to other methods, taking minutes as
opposed to hours. Moreover, the method has reduced
setup and running costs compared with some pheno-
typing systems, such as x-ray pCT scanning.

CONCLUSION

We proposed an AVC for automatically capturing
color images of plants in a controlled environment,
with a view to using them for 3D model reconstruction
from multiple views. We have evaluated our method
on varying plant structures and compared it with more
traditional methods using arbitrary camera positions
and static cameras, in terms of the number of points
obtained and the accuracy of these with respect to the
Euclidean distance to the ground truth.

In all experiments, our AVC produces more data of
higher accuracy, with a reduced image set. More points
help ensure that the plant has been scanned adequately
and that the amount of unknown object data are mini-
mal. More accurate points ensure that the 3D model can
be reconstructed with increased fidelity, which is vital
for accurate plant phenotyping. The AVC acquires more
points per image, indicating that the images captured
provide more value toward reconstruction. While static
camera placement can be effective, there are clear data
gains to be made by employing active vision.

Supplemental Data
The following supplemental materials are available.

Supplemental Figure S1. 3D reconstructions generated by the comparable
imaging methods.
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