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Background: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the
in uence of abiotic stress such as high temperature and drought on a plant’s ability to take up water and nutrients.
Segmentation and feature extraction of plant roots from images presents a signi cant computer vision challenge. Root
images contain complicated structures, variations in size, background, occlusion, clutter and variation in lighting
conditions. We present a new image analysis approach that provides fully automatic extraction of complex root system
architectures from a range of plant species in varied imaging set-ups. Driven by modern deep-learning approaches,
RootNav 2.0 replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task
convolutional neural network architecture. The network also locates seeds, rst order and second order root tips to drive a
search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction.
Results: We develop and train a novel deep network architecture to explicitly combine local pixel information with global
scene information in order to accurately segment small root features across high-resolution images. The proposed method
was evaluated on images of wheat (Triticum aestivum L.) from a seedling assay. Compared with semi-automatic analysis via
the original RootNav tool, the proposed method demonstrated comparable accuracy, with a 10-fold increase in speed. The
network was able to adapt to different plant species via transfer learning, offering similar accuracy when transferred to an
Arabidopsis thaliana plate assay. A nal instance of transfer learning, to images of Brassica napus from a hydroponic assay,
still demonstrated good accuracy despite many fewer training images. Conclusions: We present RootNav 2.0, a new
approach to root image analysis driven by a deep neural network. The tool can be adapted to new image domains with a
reduced number of images, and offers substantial speed improvements over semi-automatic and manual approaches. The
tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist
(http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools. The
tool will provide researchers with the ability to analyse root systems at larget scales than ever before, at a time when large
scale genomic studies have made this more important than ever.
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Figure 1: An example of the challenge root phenotyping presents for computer
vision. a) A sample input image of a Brassica napus seedling grown on germina-
tion paper. This plant phenotype exhibits a single primary root and numerous
lateral roots. b) Cluttered scenes make segmentation challenging. c) Complex oc-
clusion and intersection makes extracting root topology dif cult. d) Many small
image features, such as root tips, occur in close proximity, making identi cation
dif cult.

Plant phenotyping plays a key role in plant science research,
underpinning large-scale genetic discovery and the breeding of
more resilient traits [1]. This innovation makes a fundamental
contribution to the push for global food security. In recent years
quantitative analysis of root growth has become increasingly
important as a way to explore the in uence of abiotic stresses
such as high temperate and drought on a plant’s ability to take
up water and nutrients [2]. Segmentation and feature extrac-
tion of plant roots from images presents a signi cant computer
vision challenge. Root images contain complicated structures,
variations in size, background, occlusion, clutter, and variation
in lighting conditions. Fig. 1 shows an exemplar root image cap-
tured on germination paper. Even a straightforward imaging as-
say presents numerous challenges to a classic computer vision
pipeline.

In recent years machine learning has driven advances
throughout many computer vision domains [3]. Indeed, much
of the recent progress in plant phenotyping has also been driven
by new and so-called deep learning techniques, a branch of ar-
ti cial intelligence, often centring around convolutional neural
networks (CNNs) [4-6]. The sharp increase in the availability of
performant techniques in image analysis has coincided with an
increase in the availability of genomic information in plant biol-
ogy, providing an opportunity for robust and high-throughput
solutions. The scale of the data challenge seen within plant
science means that now, all but the truly fully automatic ap-
proaches will quickly become bottlenecks that hinder progress

(71

In this article, we focus on the analysis of root systems where
improvements promise increases to water and nutrient use ef -
ciency [8]. Historically, automated root phenotyping has proven
challenging, owing partly to the concealed nature of roots in the
soil, but also to the architectural complexity and variability of

root systems between species, and even individuals. Progress
has been made through a combination of innovative approaches
and tools [9,10], and new imaging technologies such as X-ray and
magnetic resonance imaging [11,12].

The prevailing methodologies in root image analysis can be
broadly categorized on the basis of the level of automation they
provide. Fully automated tools attempt to quantify the traits of a
root system without human guidance, often through a process
of image segmentation followed by post-processing. These are
what might be termed "bottom-up” approaches, which perform
successive Itering over images in order to best distinguish be-
tween the foreground root material, and the background. Tools
such as DIRT, GiA Roots, 1J_Rhizo, and EZ-Rhizo [13-16] offer a
familiar pipeline in which an image is rst segmented into 2
classes, root system and background, before noise removal (such
as image Iters and morphology [17]) and skeletonization tech-
niques [18] are used to clean the image. These tools then quan-
tify the distribution of root mass within an image, providing
summary statistics such as root system width, height, and more
complex measures such as density. Some tools, e.g., EZ-Rhizo,
will measure root width at each location, providing more de-
tailed analysis of the distribution of roots of different sizes.

A limitation of automated systems such as these is that er-
rors propagate from early processing stages through to measure-
ment. Noisy images or unexpected phenotypes will lead to er-
rors in thresholding, which are challenging to remove and may
lead to incorrect measurement of the root system. For this rea-
son, most automated tools have placed heavy focus on cruder
organ-scale measurements such as the total width of the root
system because these are most robust to small errors in im-
age segmentation. Owing to the challenge of reliably segment-
ing and analysing root systems automatically, many tools place
strict requirements on the type of image they will analyse. Rhi-
zoScan [19], for example, offers an automatic pipeline similar to
the above, based on the OpenAlea platform [20], but supports
only root systems grown on Petri plates.

Beyond the problem of low-level image analysis, by framing
the problem as one of identifying root pixels at a low level, these
tools struggle to extract high-level root architectural informa-
tion. More detailed phenotypic traits such as the number of lat-
eral roots are out of reach of many existing tools simply because
disambiguating the category of a root within a system may prove
impossible in the presence of noise, especially once growth is at
a mature stage where roots begin to overlap. Semantically un-
tangling such a root system requires a higher-level understand-
ing of the image than pixel-based processing methods provide.

Manual root analysis tools such as Imagel’s polyline func-
tion [21] and DART [22] offer an entirely different approach. They
place reliance on an expert human annotator to successfully
identify the structure of the root system by asking the expert
to label each root by hand. The advantage here is that if suf -
ciently well trained, an annotator could conceivably reconstruct
an entire root system, using their advanced knowledge to clear
up disambiguation in cluttered areas of the image. The obvi-
ous drawback to this approach is that this is an extremely time-
consuming process. In practice, many experiments will there-
fore have to severely limit the number of measurements cap-
tured per image, such as by focusing on primary root length, to
bring the time required into a reasonable range. Some tools, e.g.,
RootScape [23], have been designed with this in mind, requiring
that a user highlight only 20 key landmarks on a root system.
These landmarks are then used to explore phenotypic differ-
ences between genotypes via principal component analysis. In
those instances where detailed analysis is required, the burden
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on annotators is huge, and the cost of mistakes may be high.
Outside of plant science, obtaining cheap and ef cient annota-
tion has become a widely researched topic in and of itself [24,25].
In plant science, noisy and low-cost annotation may not be ac-
ceptable, depending on the experimental requirements, and ul-
timately offers few bene ts over the automated tools described
above.

Alongside the development of manual and automated tools,
a selection of widely used semi-automatic tools have been re-
leased. These approaches aim to bridge the gap between speed
and accuracy, offering a compromise acceptable for many use
cases. Tools such as RootReader [26] perform a similar auto-
matic function to the tools above but provide the user with the
ability to manipulate some of the output to correct mistakes.
Most of the tools in this category are not bottom up, and in-
stead model the root system in some way, guided by the user,
in order to better understand the image on which they are run.
Smartroot [10], a plugin for the popular Imagel tool [21], oper-
ates by tracing along each root in a guided way, at each step
searching for the optimal direction in which to travel based on
the current orientation of the root at that point. Smartroot is
semi-automatic, with initiation of roots and correction of errors
often requiring human intervention. Nevertheless, with some
user effort Smartroot can potentially be used to reconstruct full
root system architectures. RootNav [9], a precursor to the work
presented here, offers a point-to-point path search between la-
belled seed locations and root tips. Images are rst segmented
into background/foreground classes, before a user is required to
label root tip and seed locations. Shortest path search is used
to trace between key organ landmarks, resulting in a complete
reconstruction of the root system. However, RootNav does not
include a reliable method for detecting seeds and root tips (the
user must perform this step), nor is the segmentation step ro-
bust to image noise. This means that signi cant user interaction
is still required to guide the software, but as with Smartroot, the
output is a full and architecturally correct root system architec-
ture. Many tools that are able to output root system architec-
tures have been adapted to provide output in the popular RSML
format [10]. RSML is an XML-based standard for the sharing of
root system architectures, including information on geometry,
and relative position within the system. Numerous tools exist
to read and write RSML les, allowing customized pipelines be-
tween tools, and the ability to decouple the image analysis from
the ultimate measurement of traits, as well as view the nal ar-
chitecture labelling.

The prevailing methodology when working with images in deep
learning is the CNN. CNNs improve upon traditional machine
learning via their ability to learn not only solutions to prob-
lems but also the most effective way in which to transform
data to make this goal easier. This representation learning pro-
vides CNNs with unparalleled discriminative power and has
seen them quickly move into a dominant position within the

eld of computer vision [3]. ACNN is a layered structure that per-
forms successive image- Itering operations that transform an
image from a traditional RGB input into a new feature represen-
tation. This transformation is learned during training and pro-
vides the nal layers of the CNN with the best possible view of
those data from which to base decisions. The deeper into a CNN
data ows, the more abstracted and powerful the representation
becomes. While the initial layers may compute simple primi-
tives such as edges and corners, deeper into the network fea-

ture maps may highlight groups of primitives. Deeper still, fea-
ture maps may contain complex arrangements of features rep-
resenting real-world objects [5]. These features are learnt by the
CNN training algorithms and are not hand-coded, meaning that
with suf cient training data any number of different problems
can be addressed. Within the biosciences, such networks have
been used to perform a variety of tasks ranging from classi ca-
tion, assigning discrete labels to images and objects [27], through
to regression problems; i.e., of directly predicting values [28]. For
root systems, Pound et al. [29] used a deep classi cation network
to scan an image for probable root tip locations in 32 x 32 pixel
tiles. Despite promising results, the drawback of this approach
is that using asmall eld of view, customarily called a "receptive

eld” within the machine learning literature, is computationally
less ef cient and may produce additional false-positive results
where the small eld of view is not suf cient to distinguish true
roots from image noise. This system also only currently detects
root tips, which means more complex traits involving other or-
gans cannot be computed.

The measurement of complex phenotypic traits requires anal-
ysis at a ner scale than that of whole-root-system traits but
sensitive to more than only a small selection of plant features
such as just root tips. To address this, the research community
has begun to move towards networks that output a richer ar-
ray of information. Recent work has been based around newer
CNN designs in what we term an encoder-decoder con gura-
tion, aimed at segmentation of images, or the location of key
feature points. Traditional CNNs perform spatial downsampling
such that by the end of the network, features spatially corre-
spond to the entire image, i.e., they have lost location resolution.
This is ideal for classi cation tasks, where a decision must be
made on an image scale. This is not appropriate, however, for sit-
uations in which a 2D segmentation result is required. Encoder-
decoders therefore upsample again from the feature space, back
into a spatially high-resolution image (Fig. 2). This process can
be thought of as combining a CNN with a second, reversed CNN
that learns to produce images once again; these images might
be trained to predict the locations of objects, or to segment pix-
els into background and foreground classes. Encoder-decoders
are being used in plant science to, among other tasks, segment
plant shoots [30,31], other plant organs [32], and Il gaps in rhi-
zotron images of root systems [33]. Pound et al. [5] rst intro-
duced the concept of heat map regression to the plant pheno-
typing domain, in which a segmentation output is replaced by
a heat map showing likely target locations. Our development in
this article combines both of these approaches, simultaneously
segmenting a root system and predicting the likely locations of
root tips and seeds.

We present here a new tool for the automatic analysis of root
systems that is designed to work across a wide variety of
plants and imaging conditions. Our pipeline is driven by a deep
encoder-decoder network, similar to that presented by Pound et
al. [5] but adapted to handle higher-resolution images. The net-
work is trained to simultaneously segment root material, clas-
sify root type, and locate key features from which root geome-
try can be derived. To our knowledge this is the rst use of deep
learning to perform multi-task segmentation and localization in
plant phenotyping. The output of the network is re ned using an
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Figure 2: A simpli ed example illustrating the major components of a CNN in an encoder-decoder con guration. The encoder performs a combination of Itering
operations including convolutional lters, spatial downsampling, and normalization. These layers convert the original image into a high-dimensional feature space
but with very low spatial resolution. The decoding network performs similar layer operations but replaces downsampling with upsampling to return the feature

representation back into a spatially high-resolution image.

A shortest path algorithm to determine the most likely path of
each root, connecting located second-order roots to appropriate

rst-order roots, and rst-order roots back to the seed location.
Full root geometry is extracted per plant and is robust to multi-
ple plants and highly varied architectures. The tool outputs the
standard RSML format [34], widely supported by the community,
from which root system architecture (RSA) traits can be derived.
The tool also outputs the underlying segmentation masks for

rst- and second-order roots, from which global traits can be de-
rived. An overview of the tool can be seen in Fig. 3. The system

rst performs pixel-wise segmentation of the image and heat
map regression to locate key features; it next extracts the root
topology via a series of guided shortest-path searches before -
nally extracting the entire root architecture into a portable RSML
format.

We rst demonstrate the performance of the tool on a large
wheat dataset grown on germination paper. We perform a quan-
titative comparison with traits measured using the original
semi-automatic RootNav tool [9], hereby referred to as RootNav
1.0, in which an expert performed detailed manual intervention
to ensure accuracy. We next demonstrate the ability of RootNav
2.0 to adapt to new image types with a much smaller training set.
We retrained the network on 200 images of Arabidopsis thaliana
grown on agar plates, in which up to 5 plants appear per im-
age. We again compare quantitatively against human-labelled
images generated using RootNav 1.0. Finally, we transfer learn
once more using an even smaller, rapeseed dataset, comprising
only 91 training images. Beyond accuracy measures, we have as-
sessed our system’s performance in terms of inference time and
resource ef ciency to provide a comparative analysis of user bur-
den for root architecture analysis. The trained networks, tool,
and all training datasets have been made publicly available.

Our primary dataset is composed of images of wheat (Triticum
aestivum L.) seedlings totalling 3,630 images of 1,900 x 2,000 pixel
resolution. Images include those released by Pound et al. [5],
plus additional images captured using the same methodology.
Images were captured as per Atkinson et al. [35]; seeds were
sieved to uniform size, sterilized, and pre-germinated before
transfer to growth pouches in a controlled environment cham-
ber (12-hour photoperiod: 20°C day, 15°C night, with a light in-
tensity of 400 pmol m™2 s~ photosynthetically active radia-
tion). After 9 days (with plants at the 2-leaf stage), individual
pouches were transferred to a copy stand for imaging using a
Nikon D5100 DSLR camera controlled using NKRemote software
(Breeze Systems Ltd, Camberley, UK). Ground truth annotations

for all plants were obtained using the original RootNav 1.0 soft-
ware [9] and stored in RSML format [34]. Each annotation was
provided by an expert user, and because we intended to use
RootNav 1.0 as a quantitative baseline for accuracy, emphasis
was placed on accuracy over speed during this process.

Ground truth images for network training and validation
were generated from these RSML les by rendering appropriate
segmentation masks and heat maps. The dataset was split into
training and validation sets totalling 2,864 and 716 images, re-
spectively. An additional 50 images were held back as a nal
testing set. More details on this methodology can be found in
the Methods section. Example images can be found in Fig. 4a.

Our second dataset is composed of images of Arabidopsis thaliana
grown on agar plates as detailed by Wilson et al. [36]. Images
of individual plates were acquired using near-infrared imaging
utilizing the system described by Wells et al. [37]. In this sys-
tem, multiple seeds are sown on each plate, and thus, unlike the
primary dataset, each image typically contained up to 5 plants
(Fig. 4b). This dataset is considerably smaller, totalling 277 im-
ages, and is used as a demonstration of transfer learning with
our approach despite limited annotated data. The dataset was
split into training and validation sets of 200 and 27 images, re-
spectively, and as with the primary dataset, 50 holdout test im-
ages were used for nal quantitative evaluation.

Our nal dataset is composed of images of rapeseed (Bras-
sica napus) seedlings, grown in the same system as used in the
primary dataset above. This dataset is small, containing only 120
images of individual plants. Our hypothesis was that despite the
reduced size, transfer learning from a network trained on both
the wheat (similar image background) and Arabidopsis (similar
root system organization) datasets would lead to suf cient ac-
curacy. The dataset was split into training and validation sets of
91 and 14 images, respectively. We used 15 holdout test images
for the nal quantitative evaluation. Example images for the 2
transfer learning datasets can be found in Fig. 4b and c.

This section will present a comprehensive performance anal-
ysis of RootNav 2.0, including a quantitative evaluation of
both the underlying segmentation approach and the root ar-
chitecture extraction. We evaluate segmentation accuracy via
3 common metrics, mean average pixel classi cation accuracy
(both global and class averages) and mean intersection over
union (mloU). We compare the segmentation performance of
our approach against the well-known benchmark architectures
VGG [38], FCN [39], SegNet [40], UNet [41], and DeepLab [42]. We
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Figure 3: An overview of RootNav 2.0. The input enters a CNN that performs both segmentation of the root structure and localization of key points. These are post-
processed to extract information for a path- nding algorithm. A search then extracts likely paths taken by each root, generating an entire architecture for an arbitrary
number of plants in an image. All roots are resampled as smooth splines, before all topology and geometry are output into an RSML le. Segmentation masks for rst-

and second-order roots are also saved.

Figure 4: Example images from each of the 3 datasets used during this work.
(a) Wheat (Triticum aestivum L.). (b) Arabidopsis (Arabidopsis thaliana). (c) Rapeseed
(Brassica napus). Scale bars are 50 mm long.

then evaluate the automatic reconstruction of root systems us-
ing a comparison of common root phenotypic traits such as
the dimensions of the root system, and root counts. For ground
truth, we use semi-automatic measurements obtained through
expert annotation using RootNav 1.0. Finally, we perform the
same experiments to outline the accuracy on the 2 additional
datasets, which contain fewer training images, to demonstrate
the ef cacy of transfer learning to new species and imaging
modalities.

Table 1: Quantitative comparison: a quantitative analysis of train-
able parameters and memory requirements of different benchmark
architectures used during experiments

Trainable parameters,

input (3 x 256 x 256 GPU memory

CNN model pixels) requirements (bytes)
VGG-16 [38] 138,357,544 1,253,048,320
FCN [39] 134,815,994 1,766,850,560
SegNet [40] 29,572,256 1,603,272,704
UNet [41] 13,395,329 1,276,116,992
Stacked Hourglass [43] 6,720,132 6,309,281,792
LinkNet [44] 11,546,148 533,725,184
PSPNet [45] 65,589,332 1,934,622,720
DeepLab-V3 [42] 59,344,309 596,639,744
RootNav 2.0 1,595,782 892,338,176

The input size was set at a constant 3 x 256 x 256 pixel size for this comparison.

Root image segmentation

RootNav 2.0 is driven by a deep network that segments images
of root systems into classes: background, rst-order roots, and
second-order roots. Crucial to the accuracy of any subsequent
path- nding approach is a reliable segmentation. Segmenting
whole-root images is important in order to provide suf cient
context when distinguishing rst- or second-order roots. Split-
tingimages into ef cienttiles reduces memory consumption but
makes distinguishing root type problematic. With this in mind,
we designed the network to be ef cient by reducing the num-
ber of trainable parameters, intermediate feature sizes, and thus
overall memory requirements. This allows larger 1,024 x 1,024
resolution input. Table 1 shows a comparison of the memory re-
quirements and parameter sizes of commonly used segmenta-
tion networks, and our own architecture.

We trained each network on the wheat dataset as described
in the Methods. To provide a fair comparison of each network,
we allocated 2 Nvidia GPUs with >11 GB onboard memory each
for training each network, then trained using consistent hyper-
parameters such as learning rates, and equal batch sizes. Image
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