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Serpentine barrens represent extreme hazards for plant colonists.
These sites are characterized by high porosity leading to drought, lack
of essential mineral nutrients, and phytotoxic levels of metals. Never-
theless, nature forged populations adapted to these challenges. Here,
we use a population-based evolutionary genomic approach coupled
with elemental profiling to assess how autotetraploid Arabidopsis
arenosa adapted to a multichallenge serpentine habitat in the
Austrian Alps. We first demonstrate that serpentine-adapted plants
exhibit dramatically altered elemental accumulation levels in com-
mon conditions, and then resequence 24 autotetraploid individuals
from three populations to perform a genome scan. We find evidence
for highly localized selective sweeps that point to a polygenic,
multitrait basis for serpentine adaptation. Comparing our results to a
previous study of independent serpentine colonizations in the closely
related diploid Arabidopsis lyrata in the United Kingdom and United
States, we find the highest levels of differentiation in 11 of the same
loci, providing candidate alleles for mediating convergent evolution.
This overlap between independent colonizations in different species
suggests that a limited number of evolutionary strategies are suited to
overcome the multiple challenges of serpentine adaptation. Interest-
ingly, we detect footprints of selection in A. arenosa in the context of
substantial gene flow from nearby off-serpentine populations of
A. arenosa, as well as from A. lyrata. In several cases, quantitative tests
of introgression indicate that some alleles exhibiting strong selective
sweep signatures appear to have been introgressed from A. lyrata.
This finding suggests that migrant alleles may have facilitated adap-
tation of A. arenosa to this multihazard environment.
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Serpentine barrens offer powerful venues for the study of
multitrait adaptations. Soils at these sites feature dramatically

skewed elemental contents, phytotoxic levels of heavy metals,
drought risk, and very poor mineral nutrition (1–3). A defining
characteristic of serpentine soils is a greatly reduced Ca:Mg ratio
along with low K, N, and P, resulting in severe ion homeostasis
challenges for plant colonists (4–6). Serpentine soils are also highly
porous and thus chronically drought prone. As a result of these
challenges, serpentine barrens are characterized by minimal eco-
system productivity and high rates of endemism (reviewed in
refs. 2 and 3). Evolution has nevertheless repeatedly forged plant
populations that overcome these hazards, making serpentine sites an
important natural model for ecology, evolution, and physiology.
Given the quantifiable challenges of serpentine adaptation presented
by strongly skewed elemental levels and dehydration risk, adapted
populations present a valuable opportunity to identify loci underlying
adaptations important for understanding basic evolutionary pro-
cesses, as well as candidate genes for rational crop design for tol-
erance of challenging growth conditions such as low nutrient soils,
metal, or drought.
A genomic understanding of adaptation to serpentine soils and

their diverse challenges remains in its infancy. Within the molecu-
larly tractable Arabidopsis genus, at least two species have been

reported to have independently colonized serpentine barrens:
diploid Arabidopsis lyrata (7) and autotetraploid Arabidopsis
arenosa. As an obligate outcrosser, A. arenosa exhibits very high
genetic diversity, a small (∼200 Mb) genome, and very large
effective population sizes (8, 9), enabling fruitful population
genomic analysis (9–12). Tetraploid A. arenosa populations have
colonized diverse habitats throughout central and northern
Europe (13, 14). There is also evidence that hybridization of
A. arenosa with A. lyrata resulted in a hybrid that escaped the
ecological niche of its progenitors (15). Here, we focus on an
A. arenosa population reported in a 1955 botanical survey of a
serpentine barren on Gulsen Mountain in Austria (16).
We returned to Gulsen in 2010 and found an extant A. arenosa

population on the serpentine site and also collected from 28 other
sites across Europe. We first used quantitative elemental profiling
of soil from A. arenosa sites, as well as leaves grown from plants in
common gardens, to find that serpentine plants show a constitu-
tively altered ability to control accumulation of elements in their
leaves that matches the elemental challenges of their native soils.
We performed a detailed demographic analysis that revealed gene
flow into the serpentine population from both a nearby A. arenosa
population, as well as from A. lyrata. This introgression signal from
A. lyrata is specific to the serpentine population and not evident
in other A. arenosa populations we sampled. We resequenced
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individuals from the serpentine A. arenosa population as well as the
two most closely related nonserpentine populations and found the
strongest signatures of selection in many genes with functions
relevant to serpentine challenges. Interestingly, in several cases,
selection acted on alleles that also show evidence of introgression
from A. lyrata according to genome-wide quantitative tests. Our re-
sults highlight the important role that introgression may have played
in these adaptations. Finally, we compare our findings to a previous
study of an independent serpentine adaptation in A. lyrata to assess
the degree of convergent evolution and find that some of the same
genes were targeted by selection in these independent events.

Results and Discussion
Elemental Accumulation Profiles Are Highly Altered in Serpentine
A. arenosa. As noted above, soils at serpentine sites are character-
ized by extremely low Ca:Mg ratios, lowmacronutrient (e.g., K and S)
availability, high levels of particular metals, and high risk of dehy-
dration due to porosity and low plant cover (4, 5). We noted that
A. arenosa was listed in a botanical survey of a serpentine site on
Gulsen Mountain, near Kraubath an der Mur, Austria (16) (Fig. 1A).
To understand whether and how A. arenosa adapted to this chal-
lenging environment, we first analyzed the mineral nutrient and trace
element composition of soil samples we collected from Gulsen and
other A. arenosa sites. Relative to other A. arenosa sites, soil from
Gulsen had the lowest levels of macronutrients K and S, very low
Ca:Mg ratios, the highest levels of the heavy metal Ni, but very
low levels of Cu, Zn, and Cd (Fig. 2, orange dots in brown soil

distributions, and Dataset S1). These soil characteristics are
consistent with Gulsen being a serpentine site (1–6).
To test the mineral nutrient uptake characteristics of these plants,

we then analyzed leaf tissue of plants grown in common condi-
tions in fertile artificial soil from seeds collected at Gulsen and
28 nonserpentineA. arenosa sites, including all of the sites from which
we also sampled soils (SI Appendix, Table S1). Elemental analysis
showed that Gulsen plants are similarly extreme outliers for the same
elements as the serpentine soil, but in the opposite direction (Fig. 2,
orange dots in green plant distributions, and Dataset S2). Relative to
plants sampled from the other 28 populations, Gulsen plants accu-
mulated the highest levels of K and S, excluded Ni and Mg, exhibited
the highest Ca:Mg ratios, and took up comparatively high levels of
Cu, Zn, and Cd. These findings indicate that, relative to other
A. arenosa populations, the plants from Gulsen have genetically
adapted to the challenging mineral composition of the serpentine site
by a complex suite of adaptations, including exclusion or accumula-
tion of different elements in accordance with local soil concentra-
tions. These patterns are consistent with data from other
serpentine adapted species (reviewed in refs. 2 and 3).

Demographic Analysis. To confirm the genetic placement of Gulsen
among range-wide A. arenosa populations, we used a restriction
site-associated DNA sequencing (RAD-seq) dataset from ref. 12
that surveyed 20 broadly distributed A. arenosa populations. We
found that Gulsen is positioned neatly between Hochlantsch and
Kasparstein in a principal component analysis (PCA) (Fig. 1B),
consistent with ref. 12, but is most closely related to Hochlantsch in
a simple phylogenetic analysis (SI Appendix, Section S1 and Table
S2). This finding confirms that Gulsen is a member of the alpine
lineage of A. arenosa and that, of all populations sampled
across the A. arenosa range, the geographically most proximal
populations (Hochlantsch and Kasparstein) provide the most
closely related nonserpentine populations to Gulsen. Therefore, we
chose Hochlantsch and Kasparstein as comparison groups for
population resequencing.
We individually barcoded and sequenced a total of 24 autotet-

raploid individuals from Gulsen, Hochlantsch, and Kasparstein to
an average depth of 21× aligned coverage per individual (SI Ap-
pendix, Table S3). Because all plants sequenced are autotetraploids,
this approach samples 96 chromosomes at each site in the genome.
Following a previously successful approach (9–12, 17), we aligned to
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Fig. 1. A. arenosa populations sampled for this study. (A) Locations of the
29 A. arenosa populations sampled. Orange dot gives the location of the
focal Gulsen (GU) serpentine population along with other highlighted
populations at Hochlantsch (HO) and Kasparstein (KA). Note: one Swedish
location is not pictured (see SI Appendix, Table S1 for global positioning
system locations). (B) PCA of A. arenosa range-wide showing relatedness
between highlighted populations. (C) Lineage topology highlighting the
major introgression events (green arrows), with MLEs for introgression in
lineages per generation and MLEs for divergence times in generations.
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Fig. 2. Serpentine A. arenosa is an extreme outlier for the accumulation of
many elements. Elemental profiling of 29 A. arenosa populations. Green dis-
tributions represent plant tissue data, brown distributions represent data from
soil collected at plant sites. Orange dots indicate position in distribution where
the serpentine autotetraploid Gulsen sample lies. (A) S, sulfur; K, potassium;
Ca/Mg, calcium-to-magnesium ratio. (B) Ni, nickel; Cu, copper; Zn, zinc; Cd,
cadmium. We normalized all values to the 0–1 range using feature scaling,
where x′ = (x − xmin)/(xmax − xmin).
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the closely related A. lyrata genome (18) to call SNPs. We obtained
information for 52 million nucleotide positions, of which 4.9 million
are polymorphic with confident SNP calls following all filtering
steps (SI Appendix, Sections S2 and S3). We detected extensive
shared variation between serpentine and nonserpentine populations
(2.7 million sites). These patterns are consistent with recent coloni-
zation by multiple individuals and/or substantial levels of gene flow
between populations.
Because serpentine barrens present a broad array of challenges to

colonizers, we expected the Gulsen population to exhibit very low
effective population sizes, resulting from a hypothetical bottleneck
upon colonization. Surprisingly, however, the Gulsen population had
normal diversity levels (Watterson estimator θW) (19) compared with
nearby nonserpentine populations (Fig. 3A) and similar estimates of
Tajima’s D in comparison with 13 other autotetraploid A. arenosa
populations sampled from across the A. arenosa range (SI Appendix,
Fig. S1), indicating the lack of an extreme bottleneck and/or gene
flow. Intriguingly, Gulsen had significantly higher (P < 2.2e-16) values
of θH (Fig. 3B) (20), a diversity metric sensitive to high-frequency
polymorphisms. We hypothesized that interspecies admixture be-
tween the Gulsen population and A. lyrata—the species used as the
reference to align sequence data and polarize mutations—drives this
excess of high-frequency–derived mutations. These sites, derived with
respect to the reference sequence, are fixed in the other A. arenosa
population samples but are not fixed for the derived allele in Gulsen,
due to an influx of reference-like (ancestral) polymorphism from
A. lyrata (Fig. 3C).

To better understand the demographic history of the Gulsen
population and its relatedness to the nearest nonserpentine
A. arenosa population we sampled, Hochlantsch, we explicitly
modeled population histories using the coalescent, which we
adapted for autotetraploids (21). Because we detected hints
of admixture between the Gulsen population of A. arenosa and
A. lyrata, we included an Austrian A. lyrata genome sequence (from
ref. 12) as an outgroup to quantify possible interspecies gene flow.
With these three populations and five possible migration parameters
(including migration between Gulsen, Hochlantsch, andA. lyrata) (SI
Appendix, Table S4), we used a model selection approach (22) to
determine which of these migration parameters were statistically
supported by the data and thus potentially biologically meaningful.
We constructed 32 different migration models, each a distinct per-
mutation of the five possible migration rates. We fit each model to
fourfold degenerate SNP data using fastsimcoal2 (23) and used the
model likelihoods to calculate an Akaike weight for each or the
probability a particular model is best among all candidates (SI Ap-
pendix, Sections S1 and S4). The Pearson correlation between the
number of migration parameters and the model likelihood was
0.61, suggesting not all migration parameters explain the data.
The model with the unambiguously highest Akaike weight (SI

Appendix, Table S4) contained four of five possible migration
parameters (Fig. 1C). Maximum likelihood estimates (MLEs) of
migration probabilities were highest from A. lyrata into Gulsen
(population migration rate 4Nem = 0.62 migrant lineages per
generation) and were significantly higher than those for interspecific
introgression into Hochlantsch using 90% confidence intervals
(CIs) (SI Appendix, Table S5). Whereas the model selection analysis
suggests each of these migration parameters has statistical support,
migration probability CIs contained very small values (4Nem ∼ 0),
except for A. lyrata to Gulsen (90% CI 4Nem = 0.43–0.85). Pa-
rameter MLEs also indicate a divergence time of 3,195 genera-
tions (90% CI = 1,398–4,555) between Gulsen and Hochlantsch.
Given that size estimates of these populations are on the order of
4Ne ∼ 30,000 haploid chromosomes, where Ne is the effective
number of tetraploids, the divergence time MLE is ∼0.1 × 4Ne
generations, just a fraction of the average time it takes for rare or
intermediate-frequency neutral mutations to fix in a finite
population (∼3 × 4Ne to ∼4 × 4Ne generations) (24). These
findings suggest a very recent colonization of this serpentine
barren with few detectable neutral changes between Gulsen and
Hochlantsch, especially considering the potential for extensive
gene flow between them (90% CIs for population migration rate
from Hochlanstch to Gulsen 4Nem = 0.01–1.57) (SI Appendix,
Table S5).

Selective Sweeps Associated with Serpentine Adaptation. To identify
loci under selection in the Gulsen population, we conscribed the
genome into 25-SNP windows in which we characterized metrics of
both absolute (Dxy) and relative (FST) divergence, as well as the site
frequency spectrum (Fig. 3 and SI Appendix, Fig. S2). We chose
25-SNP windows (median width = 391 bp) because estimates of
diversity between adjacent windows of this size were uncorre-
lated, consistent with low linkage disequilibrium in A. arenosa
(SI Appendix, Fig. S3). To capture selection on regulatory changes,
we included genes that either overlap with or lie within 2 kb of an
outlier window.
To obtain top outliers exhibiting the most robust evidence of

selective sweep, we retained the extreme outlier windows from
four window-based differentiation and allele frequency spectrum
metrics comparing Gulsen with Hochlantsch and Kasparstein:
(i) maximum absolute net divergence (Dxy) (Fig. 3D) (25),
(ii) maximum relative divergence (FST; Fig. 3G) (26), (iii) maxi-
mum negative residuals of a diversity/differentiation (DD) metric
inspired by the Hudson–Kreitman–Aguade test (DD residual test)
(Fig. 3 E and F) (10), and (iv) top scoring windows from a 2D site
frequency spectrum composite likelihood test (2dSFS-CLR)
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Fig. 3. Measures of differentiation. (A) Watterson estimator θW diversity in
resequenced populations over genome windows. The vertical dashed line for
each population gives the mean. (B) θH, a diversity metric sensitive to extreme
frequency SNPs (double asterisk signifies that Gulsen distribution is highly
significantly different (P < 2.2e-16) from Hochlantsch or Kasparstein pop-
ulations). (C) Mean number of fixed differences relative to Austrian A. lyrata in
windows across the genome in each population (double asterisk signifies that
Gulsen distribution is highly significantly different [P < 2.2e-16] from HO or KA
populations). (D) Dxy, absolute net divergence between Gulsen and non-
serpentine A. arenosa over genomic windows. (E) Relationship of diversity and
differentiation in windows, indicating 0.1% empirical outliers in yellow. (F) DD
residual values, indicating outliers with lower diversity for their given level of
differentiation, a classic selective sweep signature. (G) FST distribution with
outliers marked. (H) Overlap of outlier gene loci by all tests. (I) Positive fd
values from four taxon ABBA-BABA test with outliers marked and blue rug
indicating each window value.
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following ref. 27. (For tests, see SI Appendix, Section S5.) Following
inspection of allele frequency plots spanning all outlier windows at
different cutoffs, we found that the top 0.025% outliers of the
absolute net divergence metric Dxy yielded the most dramatic sig-
natures of selective sweep (48 windows overlapping or within 2 kb of
51 gene-coding loci) (SI Appendix, Table S7). We also detected
convincing outliers by the overlap of the other metrics: top candi-
dates were retained from the FST 0.1% outlier list if they were also
among the 0.1% DD residual outliers (DD outliers exhibit low di-
versity in sweep regions relative to differentiation, a classic sweep
signature) (Fig. 3E) or 0.1% 2dSFS-CLR test outliers. Finally, to
enable a direct comparison between this study and another study
of serpentine adaptation (7), we retained loci within 2 kb of any
SNP with >0.8 absolute allele frequency difference between
serpentine and nonserpentine populations, resulting in a further
26 candidate loci at genome-wide maximally diverged SNPs.
Together, these approaches yielded the highest proportions of
loci with sharp peaks of differentiation that trailed off immedi-
ately flanking the peaks, as previously observed in A. arenosa
(10, 12) (Fig. 4). Despite using hard cutoffs of extreme outliers,
there was considerable overlap in our highest stringency lists
(Fig. 3H), with only 162 loci represented on this final list of top
sweep candidates (SI Appendix, Section S5 and Tables S6
and S8).

Serpentine-Specific Sweeps Represent Processes Involved in “Serpentine
Syndrome.” A broad range of processes is represented in our top
sweep candidates list. Approximately half of the genes are docu-
mented to function in, or show altered expression as a result of,
traits or stresses in Arabidopsis thaliana that are directly linked to
the challenges of persisting on serpentine barrens (SI Appendix,
Table S8), with each process represented by several genes. Many of
these categories fit well with observed elemental challenges at
Gulsen (e.g., low K+ and S2−, high Mg2+, and low Ca:Mg ratios)
(Fig. 2 and SI Appendix, Table S8). For example, the A. thaliana
orthologs of many of these genes encode proteins involved in ion
(particularly S042−, K+, NO3

+, Mg2+, Ca2+) transport or signaling,
such as sulfate transporter 1;1 (SULTR1;1), K+ uptake permease 9
(KUP9), and ammonium transporter 2;1 (AMT2;1), along with
Casparian strip membrane domain protein 1 (CASP1), which is
involved in the Casparian strip, a critical root component that
broadly influences mineral nutrient uptake, water uptake, and stress
resistance (28–30). CASP1 and AMT2;1 exhibit five and seven high-
frequency amino acid substitutions differentiated between Gulsen
and other A. arenosa populations, respectively.
Whereas many of the identified sweep candidates have orthologs

in A. thaliana that are root expressed or play roles in root archi-
tecture and elemental challenges, others have been demonstrated to
play roles in intracellular ion dynamics, including proteins involved
in Ca2+ signaling and transport, Ca2+-modulated signaling net-
works, and cellular stress responses (31) (SI Appendix, Table S8 and
Datasets S3–S7), indicating adaptation to changes in intracellular
physiology. It is interesting that the primary Ca2+ channel in the
vacuole, two pore channel (TPC1) (32) contains high-frequency–
derived changes in Gulsen and is also a 0.1% DD residual outlier,
along with many Ca2+-related genes. TPC1 levels directly modulate
salt tolerance and control the Ca2+-mediated root-to-shoot stress
signal (31). Indeed, many of the top loci are implicated in stress
signaling and tolerance, such as early responsive to dehydration
stress protein 4 (ERD4) and high expression of osmotically re-
sponsive genes 2 (HOS2) (references to functional assessments in SI
Appendix, Table S8).
Early flowering is a common drought escape mechanism and

the Gulsen population is no exception. Gulsen plants flower
much earlier than their closest relatives (days to open flower:
Gulsen = 49 ± 1.3, Hochlantsch = 100 ± 12, Kasparstein = 105 ±
14; SI Appendix, Fig. S4). It is interesting to note that in addition
to stress signaling and tolerance, HOS2 also controls flowering
time (33). We also see other genes controlling flowering time in
the top sweep candidates, including LACCASE 8 (34), among
others in each 0.1% outlier list. This finding, combined with
diverse loci controlling ion transport, signaling, intracellular ion
dynamics, and stress signaling, indicates that a spectrum of
functionally diverse loci underlies serpentine adaptation, rather
than a small number of “master regulators.”

Introgression and Selection on A. lyrata Alleles Among Top Sweep
Candidates. We observed localized high similarity to Austrian
A. lyrata in regions overlapping several top sweep candidates spe-
cifically in the Gulsen population. This pattern is maintained across
entire gene-coding regions, directly overlapping selective sweep
signatures (compare Fig. 4A with 4B and 4C). To understand these
signals in a genomic context, we constructed a window-based four-
taxon analysis following ref. 35 that tests for an excess of shared
variants between Gulsen and A. lyrata, using A. thaliana as the
outgroup (SI Appendix, Section S4). For biallelic sites with alleles
A and B, ABBA and BABA patterns are equally likely if in-
complete lineage sorting is the sole cause of paraphyly, with gene
flow driving these patterns to diverge in frequency. Extreme
ABBA patterns (top fd values) indicate increased allele sharing
between Gulsen and A. lyrata. Consistent with the demographic
and allele frequency spectrum results above (genome-wide
A. lyrata-like SNPs and high θH in Gulsen specifically; Fig. 3 B and
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(A) Allele frequency differences in example differentiated regions. Dots represent
polymorphic SNPs. The x axis gives chromosome location; y axis gives degree of
differentiation calculated by plotting the difference in allele frequencies between
serpentine and nonserpentine populations. Arrows indicate gene models. Black
arrow indicates sweep candidate with localized differentiation. (B) Linear plot
showing the proportion of SNPs shared between the three pairwise population
comparisons in the same region as in A. (C) Sequence similarity at the same re-
gions among A. lyrata, Gulsen, and Kasparstein visualized using a color triangle.
Areas where two rows show the same color (yellow) indicate localized high
similarity specifically between Gulsen and A. lyrata, but not Kasparstein. (D) Ge-
nomic view of divergence and gene flow metrics at a postive ABBA-BABA outlier
and top sweep candidate locus. Dxy gives net divergence, Divdiff, a selective sweep
signature (relatively reduced diversity specifically in Gulsen vs. other A. arenosa;
more negative values indicate specifically low diversity in Gulsen), fd gives ABBA-
BABA outlier status, ZengEdiff, negative values give localized negative excesses of
rare variants in Gulsen (also see SI Appendix, Section S5). Dashed lines represent
1% outlier levels.
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C), the mean fd value was positive, indicating gene flow from
A. lyrata, but the genome-wide distribution was not significantly
positive by bootstrap or jackknife resampling (SI Appendix,
Section S6).
Of the fd outliers in the top 99th percentile (24 windows genome-

wide; values >0.73; Fig. 3I), six loci are present among our 162 top
sweep candidates (SI Appendix, Table S9) [less than one expected by
chance (P < 2.2e-05); hypergeometric test, nearby gene loci col-
lapsed into single observations to ensure independence] (SI Appen-
dix, Section S5). We note that A. lyrata alleles are not retained
genome-wide, which suggests that after hybridization with A. lyrata,
selection favored increases in the abundance of A. lyrata alleles at
only a few loci (Fig. 4 and SI Appendix, Table S9), whereas signals of
introgression in the rest of the genome largely eroded. Thus, this
subset of sweep loci are candidates for interspecies adaptive gene
flow. Interspecific hybridization has been noted in other systems
(reviewed in ref. 36) and introgression can occur even when strong
barriers exist (37). Indeed, hybridization has been reported between
A. arenosa and A. lyrata (15), and a substantial signal of this hy-
bridization is clear in our coalescent models (Fig. 1C), which also
provide evidence for a history of introgression specifically between
the Gulsen A. arenosa population and A. lyrata. Importantly, how-
ever, even though A. lyrata introgression contributed alleles, the
Gulsen A. arenosa population is not a true hybrid population (i.e.,
there is no evidence of rampant hybrid formation or widespread
retention of A. lyrata polymorphisms outside these few selected loci).

Convergent Evolution Between Serpentine A. arenosa and A. lyrata. We
compared our results to a genome scan of diploid serpentine
populations of A. lyrata in Scotland and the United States (7)
and observed evidence of convergent evolution that independently
targeted the same loci. Using the same reference genome assembly
as our study, the A. lyrata study detected 96 SNPs that exhibit allele
frequency differences of greater than 80% between serpentine and
nonserpentine populations. We tested whether any of our SNPs
matching the identical criterion are situated near outliers in the
A. lyrata study. We found that 9 of our 77 most differentiated SNPs
lie very near (within 2 kb) 9 of the 96 top candidate SNPs reported
in serpentine A. lyrata (P < 6.1e-09; hypergeometric test, nearby
SNPs collapsed into single observations to ensure independence; SI
Appendix, Section S5). These 9 SNPs overlap or are directly adja-
cent to six gene loci, among which are KUP9 and TPC1 (SI Ap-
pendix, Table S10). This underscores the importance of K+ and
Ca2+ in serpentine adaptation in both A. arenosa and A. lyrata (1–5).
Both genes contain high-frequency derived changes specific to in-
dependent serpentine populations (Austria in this study, Scotland in
ref. 7). The use of distinct derived alleles at the same genes suggests
that the possible solutions to serpentine-associated challenges may
be relatively constrained, despite the abundance of genes that could
in principle affect K+ and Ca2+.
The vacuolar channel encoded by TPC1 is regulated by changes

in Ca2+ levels, and a point mutant in TPC1 increases vacuolar Ca2+

storage (38). TPC1 levels control Ca2+-mediated root-to-shoot
stress signaling (28). Given the severely Ca2+-challenged environ-
ment of serpentine sites, including Gulsen (Fig. 2), we speculate
that the high-frequency changes we see in TPC1 and other Ca2+-
related genes may potentially act as a molecular rheostat, com-
pensating for globally decreased Ca2+ availability. In addition to
TPC1 and KUP9, we see nine additional genes among our top
sweep candidates that are also under the strongest selection in
A. lyrata (SI Appendix, Table S11) (P < 1.3e-06; hypergeometric test
as in SI Appendix, Section S5). Among these are ferroportin 2
(FPN2), which encodes a Ni transport protein, orthologous to the
iron efflux transporter ferroportin in animals, as well as a hydrolase
implicated in calmodulin binding (ortholog of AT5G37710). Of
particular relevance to the very high Ni found at Gulsen, mutants of
FPN2 exhibit increased Ni sensitivity and it has been proposed that
FPN2 transports Ni, Co, and Fe into the vacuole (39, 40). Why

these genes and others are under selection in two independent
serpentine colonizations merits further study (41, 42).

Conclusions
We have shown that an autotetraploid A. arenosa population adapted
to a highly challenging serpentine site and exhibits strong evidence of
selection in genes that control specific ion homeostasis-related traits,
as well as drought adaptation, providing strong candidates for control
of these traits. Several of the alleles under selection were likely
introgressed from A. lyrata. Furthermore, by comparing to a genome
scan in diploid A. lyrata, we present evidence of convergent evolution,
with distinct alleles of 11 genes having been independently targeted
following serpentine colonization in these two species. The over-
lap between selected genes in serpentine-endemic A. arenosa and
A. lyrata suggests that diploid and tetraploid adaptations to serpentine
are not qualitatively different. This work advances our understanding
of the polygenic basis of multitrait adaptation and its repeatability
across species and gives an example of selective sweeps that oc-
curred in the context of substantial levels of inter- and intraspecific
gene flow.

Methods
Detailed descriptions of samples and methods are provided in SI Appendix. All
sequence data are freely available in the National Center for Biotechnology
Institute SRA database (BioProject PRJNA325082).

Plant Growth and Treatment. Plantmaterials and growth conditions for genomic
analysis were as previously described (9). Plants for inductively coupled plasma-
mass spectrometry (ICP-MS) analysis were grown in an exclusive growth room to
avoid plant pathogens, which obviated the need for pesticide applications that
could interfere with the trace metal analyses or otherwise add noise to the ex-
periment. Seeds were sown in 20-row trays with each accession occupying two
separated rows in Pro-Mix (Premier Horticulture), a soilless mix. Excess seeds were
sown to try to ensure full rows of six plants each, and plants were thinned to six
per row after germination. The trays were stratified at 4 °C for 3 d. The plants
were then grown in the growth room of the Purdue Ionomics Center with 8 h
light (90 mmol·m2·s) and 16 h dark (to prevent bolting), at temperatures ranging
from 19 °C to 22 °C. On subsequent days, plants were bottom watered twice a
week with modified to one-quarter strength Hoagland’s solution. Several leaves
were harvested from 5-wk-old plants for analysis, with care being taken to
harvest equivalent leaves from each plant.

Elemental Analysis of Leaf Tissue. Tissue samples were dried at 92 °C for 20 h
in Pyrex tubes. After cooling in a desiccator for 45 min, samples were
digested at 110 °C for 4 h with 0.7 mL of concentrated nitric acid to which
indium had been added as an internal standard and diluted to 6.0 mL.
Analysis was performed on an ICP-MS (Elan DRCe; PerkinElmer). A liquid
reference material, composed of pooled leaf samples, was run to correct for
drift and between-run variation. All samples were normalized, as deter-
mined with an iterative algorithm using the best-measured elements and
implemented in the ionomicshub.org database (www.ionomicshub.org/home/
PiiMS), under the Education > How-To drop menus).

Elemental Extraction of Soils. Soil samples were dried and about 5 g of each
was weighed into 50-mL Falcon tubes. Each was extracted with 25 mL of
water by shaking for 1 h and centrifuged before sampling, adding nitric acid
to 5% (vol/vol), and analyzing with an Elan DRCe ICP-MS.

Flowering Time Measurements. To measure flowering time, we germinated
seeds collected from Gulsen (n = 39), Kasparstein (n = 17), and Hochlantsch
(n = 30) on 1/2× MS plates. We recorded germination date by root emer-
gence on agar plates and then transferred seedlings to soil (1/2 Sunshine Mix
no. 1, 1/2 vermiculite). We grew plants in Conviron MTPC-144 chambers for
8 h dark at 12 °C, 4 h light (cool-white fluorescent bulbs) at 18 °C, 8 h light at
20 °C, 4 h light at 18 °C. We quantified flowering time as the first day that
flower buds were visible in the center of the rosette. We tested whether
distributions differed using a two-tailed t test for each comparison.

Library Preparation and Sequencing. Genomic DNA was extracted from leaf
material as in ref. 10. DNA libraries were prepared using Illumina library
preparation kits and sequenced on a HiSeq2500 (SI Appendix, Section S2).
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Read Mapping and Genotyping. Data generated in this study were processed
through the entire alignment, genotyping, and analysis pipeline in parallel
with raw reads from individuals generated in refs. 9 and 10. Briefly, reads
were mapped to the repeatmasked Lyrata107 genome (18) using Stampy
(43). A. arenosa autotetraploids retain tetrasomic inheritance (9), so there
are no homeologs, meaning all reads are appropriately mapped to the same
set of loci represented in the diploid genome build. Resultant bam files were
processed with Samtools (44) and Picard (picard.sourceforge.net/), and
genotyped following GATK best practices (SI Appendix, Section S2). Filtering
information is given in (SI Appendix, Section S3). Gene information was
inferred with the A. lyrata version 2 annotation (45).

Genomic and Demographic Analysis. Only sites passing all filters were retained
for analysis (SI Appendix, Sections S2 and S3). We reconstructed the demo-
graphic history of Gulsen and Hochlantsch using coalescent simulations and
neutral sites (fourfold degenerate). After observing evidence of interspecific
admixture between Gulsen and A. lyrata, we included a single Austrian
A. lyrata genome sequence to represent an outgroup population to quantify
this interspecific gene flow. We fit various migration models to the data

via coalescent simulations (SI Appendix, Section S4) using the program
fastsimcoal2 to obtain likelihoods for each model.

For the model with the highest Akaike weight, we constructed 90% non-
parametric bootstrap confidence intervals (sampling fourfold degenerate SNP
matrix with replacement). To scan the genome for signs of selective sweep
between groups, we used four metrics across 193,881 25-SNP nonoverlapping
genomic windows: Dxy, FST, DD residual, and 2dSFS-CLR test (SI Appendix, Section
S5). All analyses were performed using Python3, Perl, and R scripts and are freely
available. To quantify levels of introgression across the genome, we constructed
a four-taxon ABBA/BABA test similar to fd in Martin et al. (35) (SI Appendix,
Section S6).
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