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ABSTRACT
Background: Dietary assessments in research and clinical settings are largely reliant on self-reported questionnaires.

It is acknowledged that these are subject to measurement error and biases and that objective approaches would be

beneficial. Dietary biomarkers have been purported as a complementary approach to improve the accuracy of dietary

assessments. Tentative biomarkers have been identified for many individual fruits and vegetables (FVs), but an objective

total FV intake assessment tool has not been established.

Objectives: To derive and validate a prediction model of total FV intake (TFVpred) to inform future biomarker studies.

Methods: Data from the National Diet and Nutrition Survey (NDNS) were used for this analysis. A modeling group

(MG) consisting of participants aged >11 years from the NDNS years 5–6 was created (n = 1746). Intake data for

96 FVs were analyzed by stepwise regression to derive a model that satisfied 3 selection criteria: SEE ≤80, R2 >0.7, and

≤10 predictors. The TFVpred model was validated using comparative data from a validation group (VG) created from the

NDNS years 7–8 (n = 1865). Pearson’s correlation coefficients were assessed between observed and predicted values

in the MG and VG. Bland-Altman plots were used to assess agreement between TFVpred estimates and total FV intake.

Results: A TFVpred model, comprised of tomatoes, apples, carrots, bananas, pears, strawberries, and onions, satisfied

the selection criteria (R2 = 0.761; SEE = 78.81). Observed and predicted total FV intake values were positively correlated

in the MG (r = 0.872; P < 0.001; R2 = 0.761) and the VG (r = 0.838; P < 0.001; R2 = 0.702). In the MG and VG, 95.0%

and 94.9%, respectively, of TFVpred model residuals were within the limits of agreement.

Conclusions: Intakes of a concise FV list can be used to predict total FV intakes in a UK population. The individual FVs

included in the TFVpred model present targets for biomarker discovery aimed at objectively assessing total FV intake.
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Introduction

Noncommunicable diseases (NCDs) accounted for 71.3% of
worldwide mortality in 2016 (1). The objective measurement
of modifiable risk factors is vital in informing strategies to
reduce the public health burden incurred by NCDs. Fruit
and vegetable (FV) intake has been associated with a lower
risk of cardiovascular disease (2–5), type 2 diabetes (6, 7),
and some forms of cancer (2, 8). These NCDs accounted for
approximately 28.6 million deaths in 2016, equating to half of
global mortality (1); thus, increasing FV consumption presents
a potential opportunity to reduce the burden of disease.

Recent meta-analyses assessing the relationship between the
quantity of FV intake and relative risk of all-cause mortality

have produced equivocal results. Findings consistently indicate
that the relative risk of all-cause mortality is proportionately
lower with increased consumption of FVs, yet the reported
plateau in risk reduction ranges from 5 servings (5) to
10 servings of FV per day (2). This 2-fold variation in the
threshold of daily FV consumption at which there is the
lowest relative risk of all-cause mortality is congruent with
disparities in public health recommendations. The WHO and
Public Health England currently recommend the consumption
of at least 5 servings (400 g) of FV per day (9, 10), whereas
the Danish Ministry of Food recommends the equivalent of
7.5 servings (600 g) per day (11). Findings from Aune et al.
(2) infer that current recommendations, such as those of the
United Kingdom presented in the Eatwell Guide (9), may not
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sufficiently encourage the higher levels of FV consumption
that pertain to a lower risk of all-cause mortality. The
evidence regarding the optimal daily intake of FVs remains
inconclusive, thus presenting a barrier toward informing
public health recommendations, emphasizing the necessity for
further elucidation of the relationship between FV intake and
NCDs.

Epidemiological studies aiming to determine diet-disease
relationships assess dietary intake using self-report methods,
such as food diaries, 24-hour recalls, and FFQs (12–14). While
necessary for obtaining data representative of habitual dietary
intake, such methods are inherently subject to measurement
error and biases and can be burdensome on participants (12,
15–17). A more succinct method of intake data collection—
for example, reporting a single food group of interest—
could alleviate the burden on participants, while conversely
reducing the utility of the data when the exploration of
whole diet–disease associations is required. Appropriate study
designs and methodologies can mitigate the measurement error
and biases inherent to self-report methods (18). A combined
approach, comprised of the simultaneous measurement of
dietary biomarkers and self-report methods, has been purported
to improve the accuracy of dietary exposure measurements,
thus facilitating the elucidation of diet-disease relations
(18, 19).

Candidate dietary exposure biomarkers for the objective
measurement of total FV intake, including carotenoids and
polyphenols (20, 21), have been explored and were shown to
have limited utility. The establishment of an objective tool to
assess total FV intake, rather than individual FV intake, has
not yet proved efficacious or been validated (22). Untargeted
metabolomic techniques are increasingly prevalent within the
literature, making significant progress in the identification and
quantification of specific dietary exposure biomarkers (23, 24).
The predominant focus of this research has been identifying
single biomarkers for specific foods/food groups. Further to
the identification of novel biomarkers, the use of a panel of
biomarkers, by measuring a number of metabolites pertaining to
a food/food group for a more accurate representation of dietary
exposure, has been proposed (25). Multi-metabolite biomarker
panels (MBPs) have been identified for the quantification of
walnuts (26), bread (27), cocoa (28), orange juice (29), wine
(30), and whole dietary patterns (31, 32); however, a panel for
total FV intake has yet to be established.

The National Diet and Nutrition Survey (NDNS) is a
continuous, cross-sectional survey designed to collect detailed
quantitative information on the food consumption, nutrient
intake, and nutritional status of the UK’s general population
(33). An analysis of these data can provide novel insight
into total FV eating habits. The aim of this research was to
identify a concise number of FVs that are predictive of total FV
intake. Identifying such FVs stands to direct future metabolomic
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biomarker studies that pursue the objective measurement
of FV intakes.

Methods
Study design
This study analyzed cross-sectional intake data of individuals from years
5–6 (2012/13 and 2013/14) and years 7–8 (2014/15 and 2015/16) of the
NDNS rolling program (33, 34). The modeling data set (years 5–6) and
validation data set (years 7–8) were retrieved from the UK data archive
in September 2017 and January 2019, respectively.

Data source
Full methodological details of the NDNS have been described
elsewhere (35). In short, the full NDNS data set from years 5–6 was
comprised of 2546 participants (mean age, 30 ± 24 years) recruited
from 323 postal-sector random-sampling units across the United
Kingdom. Data were collected over 12 months to account for seasonal
variation. Samples were stratified by country, ensuring proportional
representation from England, Scotland, Wales, and Northern Ireland.
Following initial interviews to obtain background information and
familiarize participants with the intake data collection method, 4-day
food diaries were completed and participants over the age of 4 years
who consented to a nurse visit had anthropometric measurements
(height, weight, waist and hip circumference, demi-span, blood pressure)
and blood and urine samples taken. The modeling group (MG) data set
was obtained from this sample and included all participants >11 years
old (n = 1746).

Data processing
The faction of NDNS data used in the current analysis consisted of
food and drink consumption data collected using 4-day unweighed food
diaries (portions were quantified by household measures). Participants
recorded the contents of all eating and drinking occasions over
4 consecutive days, including 1 weekend day. Food diaries were
processed and coded using an adapted version of Health Nutrition
Research’s dietary assessment system, Diet In Nutrients Out (DINO)
(36). DINO disaggregates composite items and items that differ by
preparation into individual foods with a unique code. The current
analysis aggregated data of the same fruit/vegetable with differing codes,
to form daily intake values for individual FVs (g/day). Fruit juices,
potatoes, and pulses (except for green beans, runner beans, and broad
beans) were excluded from the analysis due to differences in nutrient
composition from FV as included in the UK Eatwell Guide (9). We
multiplied dried fruit intake by 3, based on the respective water and
micronutrient content, to standardize dried and nondried FV intake
(34). Supplemental Table 1 outlines the details of individual FV intake
data aggregation, FV consumption prevalences, and mean daily intakes
in consumers only. Daily intakes of 96 FVs were calculated and used
as potential predictor variables. Individual FV intakes were summed to
calculate the total FV intake (g/day).

Statistical analysis
All data were obtained and processed using IBM SPSS Statistics 24
(SPSS, Inc.) and analyzed using Stata version 15 (StataCorp LLC). The
assumptions of a multiple linear regression analysis were satisfied prior
to analysis. Normality of residuals and homoscedasticity of the data
were confirmed, and no transformations were applied to any variables.
All potential predictors had a linear relationship with the total FV
intake.

We conducted automated forward stepwise regression analyses.
Models began with an intercept and were iteratively constructed by
selecting the predictor variable (individual FV intake) that accounts for
the most unique variance in the total FV intake. Subsequent models
incorporated the individual fruit or vegetable that accounted for the
most unique variance in total FV intake among the remaining predictor
variables. Predictor variables were added with each model iteration

Total fruit and vegetable intake prediction model 963
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TABLE 1 Multiple linear regression models using individual fruit and vegetable intakes

Model
Predictor
variables

Regression P
value Constant

Regression
coefficient, β R 2

Standard error
of the estimate

Variance
inflation factor

1 Tomatoes <0.001 134.089 2.672 0.277 136.81 1.00
2 Tomatoes <0.001 104.069 2.352 0.451 119.24 1.02

Apples <0.001 — 2.030 — — 1.02
3 Tomatoes <0.001 69.595 2.277 0.567 105.92 1.02

Apples <0.001 — 1.823 — — 1.04
Carrots <0.001 — 2.982 — — 1.02

4 Tomatoes <0.001 46.973 2.091 0.664 93.26 1.04
Apples <0.001 — 1.546 — — 1.07
Carrots <0.001 — 2.849 — — 1.02
Bananas <0.001 — 1.406 — — 1.06

5 Tomatoes <0.001 45.125 2.060 0.702 87.91 1.04
Apples <0.001 — 1.452 — — 1.08
Carrots <0.001 — 2.720 — — 1.03
Bananas <0.001 — 1.292 — — 1.08
Pears <0.001 — 1.362 — — 1.05

6 Tomatoes <0.001 39.892 1.995 0.732 83.33 1.04
Apples <0.001 — 1.453 — — 1.08
Carrots <0.001 — 2.673 — — 1.03
Bananas <0.001 — 1.250 — — 1.08
Pears <0.001 — 1.391 — — 1.05
Strawberries <0.001 — 1.762 — — 1.01

7 Tomatoes <0.001 29.877 1.773 0.761 78.81 1.11
Apples <0.001 — 1.428 — — 1.08
Carrots <0.001 — 2.439 — — 1.05
Bananas <0.001 — 1.211 — — 1.08
Pears <0.001 — 1.422 — — 1.05
Strawberries <0.001 — 1.714 — — 1.01
Onions <0.001 — 1.519 — — 1.11

Data from the National Diet and Nutrition Survey Rolling Program years 5–6 were used to predict total FV intake (n = 1746). Abbreviation: FV, fruit and vegetable.

until there was no longer an improvement in total FV intake variance
accounted for by the model. Regression significance (P < 0.05) was
taken to indicate that the independent variable predicts total FV intake.
The variance inflation factor was used to quantify the correlation of
predictors in a model, to detect any collinearity. Regression coefficients
represent the mean change in an outcome for 1 unit of change in the
predictor variable and were used to compile the regression equation.
The SEE was calculated and R2 was used to denote the proportion of
variance in the total FV intake explained by each model.

Model selection criteria
The rationale underpinning model selection criteria was to produce a
regression equation that could be used to facilitate the discovery of FV
biomarkers. The future utility of the model is dependent upon having
few predictors to moderate the extent of biomarker measurement
required, while explaining a large proportion of the variance in
predicted total FV intake. We established iterative models that satisfied
3 pragmatically determined selection criteria: having an SEE ≤ an 80 g
FV serving; having variance in total FV intake (R2) >0.7; and capping
the number of predictors in the model at 10 to produce a concise
assessment tool. A comparative assessment of regression models was
facilitated by calculating the adjusted R2, Akaike information criterion
(AIC), Bayesian information criterion (BIC), and penalized likelihood
ratio (LR). The aim of all comparative assessments was to ensure that
all subsequent models were an improvement on the previous model.

Model validation
Validation of the final total FV prediction model iteration (TFVpred)
was conducted using a novel data set from the NDNS years 7–8,
with participants aged >11 years. NDNS data collection methodologies
were consistent with the years 5–6 used as the MG. The current
analysis applied the same data processing procedure described above

to the validation group (VG) data set to obtain comparable FV intake
data. The TFVpred equation was applied to the VG data set to
predict total FV intake (g/day). Pearson’s r correlation coefficient was
measured to determine linearity between observed and predicted total
FV values. R2 was calculated to measure the amount of variance in
the TFVpred estimated total FV intake explained by the observed
total FV intake. A correlational analysis was conducted with observed
and predicted FV intakes in vegetarian and vegan subsets of the MG
and VG to assess the validity of the prediction model in a subset of
the population with known differences in FV consumption patterns.
Bland-Altman plots were generated to assess the agreement between
TFVpred estimates and observed total FV intakes in modeling and
validation groups. Limits of agreement were plotted at ±1.96 SDs of the
mean difference between the observed and predicted values of total FV
intake.

Results
Multiple linear regression models for prediction of
total FV intake

In total, 4-day food diaries were analyzed from 1746 partic-
ipants in the MG and 1865 participants in the VG. Forward
stepwise regression model summaries are displayed in Table 1.
Total FV prediction Model 7 (TFVpred) was the first model
iterated that met all model selection criteria, with an R2 >0.7,
an SEE <80, and ≤10 predictor variables. All 7 models
predicted total FV intake (P < 0.05). The proportion of variance
explained by regression models (R2) increased from 0.277 to
0.761 between Models 1 and 7. Incremental reductions in SEE
were observed with each regression model including a novel
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TABLE 2 Comparison of multiple linear regression models using individual fruit and vegetable intakes

Model

Cumulative
predictor
variables

Adjusted
R 2

Change in
adjusted R 2

Akaike
information

criterion

Bayesian
information

criterion
LR models

tested
LR test
statistic

LR test
P

1 Tomatoes 0.276 — 22133 22144 — —
2 Apples 0.450 0.174 21654 21670 1 and 2 481.13 <0.001
3 Carrots 0.566 0.116 21241 21263 2 and 3 414.65 <0.001
4 Bananas 0.664 0.098 20798 20825 3 and 4 445.38 <0.001
5 Pears 0.701 0.037 20592 20625 4 and 5 207.35 <0.001
6 Strawberries 0.732 0.031 20406 20445 5 and 6 187.86 <0.001
7 Onions 0.760 0.028 20213 20256 6 and 7 195.84 <0.001

Data from the National Diet and Nutrition Survey Rolling Program years 5–6 were used to predict total FV intake (n = 1746). Abbreviations: FV, fruit and vegetable; LR, likelihood
ratio.

predictor. TFVpred, comprised of 7 predictor FV coefficients
and a constant, is displayed in Equation 1:

TFVpred = 1.773 (tomatoes) + 1.428 (apples)

+ 2.439 (carrots) + 1.211 (bananas)

+ 1.422 (pears) + 1.714 (strawberries)

+ 1.519 (onions) + 29.88 (constant) (1)

The TFVpred equation highlights the 7 predictor FVs account-
ing for the most variance in total FV intake—namely, tomatoes,
apples, carrots, bananas, pears, strawberries, and onions—thus
presenting targets for intake biomarker discovery. There were
5 FVs included in the TFVpred model (tomatoes, onions,
carrots, bananas, and apples) that were within the top 6 most
commonly consumed FVs (as per number of consumers) in the
MG, while strawberries and pears were numbers 15 and 20,
respectively (Supplemental Table 1). All predictor variable FVs
were within the top 40 FVs for mean daily intakes in consumers
only.

Model comparison

A comparison of regression models is shown in Table 2.
The variance in total FV intake explained by the models,
when corrected for the number of predictors, incrementally
increased with an additional model iteration. The size of
incremental augmentation in adjusted R2 diminished as the
regression models progressed, with the maximum change being
an increase of 0.174 from Model 1 to Model 2 and the smallest
change being 0.028 from Model 6 to Model 7. The penalized-
LR criteria, AIC, and BIC are presented for each model in
Table 2. AIC and BIC values were incrementally smaller as
more predictors were added to the regression models. LR
tests for nested models were significant with all subsequent
iterations, indicating successive improvements in goodness
of fit.

Model validation

In the MG, the observed and predicted values of total FV intake
were positively correlated (r = 0.872; P < 0.001), with an R2

of 0.761 (Figure 1A). Observed and predicted total FV intake
values in the VG were also positively correlated (r = 0.838;

FIGURE 1 Correlation between observed and predicted total FV intake using the TFVpred equation for the (A) modeling group (NDNS years
5–6; n = 1746) and (B) validation group (NDNS years 7–8; n = 1865). Abbreviations: FV, fruit and vegetable; NDNS, National Diet and Nutrition
Survey; TFVpred, total fruit and vegetable prediction.
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FIGURE 2 Bland-Altman plots of total FV intake predictions in the (A) modeling group (n = 1746) and (B) validation group (n = 1865). Plots
display the difference between total FV intake measured by the NDNS and total FV intake predicted by the TFVpred model versus the observed
and predicted mean. Limits of agreement (dotted lines) are displayed at ±1.96 SDs of the mean difference between the observed and predicted
values of total FV intake. Abbreviations: FV, fruit and vegetable; NDNS, National Diet and Nutrition Survey; TFVpred, total fruit and vegetable
prediction.

P < 0.001), with an R2 of 0.702 (Figure 1B). Bland-Altman
plots determined there was good agreement between observed
and predicted total FV intake values, with the MG (Figure 2A)
and VG (Figure 2B) demonstrating 95.0% and 94.9%,
respectively, of residuals were within the limits of agreement.
Observed and predicted total FV intake values within vegetarian
and vegan subsets were positively correlated in both the MG
(r = 0.882; P < 0.001; R2 = 0.777; Supplemental Figure 1A)
and VG (r = 0.839; P < 0.001; R2 = 0.704; Supplemental
Figure 1B).

Discussion

To our knowledge, this is the first study to elucidate a concise
group of individual FVs that are predictive of total FV intake,
accounting for 76.1% of total variance. The seventh model
iteration, TFVpred, was the first to satisfy the predetermined
selection criteria and was subsequently used to predict the total
FV intake in the VG, using individual intake values of tomatoes,
apples, carrots, bananas, pears, strawberries, and onions. A
correlational analysis and Bland-Altman plots were used to
assess the efficacy of the TFVpred model when applied to
the VG, and demonstrated strong agreement between observed
and predicted values. TFVpred thus provides a potential
assessment tool in estimating the total FV intake where valid
measurements of 7 individual FV intakes (tomatoes, apples,
carrots, bananas, pears, strawberries, and onions) are available.
A multitude of comparisons between models were conducted
to determine that TFVpred outperforms other models by
AIC, BIC, and LR test statistics, and is therefore the most
appropriate model for estimating total FV intake (37). This
research has the potential to consolidate the applicability of
existing individual FV measurements obtained using dietary
questionnaires. Furthermore, the identified FVs signify clear
targets for novel biomarker discovery. The subsequent integra-
tion of validated biomarkers within the TFVpred equation can
provide additional utility as a potential tool for total FV intake
estimation.

Dietary questionnaires

Self-report methods of dietary intake assessment, such as food
diaries, 24-hour recalls, and FFQs, have been a longstanding
topic of debate in nutritional research (17, 38), while remaining
the most prevalent techniques to assess diet-disease relation-
ships (4, 39). Critics state that the reliance on memory and the
influence of researcher/social-approval biases can incur random
and systematic measurement errors, such as the over-reporting
of FV intake (12–14, 17). Furthermore, the accuracy of self-
reported data may be influenced by the ability of individuals
to quantify the size and contents of a FV serving, or by the
sensitivity of the assessment method (40, 41). Proponents of self-
report methods acknowledge that while limitations exist, study
design considerations and corrections for measurement error
can be applied to gather insightful intake data that are currently
unobtainable using other means (42, 43). The NDNS data
set used in the current study aimed to collect data accurately
pertaining to the UK population by mitigating the effect of
some of these limitations through an appropriate study design.
Daily food diaries were completed over 4 consecutive days to
minimize reliance on memory (42). Upon completion of food
diaries, trained interviewers met with participants to aid the
quantification of the food diary constituents, where original
visual aids were insufficient (35). The NDNS data set presents
a useful source when compiling inferential statistical models,
as in the present analysis. Given the robustness of the NDNS
methodology, validation with an updated NDNS data set was
necessary and demonstrated the efficacy of the TFVpred model
as a practical tool for total FV intake estimation.

The novel assessment of total FV intake using the TFVpred
model could utilize existing methods of measuring individual
FV intakes from dietary questionnaires. Measurements could be
obtained via amended FFQs—for instance, FFQs condensed to
include only an FV assessment—providing sufficient validation
is conducted (39, 44, 45). Kristjansdottir et al. (44) reported
that FV intake estimated using a combined 24-hour recall and
an FFQ was associated with 7-day food diary reported intake,
with a Spearman’s coefficient of 0.73 (P < 0.001). Furthermore,
Block et al. (46) correlated FV intakes obtained using 100-item
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FFQs (47) and a single page screener questionnaire, reporting
a Spearman’s coefficient of 0.71 (P < 0.001). Using a screener
to assess FV intake could provide a time-effective alternative
to a lengthy questionnaire and provide specific FV intake
data. A practical application of the predictive FVs identified
in the present analysis would be to incorporate these FVs in
screener questionnaires or as prompts in multiple-pass dietary
assessment methods. Adopting such changes may increase
the accuracy of dietary intake data, though amendments to
validated dietary assessment tools would require subsequent
validation. Incorporating measurements of the FVs identified
in the TFVpred model within existing dietary questionnaires
presents an inexpensive tool for internal validation to improve
the precision of dietary intake assessments.

Combining dietary questionnaires and biomarkers

The prevailing recommendations from prominent research
groups within the field of nutrition and dietary assessment
include the combined assessment of diet using dietary question-
naires and biomarker quantification (18, 19, 25). A prospective
application of the TFVpred model validated in the present
analysis would be to integrate biomarker assessments for the
7 FVs, providing an objective assessment tool that can be
obtained from biological samples and be used to assess FV
exposure alongside appropriately conducted questionnaires.
The NDNS represents an example of how this may be achieved,
due to the concurrent collection of self-report data and urine
samples; however, a FV biomarker assessment panel has yet to
be established and validated (35). Systematic reviews exploring
the efficacy of objective assessments of FV intake by dose-
dependent concentration biomarkers have ascertained that no
single candidate biomarker can accurately measure total FV
intake (20, 48). However, putative dose-dependent urinary
biomarkers have been identified for some FVs, including grapes
(49), peas, apples, onions (50), red cabbage, strawberries, and
beetroot (31). Prevalent techniques aiming to identify a panel of
biomarkers pertaining to individual foods/food groups include
targeted and untargeted tandem high-performance LC-MS,
as well as proton nuclear magnetic resonance spectroscopy,
with subsequent multivariate modeling (Principal Component-
Discriminant Analysis, Partial Least Squares, and Random For-
est Classification) (27, 32, 51). This has led to the identification
of numerous metabolites purported as biomarkers of dietary
exposure, although validation as dose-dependent biomarkers
of intake, which would be necessary prior to TFVpred model
integration, is less pervasive (49, 52, 53). The specificity of
putative biomarkers ranges from identifying individual foods
(including FVs) to broad dietary patterns (32, 54, 55).

Potentially confounding factors for biomarker identification
include inherent genetic variance between individuals, physi-
ological and lifestyle factors that may influence metabolism,
biological sample handling, and the analytical methodology
(22). Future research should aim to negate some of these
factors. For example, Garcia-Aloy et al. (25) propose the
use of MBPs to provide insight into dietary exposure. MBPs
enable the simultaneous measurement of numerous metabolites
that pertain to a specific food/food group, capturing a
broader faction of dietary exposure. Once validated, prospective
MBPs of individual FV intakes could be integrated with
the regression equation modeled in the present study as
a method of estimating the total FV intake. Dragsted et
al. (56) identified a stringent set of post-discovery validity
criteria for biomarkers, including assessments of: 1) biochemical

plausibility and stability; 2) saturation kinetics and dose-
dependency with low abundancy when intake is 0; 3) time-
responsiveness to inform when biological samples can be
collected; 4) robustness after co-ingestion with other foods; 5)
reliability to ensure biomarkers are comparable to assessments
from other questionnaire or biomarker measurements; and 6) a
reproducible analytical methodology. Meeting these standards
is imperative if biomarkers are to improve the precision
and accuracy of dietary assessments. Considerable work is
necessary to elucidate, in particular, time-responsiveness and
dose-dependency of putative FV biomarkers (25). At present,
the limitations associated with both facets of dietary assessment
cannot be fully alleviated by adopting sole usage of the alternate
technique; thus, combinations of dietary questionnaires and
biomarker assessments should be explored (16, 25).

Strengths and limitations

FV servings of 80 g were used in the present analysis to compute
regression models; thus, FVs that deviated from the standard
80-g serving sizes, such as dried fruits, required numerical
transformation prior to being considered a FV portion. This
was conducted to prevent the potential exclusion of a subset of
FVs that contribute to total FV intake, but do not constitute a
regular FV serving. Some semi-dried fruits were not included
in the current analysis due to the unknown composition of
portion sizes. Consistent with other nutritional epidemiology
research (57, 58), children aged <12 years (MG, n = 763;
VG, n = 822) were excluded from the current analysis to
mitigate the systematic error incurred by having dissimilar
eating trends and serving sizes for adolescents and adults. As
the current analysis was conducted using intake data from UK-
based participants ≥12 years old, the TFVpred model should
not be prospectively used to estimate total FV intakes in children
<12 years old. Deriving the TFVpred model using stepwise
linear regression modeling and pragmatic predetermined selec-
tion criteria facilitated the formation of a model that included
a combination of influential FVs that were predictive of total
FV intake and were frequently consumed in the population.
TFVpred predictor FVs were among the most pervasively
consumed in the MG and VG, indicating good suitability
within a UK population. Future research should investigate the
efficacy of the TFVpred model in other developed countries,
and further validation is required prior to use in populations
outside of the United Kingdom, as FV intakes are variable
between countries (59, 60). A prominent challenge within the
present study was producing a model with a small number
of predictors that captured a substantial proportion of the
variance in total FV intake without including relevant cofactors,
such as socioeconomic status (61, 62), food availability (63),
and vegetarianism (64). The TFVpred model predictions were
accurate for subsets of the population known to have different
FV consumption patterns, as demonstrated by the correlation
between observed and predicted total FV intakes in vegetarians
and vegans. The TFVpred model also performed well across
a broad variety of FV intakes from the small proportion of
individuals that fall outside the upper limits of agreement
(LOA). Bland-Altman plots (Figure 2) indicate that 4.70% and
4.86% of individuals in the MG and VG, respectively, fall
outside the upper LOA, thus consuming a variety of FVs that are
not accounted for by the model. The simultaneous assessment of
cofactors of total FV intake and additional FVs would increase
the accuracy of prediction models; however, the aim of the
present study was to identify a concise number of predictor
FVs that can be integrated into dietary questionnaires to reliably
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estimate total FV intakes in a UK population and identify targets
for biomarker discovery, rather than to establish a multifaceted
prediction model of total FV intake.

Conclusions

The TFVpred model (Equation 1) established in the current
study provides a valuable tool for estimating total FV intake.
Future utility of the TFVpred model would be improved with
the integration of dose-dependent biomarkers/MBPs for those
FVs that predict total FV intake (tomatoes, apples, carrots,
bananas, pears, strawberries, and onions). The identification
of these FVs through the establishment and validation of the
TFVpred model provides a clear pathway for future research
by identifying dose-dependent biomarker targets. Advances in
biomarker identification and validation provide a valuable op-
portunity to obtain objective assessments of total FV intake that,
in parallel with appropriate self-report techniques, could denote
notable improvements in the accuracy of dietary assessments.
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