Ultrasonic Assistance of Electrochemical Jet Machining: An Initial investigation in Inconel 718 (CAPE 2015)

Poster · November 2015
DOI: 10.13140/RG.2.2.33683.89123

3 authors, including:

Jonathon Mitchell-smith
University of Nottingham
6 PUBLICATIONS 6 CITATIONS

Adam Thomas Clare
University of Nottingham
74 PUBLICATIONS 341 CITATIONS

All content following this page was uploaded by Jonathon Mitchell-smith on 27 October 2016.
The user has requested enhancement of the downloaded file.
Ultrasonic Assistance of Electrochemical Jet Machining: An Initial Investigation

Jonathon Mitchell-smith¹, Nicola Sennin¹,², Adam Clare¹
¹Institute for Advanced Manufacturing, University of Nottingham, Nottingham, UK
²Department of Engineering, University of Perugia, Italy

Project Objectives:
- Investigate the influence of Ultrasonic Assistance (UA) on Electrochemical Jet Machining (EJM) of Inconel 718
- Identify the differences in the surface topography of using ultrasonic assistance compared to non-assisted
- Quantify the changes using ISO surface characterisation standards for surface roughness

Introduction
Electrochemical Jet Machining (EJM) is a highly localised form of electrochemical machining (ECM). Unlike ECM no specialist tooling is required instead a jet of electrolyte is utilised to selectively remove material. An electrical potential is applied between the nozzle supplying the jet (cathode) and the work-piece (anode) allowing anodic dissolution of the work-piece, the method of material removal. In EJM material removal is limited to the exposed substrate directly below the electrolyte jet therefore not requiring additional masking. This is due to confinement of the current density field in the working gap. Firstly due to the phenomena of the hydraulic jump as current density can not be developed in the thin film area surrounding the impingement zone. The second being a compressed air shroud that is directed co-axially around the nozzle which extends the thin film area and concentrates the jet so minimising current stray allowing more precise surface structuring [1].

Ultrasonic stimulation has been widely used in non-conventional machining [2]. It is widely recognised [3] that in subtractive ECM benefits can be gained from ‘de-passivation’ to help remove oxide layers and sludge films thereby increasing process performance and change surface topography by reducing surface roughness.

Ultrasonics allows a relatively simplistic integration of a de-passivation system into the EJM process. With direct vibration of the anode (work-piece) this initial investigation aims to assess the effects of Ultrasonic Assistance (UA) to create alternative surface textures. These resulting surface textures being of interest to researchers working in the area of surface functionalisation and structuring.

Methodology
Initial investigations were carried out using a previously developed EJM research platform [4] employing a specially constructed ultrasonic stage (Figure 3). A single ultrasonic frequency of 40kHz was used to machine multiple striations at increasing current density (J) (50, 200 and 300 A/cm²) in Inconel 718. All other parameters remained constant throughout: Nozzle Stand off: 0.5mm, Nozzle traverse speed: 0.5mm/sec, pump flow rate at 60ml/min and the electrolyte of 3 mole concentration of Sodium Nitrate. Sample patches were then imaged along the length of each track and analysed to obtain surface characterisation.

Results
Significant differences were found between assisted and none assisted surface topographies. The use of UA-EJM shows a reduction in surface roughness averaging 9% demonstrated by the lower achieved Sa values across all three current density values (Figure 4). J has been found previously to be the main parameter for controlling surface finish [5]. This is supported by the change in mean values of the volume parameters as defined in ISO 25178-3D between Ultrasonically Assisted (UA) and non assisted showing variance in the mass of material found in the valley (VVv), core (Vvc and Vmc) and peak (Vmp) regions of the surface topography (Figure 5).

Conclusions
From this initial investigation these conclusions were found:
- Surface roughness can be reduced in Inconel 718 by an average 9% across a variation of current densities with the use of Ultrasonic Assistance compared to surface geometry created by EJM without assistance.
- The use of Ultrasonic Assistance demonstrates the ability to create alternative characteristics found in the surface topography.
- Further research is required across a variety of materials and ultrasonic frequencies to assess the frequency response on the surface topography.

References

Acknowledgements
Authors would like to acknowledge EPSRC for supporting this work through EP/M02072X/1 “In Jet Interferometry for Ultra Precise Electrolyte Jet Machining”.

Figure 1: Typical EJM created features showing micro machining and in process surface roughness modification
Figure 2: Schematic of EJM research platform schematic
Figure 3: Schematic of Ultrasonic stage arrangement
Figure 4: Results of UA on surface roughness (Sa) across a range of current densities
Figure 5: Results of using UA on volume parameters found within the surface topography across a range of J

Motion and Peripheral Control
X
Y
Z
Axis Control & Feedback
Electrolyte Supply
Compressed Air Supply
Geared Pump
DC Supply
Nozzle Touch Sense
EJM

Figure 1: Typical EJM created features showing micro machining and in process surface roughness modification