

In-process metrology for AM

Sarah Everton

EngD Researcher

Manufacturing Technology Engineering Doctorate Centre

Submission under review

Materials & Design

Title: Review of in-situ process monitoring and in-situ metrology

for additive manufacturing

Authors: Sarah Everton, Matthias Hirsch, Petros Stravroulakis,

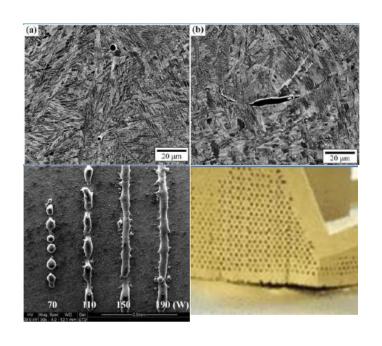
Richard Leach, Adam Clare

Highlights:

- An overview of the state-of-the-art in the methods for assessing the performance of AM processes is highlighted
- The need for new sensors and monitoring methods for emergent AM processes is introduced
- Typical material discontinuities resulting from well understood processes are explored and the case for in-situ monitoring methods is made
- The industrial opportunity for these advanced methods is explored alongside the new benefits for the metal based AM techniques which will make use of monitoring methodologies

AM material discontinuities

Typical "defects":

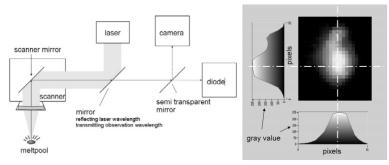

- Spherical pores
 - within layers
 - caused by under or over-melting
- Acicular pores
 - typically found between layers
 - caused by insufficient laser power

Balling

caused by oxidation, insufficient laser power or excess scan speeds

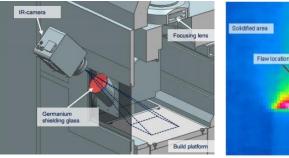
Cracking

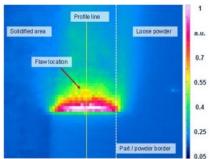
 caused due to excessive temperature gradients across powder bed and/or incorrect cooling regimes



Laser PBF

High speed camera w/ photodiode¹


Aim: Reduce occurrence of over-melted zones and resulting spherical pores

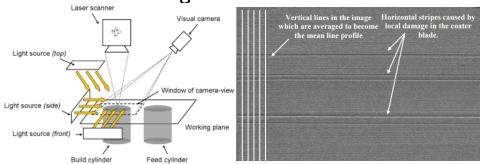


- Resolution 10 μm per pixel
- Data acquisition rate manageable (636 MB s⁻¹)
- Closed-loop feedback could be added to reduce occurrence of over-melted zones and resulting spherical pores
- Patented and exclusively licenced by Concept Laser²

Infrared camera³

Aim: Identify any deviations during the build which could result in pores or voids

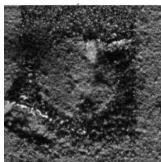
- Mounted externally
- Surface temperature profiles can be used to alter build settings for the following layer
- For the laser system, artificially seeded voids with 100 μm diameter could be detected
- Trade off: field of view vs. resolution



Laser PBF

High speed camera⁴

Aim: Observe anomalies in powder bed caused by "curling up" of deposited material which can damage or wear recoater blade

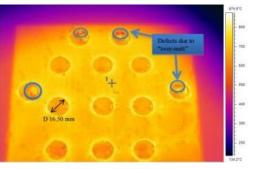


- Mounted internally
- Simple calibration algorithm used to eliminate perspective distortion
- Multiple light sources required to provide illumination

High speed camera⁵

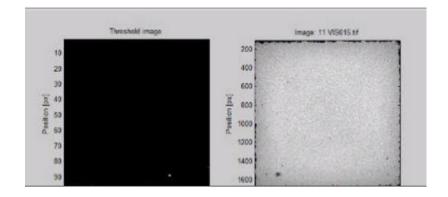
Aim: Observe anomalies in powder bed caused by "curling up" of deposited material which can damage or wear recoater blade

- Mounted externally
- No modification of the operating system required
- Field of view limited to area of small bed
- Perspective distortion corrected using four-point homography


Electron beam PBF

Infrared camera⁶

Aim: Identify any deviations in temperature gradient across bed during the build which could result in pores or voids

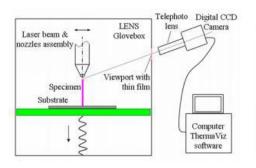


- Mounted externally
- Surface temperature profiles can be used to alter build settings for the following layer
- A semi-automatic feedback loop was created
- Integration with ARCAM system required to protect from metallisation

Visual camera system⁷

Aim: Identify and monitor porosity created during build

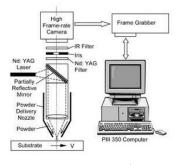
- LayerQam™ system integrated within Q20 machine
- Camera-based monitoring
- Capable of resolving defects approx.
 100 µm over full build area
- Image taken before and after each build layer
- 3D model built from images

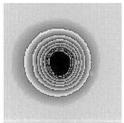


Powder DED

Pyrometry⁸⁻¹⁰

Aim: Control of bead geometry by correlating melt pool size with layer thickness

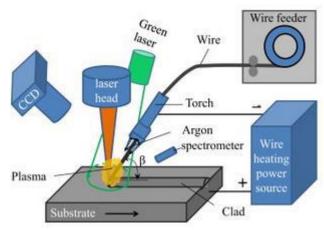



- Externally mounted with closed loop control
- Demonstrated by several research groups
- Filters needed to minimise noise factors such as the metallic vapour and heated air zone above the molten pool
- Laser radiation was found to distort images

Infrared camera¹¹

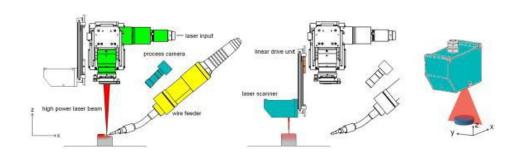
Aim: Assess temperature distribution across the meltpool to maintain uniformity and improve build accuracy

- Mounted co-axially
- 128 x 128 pixel resolution of melt pool area
- Filter needed to protect camera from processing laser
- Automated image processing and control
- Can be used in combination with visual build height control loop



Wire DED

CCD camera with illuminating green laser ¹²


Aim: Image meltpool and detect the emission signal of the plasma plume

- Images correlated with resulting clad quality (surface appearance, clad dilution, hardness, microstructure)
- Optical Emission Spectroscopy used to detect an increase in plasma electron temperature was found to imply an arc or splatter

Laser triangulation¹³

Aim: ensure stable deposition to obtain a flat surface for each deposited layer

- Any deviations in layer heights are detected using laser triangulation and the wire feed rate adjusted for the subsequent layer
- 3D model of intended component required to calculate deviations

Alternative methods

Options for detection of microstructure and sub-surface material discontinuities:

- Acoustic emission testing (AET)¹⁴
 - crack size and position
 - not currently possible in real-time
 - trialled on powder DED samples
- Laser ultrasonics (LU)
 - suitable for pore/void detection^{15,16}
 - spatially resolved acoustic microscopy for microstructural analysis ^{17,18}
 - both trialled on PBF samples
- Backscatter x-ray (XBT)^{19,20}
 - crack detection
 - trialled on powder DED samples
- Neutron diffraction²¹
 - could be used to determine residual strains
 - suggested as an alternative to XCT for wire-DED and laser-PBF in particular
 - limited by availability of portable sources

Summary

- Many visual and thermal in-process inspection methods have been developed for AM processes
 - most are limited to surface inspection
 - alternative methods for subsurface inspection have been trialled on AM components (ex-situ)
 - many developed solely to aid understanding of process
- Closed-loop inspection desirable
 - limited examples of real-time, closed-loop inspection (height control for DED, temperature gradient across laser PBF build area)
- Challenges
 - poor spatial resolution
 - limited fields of view
 - high temporal load
 - large data sets

SOLUTION

Develop more novel methods whilst utilising *a priori* knowledge of both the part and build process, in combination with existing methods, new sensors and simulation

References

- 1. Berumen, S., et al., Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies. Physics Procedia, 2010. **5**(Part B): p. 617-622.
- 2. Herzog, F., et al., Method for producing a three-dimensional component. 2013.
- 3. Krauss, H., C. Eschey, and M.F. Zaeh, Thermography for monitoring the selective laser melting process, in 23rd International Solid Freeform Fabrication Symposium. 2012: Austin, TX.
- 4. Craeghs, T., et al. Online quality control of selective laser melting. in 22nd International Solid Freeform Fabrication Symposium. 2011. Austin, TX.
- 5. Kleszczynski, S., et al. *Error detection in laser beam melting systems by high resolution imaging*. in *23rd International Solid Freeform Fabrication Symposium*. 2012. Austin, TX.
- Rodriguez , E., et al., Integration of a thermal imaging feedback control system in electron beam melting, in 23rd International Solid Freeform Fabrication Symposium. 2012: Austin, TX.
- 7. ARCAM. http://www.slideshare.net/sirris_be/3-arcam-additive-manufacturing-with-ebm-the-route-to-production.
- 8. Hua, T., et al., Research on molten pool temperature in the process of laser rapid forming. Journal of Materials Processing Technology, 2008. 198(1–3): p. 454-462.
- 9. Yu, J., et al., Mechanics and energy analysis on molten pool spreading during laser solid forming. Applied Surface Science, 2010. 256(14): p. 4612-4620.
- 10. Medrano Téllez, A.G., Fibre laser metal deposition with wire: parameters study and temperature control, in Department of Mechanical, Materials and Manufacturing Engineering. 2010, University of Nottingham.
- 11. Hu, D. and R. Kovacevic, Sensing, modeling and control for laser-based additive manufacturing. International Journal of Machine Tools and Manufacture, 2003. 43(1): p. 51-60.
- 12. Liu, S., et al., Real-time monitoring of laser hot-wire cladding of Inconel 625. Optics & Laser Technology, 2014. **62**(10): p. 124-134.
- 13. Heralić, A., A.-K. Christiansson, and B. Lennartson, Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Optics and Lasers in Engineering, 2012. 50(9): p. 1230-1241.

References

- 14. Wang, F., et al., Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis. Applied Surface Science, 2008. 255(5, Part 2): p. 3267-3275.
- 15. Klein, M. and J. Sears, Laser ultrasonic inspection of laser cladded 316LSS and Ti-6-4, in 23rd International congress on applications of lasers and electro-optics. 2004, Laser Institute of America: Orlando, Florida.
- 16. Edwards, R.S., et al., *Scanning laser source and scanning laser detection techniques for different surface crack geometries*, in *Review of Progress in Quantitative Nondestructive Evaluation*. 2012, AIP Conference Proceedings: Burlington, VT. p. 251-258.
- 17. Clark, D., S.D. Sharples, and D.C. Wright, *Development of online inspection for additive manufacturing products*. Insight Non-Destructive Testing and Condition Monitoring, 2011. **53**(11): p. 610-613.
- 18. Li, W., et al., *Orientation characterisation of aerospace materials by spatially resolved acoustic spectroscopy.* Journal of Physics: Conference Series, 2014. **520**(1).
- 19. Georgeson, G., et al., X-ray backscatter imaging for aerospace applications. 2010, NASA.
- 20. Naito, S., S. Yamamoto, and S. Yamamoto, *Novel X-ray backscatter technique for detecting crack below deposit*, in 7th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components. 2010: Yokohama, Japan.
- 21. Watkins, T., et al., Neutron characterization for additive manufacturing. Advanced Materials & Processes, 2013. 171(3): p. 23-27.