

Advanced Materials Research Group project summary

Project Title	The development of a human mesenchymal stem cell-based chitosan construct for joint repair
Researcher	Alexander Popov
	The aim of this project is to produce a novel osteochondral construct for
	the repair of cartilage defects. Regenerative therapeutic solutions are
	required to address the increasing prevalence of osteochondral diseases
	within the population. Joint damage often originates from osteoarthritis
	or trauma whilst existing treatments, such as bone graft reconstructions
	or the use of biomaterial implants are insufficient. The primary reason
	for the inadequate treatment of joint diseases is due to the limited
	capacity of articular cartilage to regenerate. Additionally, osteochondral
	implants have been established to fail mechanically in the long-term.
	This is generally the consequence of poor anchorage between the
	implant and the native tissue.
Project Summary	To address these issues, the project endeavours to model the
	osteochondral interface using a porous chitosan scaffold seeded with
	human mesenchymal stem cells (hMSCs). Particular focus has been
	applied to optimise hMSC culture conditions and allow simultaneous
	differentiation, along osteogenic and chondrogenic lineages, within a
	single scaffold. Attention has also been applied to reduce the use of
	animal-derived culture products because this is essential for the
	translation of medical research to the clinic. In addition to the
	optimisation of cell culture conditions, scaffolds with a graduated pore
	architecture and surface chemistry are being developed. The scaffold
	design seeks to provide region-specific cues and regulate cell

differentiation. The differentiation will be further enhanced through the use of a novel perfusion bioreactor system. By successfully creating bone and cartilage tissue within a single construct, this research can offer an improved model of the osteochondral interface and a potential treatment for cartilage defects.

DAPI staining of hMSC nuclei, 24 hours after seeding onto porous chitosan scaffold.

