

Advanced Materials Research Group project summary

Project Title	Characterisation of Si-doped hydroxyapatite coated Ti for biomedical
	applications
Researcher	Jiin Woei Lee
	keyx9ljw@nottingham.edu.my
Total joint replacements (TJRs) provide structural support and replace	
Project Summary	
	the function of damaged or diseased joints. TJRs fail after prolonged use
	and replacement surgery, or revision surgery, is needed for 10-20% of
	patients within 10-15 years of the initial procedure. The long-term aim
	of this project is to appraise the design of orthopaedic implant coatings,
	in order to enhance bone cell growth and prolong the lifespan of the
	implants. The model system used for this work is Si-doped
	hydroxyapatite (HA) -coated Ti, with TiN as an interlayer, grown by
	radiofrequency co-magnetron sputtering. Silicon is important for bone
	mineralisation and formation and is used to dope the HA. TiN is bioinert
	and biocompatible and used as a diffusion barrier between the Ti and
	SiO ₂ -doped HA to prevent the formation of unwanted chemical species,
	such as rutile, TiO ₂ , during post-deposition annealing processes. The
	findings from this study will be used to improve the design and
	development of biomedical implant materials for the enhanced early
	integration of bone cells with implant surfaces.
	Caption: Magnified image of a bone cell growing on a modified HA surface

