

University of Nottingham

Combinatorial Material-Topography Screening: The ChemoTopo Chip

Britta Koch,¹ Aliaksei Vasilevich,² Nick Beijer,² Jan de Boer,² Morgan R. Alexander ¹

¹School of Pharmacy, University of Nottingham, UK.² Merln Institute for Technology-inspired Regenerative Medicine, Maastricht University, The Netherlands.

Aim

Next Generation Biomaterials Discovery

 Adding dimensionality to traditionally flat biomaterial screening approaches

Concept

Exploit biomaterial chemistry and topography to achieve desired cell response

Polymer microarray technology¹

27 chemistries 35 topographies

TopoChip platform²

Discovery of bespoke polymers for applications in medicinal devices and regenerative medicine

Rationale

- Limits of traditional cell culture on polystyrene
 - Biochemically-induced, non-mature cell phenotypes
 - Planar, non-native cell environment
- Deficiency in number of clinically-relevant biomaterials
- Lack of understanding: biomaterial design parameters

Sample fabrication: Thiol/ene chemistry, Surface-initiated polymerisation

Fabrication route:

Photomask

Photolithography, DRIE

Silicon master Drop-casting, UV curing

Silicon Master:

ChemoTopo Chip master, collaboration: Maastricht University

Moulding of base polymer:

Deposition of chemistries:

- Surface-initiated polymerization of chemistries to pendant thiol groups of pre-formed chip³
- Monomer functionality determines c(photoinitiator)

Verification of polymer grafting: ToF-SIMS

Silanised glass

Diacrylate-co-trithiol

Chemistry of interest

Separate topography transfer and immobilisation of chemistries to account for a range of polymer properties.

Film composition affects:

 Surface free thiol groups FT-IR (ATR):

Feature integrity

Cell experiments:

Human mesenchymal stem cell morphology after 3d

• 2D control, varying chemistry

• One topography, varying chemistry

• Three chemistries, 35 topographies

Conclusions

References

- Successful fabrication of ChemoTopo Chip by surface-initiated polymerisation of chemistries to microtopographies
 - Integrity of microfeatures
 Verification of surface modification for (meth)acrylates/ (meth)acrylamides
- First cell assay to confirm suitability of samples (compatibility with cell culture, immunocytochemistry, microscopy)
 - Modulation of primary hMSC morphology and potentially proliferation by both chemistry and topography

Outlook

- Upscale protoype fabrication to full-scale sample production, verify protocol robustness
- Full sample characterisation (FT-IR, ToF-SIMS, WCA, XPS, AFM)
- High-throughput screening to identify hit polymer + microtopography combinations for improved stem cell maturation or reduced biofilm formation
- Correlation of surface properties with cell response: computational modelling to derive structure-property relationships

¹ D. G. Anderson *et al. Nat. Biotechnol.* 22, 863-866 (2004).
 Y. Mei *et al. Nat. Mater.* 9, 768-778 (2010).
 A. Patel *et al. Curr. Opin. Solid State Mater. Sci.* 20, 202-211 (2016).
 ² H. V. Unadkat *et al. PNAS* 108, 16565-16570 (2011).
 F. F. B. Hulshof *et al. Biomaterials* 137, 49-60 (2017).
 ³ V. S. Khire *et al. Adv Mater.* 20, 3308-3313 (2008).

Acknowledgements EPSRC Programme Grant (EP/N006615/1)

Engineering and Physical Sciences Research Council

