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Abstract

A limit theory is developed for mildly explosive autoregression under both weakly
and strongly dependent innovation errors. We �nd that the asymptotic behaviour of
the sample moments is a¤ected by the memory of the innovation process both in the
in the form of the limiting distribution and, in the case of long range dependence, in
the rate of convergence. However, this e¤ect is not present in least squares regression
theory as it is cancelled out by the interaction between the sample moments. As a
result, the Cauchy regression theory of Phillips and Magdalinos (2007a) is invariant
to the dependence structure of the innovation sequence even in the long memory case.

Keywords: Central limit theory, Explosive autoregression, Long memory, Cauchy
distribution.



1. Introduction

Autoregressive processes of the form

yt = �yt�1 + �t �t =d NID
�
0; �2

�
with an explosive root j�j > 1 were �rst discussed in early contributions by White
(1958) and Anderson (1959). Assuming a zero initial condition for yt, a Cauchy limit
theory was derived for the OLS/ML estimator �̂n = (

Pn
t=1 yt�1yt)

�Pn
t=1 y

2
t�1
��1
:

�n

�2 � 1 (�̂n � �)) C as n!1, (1)

where C denotes a standard Cauchy variate. It is important to note that the Gaus-
sianity assumption imposed on the innovation sequence (�t)t2N cannot be relaxed
without changing the asymptotic distribution in (1). Anderson (1959) provides ex-
amples demonstrating that central limit theory does not apply and that the asymp-
totic distribution of the least squares estimator is characterised by the distributional
assumptions imposed on the innovations. Thus, no general asymptotic inference is
possible for purely explosive autoregressions.
The situation becomes more favourable to least squares regression when the ex-

plosive root approaches unity as the sample size n tends to in�nity. Phillips and
Magdalinos (2007a, hereafter PMa) and Giraitis and Phillips (2006) considered au-
toregressive processes with root �n = 1 + c=n�, � 2 (0; 1). When c > 0, such roots
are explosive in �nite samples and approach unity with rate slower than O (n�1).
The asymptotic behaviour of such �mildly explosive�or �moderately explosive�au-
toregressions is more regular than that of their purely explosive counterparts. Under
the assumption of i.i.d. innovations with �nite second moment, PMa establish cen-
tral limit theorems for sample moments generated by mildly explosive processes and
obtain the following least squares regression theory:

1

2c
n��nn (�̂n � �n)) C as n!1. (2)

This Cauchy limit theory is invariant to both the distribution of the innovations and
to the initialization of the mildly explosive process.
The results of PMa were generalised by Phillips and Magdalinos (2007b, hereafter

PMb) to include a class of weakly dependent innovations. Aue and Horvath (2007)
relaxed the moment conditions on the innovations by considering an i.i.d. innovation
sequence that belongs to the domain of attraction of a stable law. The limiting
distribution in this case takes the form of a ratio of two independent and identically
distributed stable random variables, which reduces to a Cauchy distribution when the
innovations have �nite variance. Multivariate extensions are included in Magdalinos
and Phillips (2008).
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In this paper, we consider mildly explosive autoregressions generated by a corre-
lated innovation sequence that may exhibit long range dependence. We show that
central limit theory continues to apply and that the asymptotic behaviour of the
least squares estimator is given by (2). Although the asymptotic behaviour of the
sample variance and the sample covariance is a¤ected by long range dependence both
in the rate of convergence and in the form of the limiting distribution, their ratio is
not a¤ected by the memory of the innovation sequence. Hence, the mildly explosive
regression theory of PMa is invariant to the dependence structure of the innovation
sequence even in the long memory case. Our results generalise those in PMa and PMb

and are complementary to the results in Aue and Horvath (2007).

2. Main results

Consider the mildly explosive process

Xt = �nXt�1 + ut; t 2 f1; :::; ng (3)

�n = 1 +
c

n�
; � 2 (0; 1) ; c > 0 (4)

with innovations (ut)t2N and initialization X0 that satisfy the following conditions.

Assumption LP. For each t 2 N, ut has Wold representation

ut =
1X
j=0

cj"t�j;

where, given the natural �ltration Ft := � ("t; "t�1; :::), ("t;Ft)t2Z is a martingale dif-
ference sequence, ("2t )t2Z is a uniformly integrable sequence with EFt�1 ("

2
t ) = �2 for

all t 2 Z, and (cj)j�0 is a sequence of constants satisfying one of the following con-
ditions:

(i)
P1

j=0 jcjj <1:

(ii) For each j 2 N
cj = L (j) j��; for some � 2 (1=2; 1)

where L : (0;1) ! (0;1) is a slowly varying function at in�nity such that
' (t) := L (t) t�� is eventually non-increasing (i.e. ' is non-increasing on
[t0;1) for some t0 > 0) and

sup
t2[0;B]

t�L (t) <1 for any �; B > 0: (5)

(iii) cj = �j�1, j 2 N, for some � 6= 0.
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Assumption IC. X0 can be any �xed constant or a random process X0 (n) ; in-
dependent of � (u1; :::; un) ; satisfying X0 (n) = op

�
n�=2

�
under Assumption LP(i),

X0 (n) = op
�
n(3=2��)�L (n�)

�
under LP(ii) and X0 (n) = op

�
n�=2 log n

�
under LP(iii).

Under Assumption LP, (ut)t2N is a covariance stationary linear process, since
(cj)j�0 is square summable and ("t)t2Z is an uncorrelated sequence with constant
variance. Uniform integrability of ("2t )t2Z controls the the tails of the distribution of
each element of ("t)t2Z and is equivalent to �

2 < 1 when ("t)t2Z is an identically
distributed sequence. Thus, the primitive innovations "t considered in this paper
belong to a more general class than the i.i.d. (0; �2) family considered in PMb.
Assumption LP(i) ensures absolute summability of the autocovariance function

of ut thereby giving rise to a weakly dependent innovation sequence. Note that
LP(i) further extends the class of weakly dependent innovation sequences of PMb by
requiring a weaker summability condition on (cj)j�0 than the condition

P1
j=0 j jcjj <

1 imposed in PMb.
Assumption LP(ii) implies that

P1
j=0 jE (uju1)j = 1 and induces strong de-

pendence (or long memory) in the innovation sequence. The parametrisation cj =
L (j) j�� is standard for stationary linear processes that exhibit long memory, see e.g.
Giraitis, Koul and Surgailis (1996) and Wu and Min (2005). The memory parameter
� can be expressed in standard AFRIMA notation as � = 1 � d, d 2 (0; 1=2), so
Assumption LP(ii) includes stationary AFRIMA processes.
Recall that a function L is slowly varying at 1 if and only if

lim
t!1

L (ut)

L (t)
= 1 for any u > 0 (6)

(see Bingham Goldie and Teugels (1987) hereafter referred to as BGT). The assump-
tion that ' (t) = L (t) t�� is eventually non-increasing ensures the validity of an
Euler-type approximation (cf. Lemma A4) used in the calculation of the asymptotic
variance of various sample moments. The class of functions de�ned by the above
assumption includes di¤erentiable slowly varying functions as a subclass (see BGT,
Theorem 1.5.5). Assumption (5) is a standard requirement for the validity of Abelian
theorems for integrals involving regularly varying functions in a neighbourhood of the
origin (see BGT, Proposition 4.1.2(a) and Lemma A3 below). BGT, Seneta (1976)
and Korevaar (2004) o¤er a detailed discussion of slow and regular variation. See
also Phillips (2007) for an application of di¤erentiable slowly varying functions to
regression theory.
As in the analysis of Anderson (1959) and PMa, least squares regression theory is

driven by the stochastic sequences

Yn (�) :=
1

n(
3
2
��)�

�n(�)X
t=1

��tn un+1�t (7)
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and

Zn (�) :=
1

n(
3
2
��)�

�n(�)X
t=1

��tn ut (8)

with �n = 1 + c=n� as de�ned in (3) and

�n (�) =

�
n�

2

�
for some � 2

�
�;min

�
3�

2
; 1

��
: (9)

For notational convenience, we write Yn (1) and Zn (1) for the sequences in (7) and (8)
under both Assumption LP(i) and Assumption LP(iii). This convention is justi�ed
since formally substituting � = 1 in (7) and (8) produces the n�=2 normalisation that
applies under weak dependence.
By covariance stationarity of the innovation sequence ut, Yn (�) and Zn (�) have

identical variance given by

1

n(3�2�)�

24�n(�)X
t=1

��2tn u (0) + 2

�n(�)X
t=1

��2tn

�n(�)�tX
h=1

��hn u (h)

35 for all n 2 N (10)

where u (h) := E (utut�h) denotes the autocovariance function of ut. The asymptotic
behaviour as n ! 1 of the common variance of Yn (�) and Zn (�) depends on the
memory properties of the innovation sequence ut; as the following result shows.

Lemma 1. Let Zn (�) be the sequence de�ned in (8), !2 = �2
�P1

j=0 cj

�2
and

� (x) =
R1
0
ux�1e�udu. Then, as n!1:

(i) Under Assumption LP(i), E
�
Zn (1)

2�! !2=2c:

(ii) Under Assumption LP(ii), L (n�)�2E
�
Zn (�)

2�! V�, where

V� := �2c2��3� (1� �)2
sin (��)

sin f� (2�� 1)g : (11)

(iii) Under Assumption LP(iii), (log n�)�2E
�
Zn (1)

2�! �2�2=2c.

The proof of Lemma 1 can be found in Section 3. The argument is facilitated by
employing an Abelian theorem and an Euler-type approximation established, respec-
tively, by Lemma A3 and Lemma A4 in the Appendix.
Determining the joint asymptotic behaviour of Yn (�) and Zn (�) is the key to

establishing a limit theory for explosive and mildly explosive autoregressions. We
present the results for the short memory and long memory case separately in the
following two lemmas, the proof of which can be found in Section 3.
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Lemma 2. Under Assumption LP(i),

[Yn (1) ; Zn (1)]) [Y1; Z1] as n!1;

where Y1 and Z1 are independent N (0; !2=2c) variates.

Lemma 2 generalises the corresponding results of PMa and PMb by considering a
larger class of weakly dependent innovation sequences (ut)t2N.
Characterising the joint asymptotic behaviour of Yn (�) and Zn (�) for strongly

dependent innovations is more challenging and the main result is provided below.

Lemma 3. Under Assumption LP(ii) we obtain, for each � 2 (1=2; 1),

1

L (n�)
[Yn (�) ; Zn (�)]) [Y�; Z�] as n!1;

where Y� and Z� are independent N (0; V�) random variables and V� is given by (11).

Remark 1. Lemma 3 shows that the introduction of long memory in the innovation
sequence a¤ects the components that drive mildly explosive autoregression not only
in the form of the limiting distribution but also in the rate of convergence. This
contrasts the weakly dependent case (see Lemma 2 and PMb) where the result di¤ers
from the i.i.d. error case of PMa only in the asymptotic variance.

Remark 2. The asymptotic variance in (11) diverges to1 at the boundary values
� = 1=2; 1. This is expected at the boundary value � = 1=2 since ut has in�nite
variance for any � � 1=2. On the other hand, � = 1 provides a boundary between
short range and long range dependence in the innovation sequence ut. Lemma 3 then
implies that the distribution of Yn (�) and Zn (�) does not admit a smooth transition
from short to long memory. The underlying reason is that the normalisation n(3=2��)�

cannot distinguish between a short memory linear process and a linear process with
harmonic coe¢ cients cj as in Assumption LP(iii): Lemma 3 would assign the short
memory normalisation n�=2 to [Yn (1) ; Zn (1)] generated by the latter process, which
is not su¢ cient since the harmonic series diverges with rate

Pn
j=1 j

�1 � log n.
As pointed out in Remark 2, a complete discussion of the asymptotic behaviour

of [Yn (�) ; Zn (�)] would have to include the case of transition between short and long
range dependence in the innovations ut. This is the aim of the next result.

Lemma 4. Under Assumption LP(iii)

1

log n�
[Yn (1) ; Zn (1)]) [Y 0

1 ; Z
0
1] as n!1;

where Y 0
1 and Z

0
1 are independent N

�
0; �2�2=2c

�
random variables.
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Remark 3. The slowly varying function L has been replaced by a constant in As-
sumption LP(iii) since taking cj = L (j) j�1 would produce a limiting distribution in
Lemma 4 that is not invariant to the choice of L. The problem is that the asymptotic
variance of  �1n Zn (1) can be expressed in terms of the integral In :=  �1n

R n�=c
1

L(z)
z
dz,

where  n := (log n
�)�1 L (n�). Assume for simplicity that L is di¤erentiable with

L0 (t)

L (t)
=
" (t)

t
for all t � 1 (12)

for some function " which determines L and satis�es " (t) ! 0 as t ! 1. Equa-
tion (12) can be deduced directly from the Karamata representation of L. Using
integration by parts and (12) we obtainZ n�=c

1

L (z)

z
dz = log (n�=c)L (n�=c)�

Z n�=c

1

L (z)

z
" (z) log zdz: (13)

The value of the integral in (13) depends on the choice of " and hence on the choice
of L. If " (z) = (log z)�2 in (12), the second integral in (13) is O (L (n�) log (log n)),
giving In ! 1: If " (z) = �= log z for some � 6= 0, (13) yields In ! (1 + �)�1. The
above observation implies that the asymptotic variance of  �1n Yn (1) and  

�1
n Zn (1)

depends on the choice of L.

Once the joint asymptotic behaviour of Yn (�) and Zn (�) has been derived, it is
easy to obtain the limiting distribution of the sample moments of Xt by employing a
standard approximation argument (see Anderson (1959) and PMa) for explosive and
mildly explosive processes: roughly, the sample variance and the sample covariance
behave like Zn (�)

2 and Yn (�)Zn (�) respectively.

Lemma 5. Let L denote an arbitrary slowly varying function at in�nity. Then

��2nn

n�n(3�2�)�L (n�)2

nX
t=1

X2
t�1 =

1

2c

�
1

L (n�)
Zn (�)

�2
+ op (1)

��nn
n(3�2�)�L (n�)2

nX
t=1

Xt�1ut =
Yn (�)

L (n�)

Zn (�)

L (n�)
+ op (1)

as n!1 where:

(i) Under Assumption LP(i), � = 1 and L (x) = 1 for all x > 0.

(ii) Under Assumption LP(ii), � 2 (1=2; 1) and L satis�es LP(ii).

(iii) Under Assumption LP(iii), � = 1 and L (x) = log x for all x > 0.
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Combining Lemma 5 with Lemmas 2, 3 and 4, we deduce that, under the appro-
priate normalisation, joint convergence in distribution of

�Pn
t=1Xt�1ut;

Pn
t=1X

2
t�1
�

applies under both weak and strong dependence. The asymptotic behaviour of the
centered least squares estimator

�̂n � �n =

Pn
t=1Xt�1utPn
t=1X

2
t�1

is then an immediate consequence of the continuous mapping theorem and the fact
that the limiting random vectors (Y1; Z1), (Y�; Z�) and (Y 0

1 ; Z
0
1) of Lemmas 2, 3 and

4 consist of independent components.

Theorem 1. For the mildly explosive process generated by (3) under Assumptions
LP and IC, the following limit theory applies as n!1 :

1

2c
n��nn (�̂n � �n)) C as n!1;

where C denotes a standard Cauchy variate.

Remark 4. Theorem 1 shows that the Cauchy regression theory of PMa is invariant
to the dependence structure of the innovation sequence even in the long memory case.
The limit theory is independent of the memory parameter � and the normalisation
consists only of the parameters c and � that determine the degree of mild explosion,
i.e. the neighbourhood of unity that contains the mildly explosive root �n. At �rst
glance, this result may seem surprising given that the limit theory for both the sample
variance

Pn
t=1X

2
t�1 and the sample covariance

Pn
t=1Xt�1ut is a¤ected by the presence

of long memory in the innovation sequence both in the rate of convergence and in the
form of the limiting distribution. The interaction between these two sample moments,
however, cancels out this e¤ect: Lemma 5 implies that the asymptotic behaviour of
the normalised and centred least squares estimator is driven by the ratio Yn (�) =Zn (�)
in which the numerator and the denominator have identical rate of convergence and
limiting distribution (by Lemmas 2, 3 and 4). Therefore, any increase in the rate of
convergence of Yn (�) is o¤set by an equal increase in the rate of Zn (�), leaving least
squares regression theory invariant to the degree of persistence of the innovations.
This suggests that the least squares estimator retains the rate of convergence of
Theorem 1 under more general innovation processes including non-stationary long
memory, although such a generalisation would require a di¤erent method of proof.

3. Proofs

This section contains the proof of Lemmas 1-5. We begin by establishing some nota-
tion. Using the linear process representation of ut, the process Zn (�) de�ned in (8)

7



can be decomposed into the sum of two uncorrelated components:

Zn (�) = Z(1)n (�) + Z(2)n (�) ; (14)

where

Z(1)n (�) =
1

n(
3
2
��)�

�n(�)X
t=1

��tn

tX
j=0

cj"t�j; (15)

Z(2)n (�) =
1

n(
3
2
��)�

1X
j=1

0@�n(�)X
t=1

��tn ct+j

1A "�j (16)

and �n (�) is the sequence de�ned in (9).
The process Yn (�) de�ned in (7) can be written as:

�n(�)X
t=1

��tn un+1�t =

�n(�)X
t=1

��tn

1X
j=0

cj"n+1�t�j =

�n(�)X
t=1

��tn

1X
k=t

ck�t"n+1�k:

Changing the order of summation in the last expression, we obtain the following
decomposition of Yn (�) into the sum of two uncorrelated components:

Yn (�) = Y (1)
n (�) + Y (2)

n (�) ; (17)

where

Y (1)
n (�) =

1

n(
3
2
��)�

�n(�)X
k=1

 
kX
t=1

��tn ck�t

!
"n+1�k (18)

Y (2)
n (�) =

1

n(
3
2
��)�

X
k>�n(�)

0@�n(�)X
t=1

��tn ck�t

1A "n+1�k: (19)

Finally, we use k�k to denote the Euclidian norm of a vector and k�kr to denote
the Lr norm of a random variable: kXkr = (E jXjr)1=r. Given a �-algebra F , EF
and PF denote conditional expectation and conditional probability respectively.

3.1. Proof of Lemma 1

Under Assumption LP(i), the result follows immediately from (14) and Propositions
3.2.1 and 3.2.2(ii) below.

8



Proof under Assumption LP(ii). Under Assumption LP(ii), the autocovariance
function of ut is given by

u (h) = �2

"
L (h)h�� +

1X
j=1

cjcj+h

#
h 2 N:

Using the Cauchy-Schwarz inequality and the fact the function ' (x) = x��L (x) is
eventually non-increasing we obtain, for large enough n,X
j>�n(�)

cjcj+h �
X

j>�n(�)

c2j =
X

j>�n(�)

' (j)2 �
Z 1

�n(�)

' (x)2 dx = O
�
L
�
n�
�2
n�(2��1)�

�
by (9) and Karamata�s theorem (BGT, Proposition 1.5.8). Thus,

u (h) = �2

24L (h)h�� + �n(�)X
j=1

cjcj+h

35+O
�
L
�
n�
�2
n�(2��1)�

�
(20)

as n!1, uniformly in h. For brevity, let

�n := n(1��)�L (n�) : (21)

Using the fact that

�n(�)X
t=1

��2tn

�n(�)X
h=�n(�)�t+1

��hn ju (h)j = o
�
n2����n(�)n

�
and

1

n�

�n(�)X
t=1

��2tn ! 1

2c
;

(10) implies that the variance of Zn (�) has the following asymptotic behaviour as
n!1:Zn (�)L (n�)

2
2

=
1

c

1

�2n

�n(�)X
h=1

��hn u (h) +O

�
1

L (n�)2 n2(1��)�

�

=
1

c

�2

�2n

�n(�)X
h=1

��hn

24L (h)h�� + �n(�)X
j=1

cjcj+h

35+O

 
L
�
n�
�2

L (n�)2
1

n(2��1)(���)

!

=
1

c

�2

�2n

�n(�)X
h=1

��hn

�n(�)X
j=1

cjcj+h +O

�
1

n(1��)�

�

=
1

c

�2

�2n

�n(�)X
h=1

e�
c
n�
h

�n(�)X
j=1

cjcj+h + o (1) (22)
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where the second line follows from (20), the third line follows from Lemma A3 in
the Appendix and the �nal line follows since Lemma A1 in the Appendix and the
Cauchy-Schwarz inequality imply that

sup
1�h��n(�)

����hn � e�
c
n�
h
�� 1
�2n

�n(�)X
h=1

�n(�)X
j=1

cjcj+h � 1

�2n

0@�n(�)X
j=1

cj

1A2

O

�
1

n�=2

�

= O

24 1

n�=2�2n

 Z �n(�)

1

' (x) dx

!235
= O

0@"L �n��
L (n�)

#2
n2(1��)(���)

n�=2

1A = o (1)

for all � 2 (�; 3�=2) by Karamata�s theorem. Applying the Euler approximation of
Lemma A4 in the Appendix to (22) and letting  := c (bt0c+ 1), we obtainZn (�)L (n�)

2
2

=
1

c

�2

�2n

Z �n(�)

bt0c+1
e�

c
n�
x

Z �n(�)

bt0c+1
L (y)L (y + x) y�� (y + x)�� dydx+ o (1)

=
�2c2��3

L (n�)2

Z c�n(�)
n�

 
n�

e�u
Z c�n(�)

n�

 
n�

L

�
n�z

c

�
L

�
n� (z + u)

c

�
[z (u+ z)]�� dzdu

= �2c2��3
Z c�n(�)

n�

 
n�

e�u [In1 (u) + In2 (u)] du (23)

where

In1 (u) =
1

L (n�)2

Z 1

 
n�

L

�
n�

c
z

�
L

�
n�

c
(z + u)

�
z�� (u+ z)�� dz

In2 (u) =
1

L (n�)2

Z c�n(�)
n�

1

L

�
n�

c
z

�
L

�
n�

c
(z + u)

�
z�� (u+ z)�� dz:

For some � 2 (0;min f1� �; (2�� 1) =2g) de�ne the regularly varying functions

R (x) = x�L (x) and r (x) = x��L (x) :

By the uniform convergence theorem for regularly varying functions with negative
index (BGT, Theorem 1.5.2)

sup
z2[;1)

����r (n�z)r (n�)
� z��

����! 0 as n!1 (24)
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for any �xed  > 0. In this notation, In2 (u) can be written as

In2 (u) =
c�2�

r (n�)2

Z c�n(�)
n�

1

r

�
n�

c
z

�
r

�
n�

c
(z + u)

�
z�(���) (u+ z)�(���) dz

=
c�2�

r (n�)

Z c�n(�)
n�

1

(
r
�
n�

c
z
�

r (n�)
�
�z
c

���)
r

�
n�

c
(z + u)

�
[z (u+ z)]�(���) dz

+
c��

r (n�)

Z c�n(�)
n�

1

r

�
n�

c
(z + u)

�
z�� (u+ z)�(���) dz: (25)

Since
R1
1
z�2(���)dz <1 for � 2 (0; (2�� 1) =2) the �rst term of (25) is bounded by

sup
z2[1=c;1)

����r (n�z)r (n�)
� z��

���� sup
x2[1=c;1)

����r (n�x)r (n�)

���� c�2� Z 1

1

z�2(���)dz = o (1)

uniformly in u 2 (0;1) ; by (24). Thus, as n!1,

sup
u>0

�����In2 (u)� c��

r (n�)

Z c�n(�)
n�

1

r

�
n�

c
(z + u)

�
z�� (u+ z)�(���) dz

����� = o (1) :

Adding and subtracting [(z + u) =c]�� in the above integral and using (24) in a similar
way for the estimation of the remainder term, we obtain

sup
u>0

�����In2 (u)�
Z c�n(�)

n�

1

z�� (u+ z)�� dz

�����! 0 as n!1:

Thus, (9) and the dominated convergence theorem yield, as n!1,Z c�n(�)
n�

c
n�

e�uIn2 (u) du !
Z 1

0

e�u
Z 1

1

z�� (u+ z)�� dzdu

=

Z 1

1

ezz��
Z 1

z

e�xx��dxdz: (26)

For the �rst term of (23), using the substitution x = z + u we obtainZ c�n(�)
n�

 
n�

e�uIn1 (u) du =

Z 1

 
n�

L
�
n�z
c

�
L (n�)

ezz��
Z z+

c�n(�)
n�

z+  
n�

L
�
n�x
c

�
L (n�)

e�xx��dxdz

= c�
Z 1

 
n�

R
�
n�

c
z
�

R (n�)
ezz����

Z z+
c�n(�)
n�

z+  
n�

L
�
n�

c
x
�

L (n�)
e�xx��dxdz

=

Z 1

 
n�

ezz��

 Z z+
c�n(�)
n�

z+  
n�

L
�
n�

c
x
�

L (n�)
e�xx��dx

!
dz + o (1)(27)
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as n!1 because, since
R 1
0
z����dz <1 for all � 2 (0; 1� �),

Z 1

 
n�

�����R
�
n�

c
z
�

R (n�)
�
�z
c

������� ezz����
Z z+

c�n(�)
n�

z+  
n�

L
�
n�x
c

�
L (n�)

e�xx��dxdz

� sup
z2(0;1=c]

����R (n�z)R (n�)
� z�

����
 Z c�n(�)

n�
+1

 
n�

L
�
n�x
c

�
L (n�)

e�xx��dx

!�Z 1

0

z����dz

�
= sup

z2(0;1=c]

����R (n�z)R (n�)
� z�

����O (1) = o (1)

by the uniform convergence theorem for regularly varying functions with positive
index (BGT, Theorem 1.5.2) and Lemma A3 in the Appendix. Now the integrand in
(27) is bounded by Jn (�) ezz��; where Jn (�) is de�ned (50). By (51), Jn (�) ezz�� is
integrable on [0; 1] and hence the dominated convergence theorem, (6) and (9) yieldZ c�n(�)

n�

 
n�

e�uIn1 (u) du =

Z 1

0

1[  n� ;1]
(z) ezz��

 Z z+
c�n(�)
n�

z+  
n�

e�xx��
L
�
n�

c
x
�

L (n�)
dx

!
dz

!
Z 1

0

ezz��
Z 1

z

e�xx��dxdz as n!1: (28)

Combining (23), (26) and (28) we obtainZn (�)L (n�)

2
2

! �2c2��3
Z 1

0

ezz��� (1� �; z) dz as n!1;

where � (x; z) =
R1
z
ux�1e�udu denotes the �complementary� incomplete gamma

function. The integral on the right can be evaluated as follows:Z 1

0

ezz��� (1� �; z) dz =
1X
j=0

1

j!

Z 1

0

zj��� (1� �; z) dz

=

1X
j=0

1

j!

� (j + 2� 2�)
j + 1� �

=
�2

sin (��) sin f� (2�� 1)g� (�)2

= � (1� �)2
sin (��)

sin f� (2�� 1)g ;

where the integral on the second line is calculated by 6.5.37 of Abramowitz and Stegun
(1972) and the last line is obtained by using the duplication formula for the gamma
function.

12



Proof under Assumption LP(iii). Under Assumption LP(iii), an identical argu-
ment to that leading to (22) yieldsZn (1)log n�

2
2

=
1

c

�2�2

(log n�)2

�n(�)X
h=1

e�
c
n�
h

�n(�)X
j=1

j�1 (j + h)�1 + o (1) as n!1:

Approximating the above sums by integrals using Lemma A4 yieldsZn (1)log n�

2
2

=
1

c

�2�2

(log n�)2

Z �n(�)

1

e�
c
n�
x

Z �n(�)

1

y�1 (y + x)�1 dydx+ o (1)

=
1

c

�2�2

(log n�)2

Z c�n(�)
n�

c
n�

z�1
Z c�n(�)

n�

c
n�

e�u (z + u)�1 dudz

=
1

c

�2�2

(log n�)2

Z c�n(�)
n�

c
n�

z�1ezE1

�
z +

c

n�

�
dz +O

�
e�

c
2
n���

�
where

E1 (z) :=

Z 1

z

x�1e�xdx (29)

denotes the exponential integral. Using the Cauchy-Schwarz inequality, E1 (z) �
e�zz�1=2 so

R1
1
ezz�1E1 (z) dz �

R1
1
z�3=2dz <1. Thus,Zn (1)log n�

2
2

=
1

c

�2�2

(log n�)2

Z 1

c
n�

z�1ezE1

�
z +

c

n�

�
dz +O

�
1

(log n)2

�
:

The asymptotic expansion of E1 (see 5.1.11 in Abramowitz and Stegun, 1972) implies
that supz2(0;1] jE1 (z) + log zj <1. Hence, approximating E1 (z) by � log z and using
the power series for the exponential function yieldsZn (1)log n�

2
2

= �1
c

�2�2

(log n�)2

Z 1

c
n�

z�1ez log zdz +O

�
1

log n

�
= �1

c

�2�2

(log n�)2

Z 1

c
n�

z�1 log zdz +O

�
1

n� log n

�
! �2�2

2c
:

3.2. Proof of Lemma 2

We maintain Assumption LP(i) throughout this subsection.

Proposition 3.2.1. As n!1, Z(2)n (1)!L2 0 and Y
(2)
n (1)!L2 0.

13



Proof. Since ��tn � 1 for all t and
P�n(�)

t=1 ��tn = O (n�) we obtainZ(2)n (1)� 1

n�=2

X
k>bn�=2c

0@�n(�)X
t=1

��tn ct+k

1A "�k


2

2

=
�2

n�

bn�=2cX
k=1

0@�n(�)X
t=1

��tn ct+k

1A2

�
�2
�
n�=2

�
n�

 1X
t=1

jctj
!2
! 0;


1

n�=2

X
k>bn�=2c

0@�n(�)X
t=1

��tn ct+k

1A "�k


2

2

=
�2

n�

X
k>bn�=2c

0@�n(�)X
t=1

��tn ct+k

1A2

� �2

n�

�n(�)X
t=1

��tn
X

k>bn�=2c
jct+kj

�n(�)X
s=1

��sn jcs+kj

�
 1X
s=1

jcsj
!
�2

n�

�n(�)X
t=1

��tn
X

k>bn�=2c
jct+kj

� O (1)
X

k>bn�=2c
jckj ! 0

by Assumption LP(i). This establishes the result for Z(2)n (1). For Y (2)
n (1),

Y (2)
n (1)

2
2
=

�2

n�

X
k>�n(�)

0@�n(�)X
t=1

��tn ck�t

1A0@�n(�)X
s=1

��sn ck�s

1A
� �2

n�

 1X
s=1

jcsj
! X
k>�n(�)

�n(�)X
t=1

��tn jck�tj

= O (1)
1

n�

8<:
b�n(�)=2cX
t=1

��tn
X

k>�n(�)

jck�tj+
�n(�)X

t=b�n(�)=2c+1

��tn
X

k>�n(�)

jck�tj

9=;
= O

0@ X
k>b�n(�)=2c

jckj

1A+O
�
���n(�)=2n

�
= o (1)

as n!1 by Assumption LP(i) and (9).
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Proposition 3.2.2.

(i) The following approximation is valid under both Assumption LP(ii) with � 2
(1=2; 1) and under Assumptions LP(i) and LP(iii) with � = 1: As n!1,Z(1)n (�)�

0@ 1

n(1��)�

�n(�)X
j=0

cj�
�j
n

1A0@ 1

n�=2

�n(�)X
k=0

��kn "k

1A
2

! 0: (30)

(ii) Under Assumption LP(i),

Z(1)n (1)
2
2
;
Y (1)

n (1)
2
2
! !2

2c
as n!1:

Proof. For part (i), we can write

Z(1)n (�) =
1

n(
3
2
��)�

�n(�)X
t=0

��tn

tX
j=0

cj"t�j

=
1

n(
3
2
��)�

�n(�)X
j=0

cj

�n(�)X
t=j

��tn "t�j

=
1

n(
3
2
��)�

�n(�)X
j=0

cj�
�j
n

�n(�)X
t=j

��(t�j)n "t�j

=
1

n(
3
2
��)�

�n(�)X
j=0

cj�
�j
n

�n(�)�jX
k=0

��kn "k;

so, using the inequality
�Pr�1

j=0 xj

�2
� r

Pr
j=0 x

2
j , the remainder term of (30) can be

estimated by

1

n(3�2�)�


�n(�)X
j=0

cj�
�j
n

�n(�)X
k=�n(�)�j+1

��kn "k


2

2

� n� + 1

n(3�2�)�

�n(�)X
j=0

c2j�
�2j
n


�n(�)X

k=�n(�)�j+1

��kn "k


2

2

�
�
n� + 1

�
�2

n(3�2�)�

1X
j=0

c2j�
�2j
n

�n(�)X
k=�n(�)�j+1

��2kn

= O
�
e�cn

���
n��(1��)�

� 1X
j=0

c2j ! 0:

Note that this approximation only requires square summability of the sequence (cj)j�0.
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For part (ii),
n��=2P�n(�)

k=0 ��kn "k

2
2
! �2=2c; so, using (30), the asymptotic vari-

ance of Z(1)n (1) will have the required form provided that

�n(�)X
j=0

cj�
�j
n !

1X
j=0

cj as n!1: (31)

Unlike (30), (31) is valid only for absolutely summable sequences (cj)j�0. Since

�n(�)X
j=0

cj�
�j
n =

1X
j=0

cj�
�j
n 1 fj � �n (�)g and

1X
j=0

��cj��jn 1 fj � �n (�)g
�� � 1X

j=0

jcjj

absolute summability of (cj)j�0 implies that (31) follows by dominated convergence.

The asymptotic variance of Y (1)
n (1) can be shown to be identical to that of Z(1)n (1)

by using the fact that Yn (1) and Zn (1) have the same variance for all n (given by
(10)). The triangle inequality for L2 spaces yields��E �X2

�
� E

�
Y 2
��� � kX � Y k2 (kXk2 + kY k2) (32)

for all X; Y 2 L2. Proposition 3.2.1, (14) and the fact that Z
(1)
n (1) has �nite as-

ymptotic variance imply that
Zn (1)� Z

(1)
n (1)


2
! 0 and supn2N

Z(1)n (1)

2
< 1.

Hence, supn2N kZn (1)k2 <1 and (32) yields���kZn (1)k22 � Z(1)n (1)
2
2

���! 0 as n!1:

By (17) and Proposition 3.2.1
Yn (1)� Y

(1)
n (1)


2
! 0. Since supn2N kZn (1)k2 <

1, (10) ensures that both supn2N kYn (1)k2 and supn2N
Y (1)

n (1)

2
are �nite, and

consequently (32) implies that���kYn (1)k22 � Y (1)
n (1)

2
2

���! 0 as n!1:

Since kYn (1)k22 = kZn (1)k
2
2 for all n, the triangle inequality for real numbers yields���Y (1)

n (1)
2
2
�
Z(1)n (1)

2
2

��� � ���kYn (1)k22 � Y (1)
n (1)

2
2

���+���kZn (1)k22 � Z(1)n (1)
2
2

���! 0

showing that Y (1)
n (1) and Z(1)n (1) have the same asymptotic variance.
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Proof of Lemma 2. By Propositions 3.2.1, 3.2.2 and (31) we obtain that�
Yn (1)
Zn (1)

�
=

�n(�)X
k=1

�nk + op (1)

where

�nk :=
1

n�=2

24 �Pk
t=1 �

�t
n ck�t

�
"n+1�k�P1

j=0 cj

�
��kn "k

35 (33)

is a martingale di¤erence array with respect to Fk = � ("k; "k�1; :::) since, by (9),
2�n (�) � n� < n+1 implying that n+1�k > k for all k 2 f1; :::; �n (�)g. Therefore,
Fk�1 � Fn�k so EFk�1 ("n+1�k) = 0, EFk�1

�
"2n+1�k

�
= �2 and EFk�1 ("k"n+1�k) = 0,

all the above equalities holding almost surely by the chain rule for iterated conditional
expectations (Kallenberg, 2002, Theorem 6.1(vii)).
We now apply a standard martingale CLT on

P�n(�)
k=1 �nk (Corollary 3.1 of Hall and

Heyde (1980) or Proposition A1 of Magdalinos and Phillips, (2008)). By Proposition
3.2.2, the conditional variance of

P�n(�)
k=1 �nk is given by

�n(�)X
k=1

EFk�1�nk�
0
nk = diag

�Y (1)
n (1)

2
2
;
Z(1)n (1)

2
2

�
! !2

2c
I2

as n!1, where I2 denotes the 2� 2 identity matrix. Therefore, provided that the
Lindeberg condition

�n(�)X
k=1

EFk�1
�
k�nkk

2 1 fk�nkk > �g
�
!p 0 � > 0 (34)

holds, Lemma 1 follows from the aforementioned martingale CLT. To establish (34),

let � := �=
�P1

j=0 jcjj
�
and note that

1 fk�nkk > �g � 1

8<:
 

kX
t=1

jck�tj
!2

"2n+1�k +

 1X
j=0

jcjj
!2

"2k > n��2

9=;
� 1

�
"2n+1�k + "2k > n��2

	
� 1

�
"2n+1�k > n��2=2

	
+ 1

�
"2k > n��2=2

	
:

Thus, expanding the left side of (34) and noting that, as n!1,

1

n�

�n(�)X
k=1

8<:��2kn +

 
kX
t=1

��tn ck�t

!29=; = O (1) +
1

�2
Y (1)

n (1)
2
2
= O (1)
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we obtain that the following condition is su¢ cient for (34):

sup
1�k��n(�)

max
r;s2Sk

EFk�1 �"2r1�"2s > n��2=2
	�

1
! 0; (35)

where Sk := fk; n+ 1� kg. When r = s, the left side of (35) is bounded by

sup
1�j�n

E
�
"2j1
�
"2j > n��2=2

	�
! 0

as n!1 by uniform integrability of
�
"2j
�
j2Z. When r < s, the fact that Fk�1 � Fn�k

for all k 2 f1; :::; �n (�)g and the conditional Markov inequality yield

EFk�1
�
"2r1
�
"2s > n��2=2

	�
= EFk�1

�
"2k1

�
"2n+1�k > n��2=2

	�
= EFk�1

�
"2kEFn�k

�
1
�
"2n+1�k > n��2=2

	�	
= EFk�1

�
"2kPFn�k

�
"2n+1�k > n��2=2

	�
� 2

n��2
EFk�1

�
"2kEFn�k"

2
n+1�k

�
=
2�4

n��2

establishing (35). Since EFk�1
�
"2n+1�k1 f"2k > n��2=2g

�
= �2PFk�1 f"2k > n��2=2g, an

identical argument shows (35) for r > s.

3.3. Proof of Lemma 3 and Lemma 4

We begin by deriving the asymptotic variance of Zn (�). We show that, unlike the
weakly dependent case, both components in (14) will contribute to the limiting dis-
tribution. We consider each component separately.

Proposition 3.3.1. Under Assumption LP(ii), we obtain, for each � 2 (1=2; 1) 1

L (n�)
Z(1)n (�)� c��1� (1� �)

0@ 1

n�=2

�n(�)X
k=0

��kn "k

1A
2

! 0 as n!1 (36)

where �n (�) is the sequence de�ned in (9), and 1

L (n�)
Z(1)n (�)

2
2

! �

2

2

c2��3� (1� �)2 as n!1: (37)

Proof. Lemma A3 in the Appendix shows that

1

L (n�)

1

n(1��)�

�n(�)X
j=0

cj�
�j
n ! c��1� (1� �) as n!1:

Combining the above with (30) and the fact that
n��=2P�n(�)

k=0 ��kn "k

2
2
! �2=2c

proves both (36) and (37).
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Proposition 3.3.2. Under Assumption LP(ii):

(i) For each � 2 (1=2; 1) 1

L (n�)
Z(2)n (�)� 1

L (n�)

1

n(
3
2
��)�

�n(�)X
j=1

0@�n(�)X
t=1

��tn ct+j

1A "�j


2

! 0; (38)

as n!1, where �n (�) is the sequence de�ned in (9).

(ii) For each � 2 (1=2; 1) 1

L (n�)
Z(2)n (�)

2
2

! �2c2��3� (1� �)2
�

sin ��

sin � (2�� 1) �
1

2

�
: (39)

Proof. The remainder of (38) can be estimated as follows: 1

L (n�)n(
3
2
��)�

X
j>�n(�)

nX
t=1

��tn ct+j"�j


2

2

=
�2

L (n�)2 n2(
3
2
��)�

X
j>�n(�)

 
nX
t=1

��tn ct+j

!2

=
�2

L (n�)2 n2(
3
2
��)�

nX
t;s=1

��t�sn

X
j>�n(�)

ct+jcs+j

� �2

L (n�)2 n2(
3
2
��)�

nX
t;s=1

��t�sn

0@ X
j>�n(�)

c2j

1A
= O

�
1

L (n�)2
n2�

n2(
3
2
��)�

� X
j>�n(�)

j�2�L (j)2

= O

�
1

n(2��1)(���)

�"
L
�
n�
�

L (n�)

#2
! 0

because
P

j>�n(�)
j�2�L (j)2 = O

�
n�(1�2�)L

�
n�
�2�

by Karamata�s theorem. Since

Z
(1)
n (�) and Z(2)n (�) are uncorrelated, part (ii) follows immediately from (14), Lemma
1 and (37).

We now turn our attention to the asymptotic variance of Yn (�).

Proposition 3.3.3. Under Assumption LP(ii):

(i) L (n�)�1 Y (2)
n (�)!L2 0:

(ii) For each � 2 (1=2; 1) ; L (n�)�1 Y
(1)
n (�) and L (n�)�1 Zn (�) have the same

asymptotic variance as n!1, given by (11).

19



Proof. For part (i), since ��in = O
�
e�

c
n�
i
�
as n ! 1 for all i 2 f1; :::; ng and

supi�1 i
��L (i) <1 for any � > 0; there exists C 2 (0;1) such thatY (2)

n (�)

L (n�)


2

2

=
1

L (n�)2
��2n

n(3�2�)�


1X
j=0

n+jX
i=j+1

��(n+j�i)n ci"�j


2

2

� Ce�2cn
1��

L (n�)2 n(3�2�)�

1X
j=1

e�2
c
n�
j

 
n+jX
i=j+1

e
c
n�
ii�(���)

!2
+O

 
L (n�)�2

n2(1��)�

!
;

where � can be chosen as follows:

� 2
�
0;
(1� �) (2�� 1)

2

�
: (40)

We nowmake use of the fact that, for any decreasing function f on [0;1),
PN

j=k f (j) �R N
k�1 f (x) dx for all k;N 2 N. Since, for large enough n, e c

n�
ii�(���) is decreasing in

i we obtain
Pn+j

i=j+1 e
c
n�
ii�(���) �

R n+j
j

e
c
n�
xx�(���)dx. Also, since the function

g (y) = e�2
c
n�
y

�Z n+y

y

e
c
n�
xx�(���)dx

�2
=

�Z n

0

e
c
n�
z (z + y)�(���) dz

�2
is decreasing,

P1
j=1 g (j) �

R1
0
g (y) dy. Denoting by C a �xed �nite constant that

may take di¤erent values and using the bound e�x
R x
0
euu�(���)du � Cx�(���) for all

x bounded away from the origin, we obtain, for large enough n;Y (2)
n (�)

L (n�)


2

2

� C

L (n�)2
e�2cn

1��

n(3�2�)�

Z 1

0

e�2
c
n�
y

�Z n+y

y

e
c
n�
xx�(���)dx

�2
dy + o (1)

=
Cn2��

L (n�)2

Z 1

0

"
e�(cn

1��+z)
Z cn1��+z

z

euu�(���)du

#2
dz

� Cn2��

L (n�)2

Z 1

0

�
cn1�� + z

��2(���)
dz

= O

�
1

L (n�)2
1

n(1��)(2��1)�2�

�
= o (1)

as n!1 by the choice of � in (40).
For part (ii), the fact that the asymptotic variance of Zn (�) is given by (11)

may be obtained directly from (14), (37) and (39), since Z(1)n (�) and Z(2)n (�) are
uncorrelated. The result for Y (1)

n (�) can be shown by using a similar argument to
that used in the proof of Proposition 3.2.2(ii). The triangle inequality gives������
Y (1)

n (�)

L (n�)


2

2

�
Zn (�)L (n�)

2
2

������ �
������
Y (1)

n (�)

L (n�)


2

2

�
 Yn (�)L (n�)

2
2

������+
�����
 Yn (�)L (n�)

2
2

�
Zn (�)L (n�)

2
2

����� :
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The second term on the right is identically 0 since Yn (�) and Zn (�) have the same
variance for all n, see (10). The �rst term on the right tends to 0 as n ! 1 sinceY (1)n (�)
L(n�)

� Yn(�)
L(n�)


2
! 0 by (17) and part (i).

Proposition 3.3.4. Under Assumption LP(ii), we obtain, for each � 2 (1=2; 1)

L (n�)�1
�
Z(1)n (�) ; Z(2)n (�) ; Y (1)

n (�)
�
)
�
Z(1) (�) ; Z(2) (�) ; Y (�)

�
as n!1 (41)

where Z(1) (�) ; Z(2) (�) and Y (�) are independent zero-mean Gaussian random vari-
ables with variances given by (37), (39) and (11) respectively.

Proof. By (36) and (38) we obtain that

1

L (n�)

264 Z
(1)
n (�)

Z
(2)
n (�)

Y
(1)
n (�)

375 = �n(�)X
k=1

�nk + op (1) (42)

where

�nk :=

2664
c��1� (1� �)n��=2��kn "k

L (n�)�1 n�(
3
2
��)�

�P�n(�)
t=1 ��tn ct+k

�
"�k

L (n�)�1 n�(
3
2
��)�

�Pk
t=1 �

�t
n ck�t

�
"n+1�k

3775
is a martingale di¤erence array with respect to F�k = � ("�k; "�k�1; :::) since, by (9),
n + 1 � k > k > �k for all k 2 f1; :::; �n (�)g, so F�k�1 � Fk�1 � Fn�k. Given the
set �k = fk;�k; n+ 1� kg, the above inclusions imply that EF�k�1 ("r"s) = 0 a:s:
for all r 6= s, r; s 2 �k.
We now apply the martingale CLT used in the proof of Lemma 1 (Hall and Heyde,

1980) on
P�n(�)

k=1 �nk:

�n(�)X
k=1

EF�k�1�nk�
0
nk =

1

L (n�)2
diag

hZ(1)n (�)
2
2
;
Z(2)n (�)

2
2
;
Y (1)

n (�)
2
2

i
! �2c2��3� (1� �)2 diag

�
1

2
;

sin ��

sin � (2�� 1) �
1

2
;

sin ��

sin � (2�� 1)

�
by (37), (39) and Proposition 3.3.3(ii). Since the limit of the conditional variance ofP�n(�)

k=1 �nk is a diagonal matrix, the limit random vector in (41) consists of uncorre-
lated components. It remains to verify the Lindeberg condition

�n(�)X
k=1

EF�k�1
�
k�nkk

2 1 fk�nkk > �g
�
!p 0 � > 0: (43)
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By the Cauchy-Schwarz inequality both
�P�n(�)

t=1 ��tn ct+k

�2
and

�Pk
t=1 �

�t
n ck�t

�2
are

bounded by
P1

j=0 c
2
jO (n

�) uniformly in k. Therefore, by square summability of
(cj)j�0 for each � 2 (1=2; 1) ; there exist �nite constants C1; C2; C3 > 0 such that

1 fk�nkk > �g � 1
�
"2k > n�C1�

2=3
	
+ 1

�
"2�k > n2(1��)�C2�

2=3
	

+1
�
"2n+1�k > n2(1��)�C3�

2=3
	

� 1
�
"2k > n2(1��)��

	
+ 1

�
"2�k > n2(1��)��

	
+ 1

�
"2n+1�k > n2(1��)��

	
where � := min fC1; C2; C3g �2=3. Using the above inequality we obtain

�n(�)X
k=1

EF�k�1 �k�nkk2 1 fk�nkk > �g
�

1
� S sup

1�k��n(�)
max
r;s2�k

EF�k�1 �"2r1�"2s > n2(1��)��
	�

1

where S = supn2N

�
n��

P�n(�)
k=1 ��2kn + ��2

Y (1)
n (�)

2
2
+ ��2

Z(2)n (�)
2
2

�
<1. Hence,

sup
1�k��n(�)

max
r;s2�k

EF�k�1 �"2r1�"2s > n2(1��)��
	�

1
! 0 (44)

is su¢ cient for (43). When r = s,

sup
1�k��n(�)

max
r2�k

EF�k�1 �"2r1�"2r > n2(1��)��
	�

1
� sup

1�j�n
E
�
"2j1
�
"2j > n2(1��)��

	�
! 0

by uniform integrability of
�
"2j
�
j2Z. Next, we know by (9) that min (r; s) > �k for all

r; s 2 �k. Therefore, when r > s, the conditional Markov inequality yields

EF�k�1
�
"2r1
�
"2s > n2(1��)��

	�
= EF�k�1

�
1
�
"2s > n2(1��)��

	
EFr�1

�
"2r
��

= �2PF�k�1
�
"2s > n2(1��)��

	
� �2

n2(1��)��
EF�k�1"

2
s =

�4

n2(1��)��
;

showing (44) for r > s. An identical argument shows (44) for r < s:

EF�k�1
�
"2r1
�
"2s > n2(1��)��

	�
= EF�k�1

�
"2rPFs�1

�
"2s > n2(1��)��

	�
� �4

n2(1��)��
:

This completes the proof of (43) and the proposition.

Proof of Lemma 3. Lemma 3 follows by Proposition 3.3.4, Proposition 3.3.3(i)
and the continuous mapping theorem.
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Proof of Lemma 4. Denote by E1 (�) the exponential integral in (29). Using (30),
Lemma A1 and the Euler summation formula we obtain 1

log n�
Z(1)n (1)

2
2

=
�2�2

2c

0@ 1

log n�

�n(�)X
j=1

j�1e�j
c
n�

1A2

+ o (1)

=
�2�2

2c

 
1

log n�

Z �n(�)

1

x�1e�x
c
n� dx

!2
+O

�
1

log n

�
=

�2�2

2c

�
1

log n�
E1

� c

n�

��2
+ o (1)! �2�2

2c

as n!1 since E1 (z) � � log z as z ! 0. Hence, by Lemma 1, the asymptotic vari-
ance of (log n�)�1 Z(1)n (1) coincides with that of (log n�)�1 Zn (1) which implies that(log n�)�1 Z(2)n (1)

2
2
! 0. Moreover, an identical argument to the proof of Proposi-

tion 3.3.3(i) with � = 1, � = 0 and L (n�) = log n� yields
(log n�)�1 Y (2)

n (1)
2
2
! 0.

Therefore,

1

log n�
[Yn (1) ; Zn (1)] =

1

log n�
�
Y (1)
n (1) ; Z(1)n (1)

�
+ op (1)

and Lemma 4 follows by applying an identical martingale CLT to that used in the
proof of Lemma 2 (replacing n�=2 by n�=2 log n� in the de�nition of the martingale
di¤erence array �nk in (33)).

3.4. Proof of Lemma 5

Proposition 3.4.1. For �n (�) as de�ned in (9), we obtain, as n!1,

(i)
Pn

t=1 �
�t
n ut =

P�n(�)
t=1 ��tn ut + op (1) ;

(ii)
Pn

t=1 �
�(n�t)�1
n ut =

P�n(�)
t=1 ��tn un+1�t + op (1) :

Proof. For part (i), using covariance stationarity of (ut)t2N we obtain
nX
t=1

��tn ut �
�n(�)X
t=1

��tn ut


1

=


nX

t=�n(�)+1

��tn ut


1

� E ju1j
nX

t=�n(�)+1

��tn

= O
�
n����n(�)n

�
= o (1)
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as n!1. For part (ii), since
Pn

t=1 �
�(n�t)�1
n ut =

Pn
t=1 �

�t
n un+1�t

nX
t=1

��(n�t)�1n ut �
�n(�)X
t=1

��tn un+1�t


1

=


nX

t=�n(�)+1

��tn un+1�t


1

= O
�
n����n(�)n

�
using the same bound as in part (i).

Proof of Lemma 5. The derivations of this subsection are not a¤ected by the
memory of the innovation sequence in any way other than the additional normalisation
required in the long memory case. Therefore, it is enough to present the argument
for part (ii) of the lemma. An identical argument is valid for part (i) and part (iii)
by making the appropriate adjustment for the normalisation.
We start by analysing the sample covariance. For �n as in (21), the initialization

of the mildly explosive process satis�es X0 = op
�
n�=2�n

�
by Assumption IC. Using

the identity Xt�1 = X0�
t�1
n +

Pt�1
j=1 �

t�j�1
n uj and Proposition 3.4.1(ii) we obtain

��nn
n��2n

nX
t=1

Xt�1ut =
1

n��2n

(
X0

nX
t=1

��(n�t)�1n ut + ��nn

nX
t=1

t�1X
j=1

�t�j�1n ujut

)

=
X0

n�=2�n

Yn (�)

L (n�)
+

��nn
n��2n

nX
t=1

t�1X
j=1

�t�j�1n ujut + op (1)

=
��nn
n��2n

nX
t=1

t�1X
j=1

�t�j�1n ujut + op (1) ; (45)

since Yn (�) =L (n�) = Op (1) by Lemma 3. Now the Cauchy-Schwarz inequality gives ��nnn��2n
nX
t=1

nX
j=t

�t�j�1n ujut


1

� ��nn
n��2n

nX
t=1

nX
j=t

�t�j�1n E jujutj

� E (u21) �
�n
n

n��2n

nX
t=1

�t�1n

nX
j=t

��jn

= O

�
��nn n1+�

n(3�2�)�L (n�)2

�
= o (1) :

Thus, (45) and Proposition 3.4.1 yield

��nn
n��2n

nX
t=1

Xt�1ut =

 
1

n�=2�n

nX
t=1

��(n�t)�1n ut

! 
1

n�=2�n

nX
j=1

��jn uj

!
+ op (1)

=
Yn (�)

L (n�)

Zn (�)

L (n�)
+ op (1) ; (46)
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as required. For the sample variance, by taking the square of (3) and summing over
t 2 f1; :::; ng we obtain

nX
t=1

X2
t�1 =

1

�2n � 1

(
X2
n �X2

0 � 2�n
nX
t=1

Xt�1ut �
nX
t=1

u2t

)
=

1

�2n � 1
�
X2
n +O

�
�nn�

2
n

��
by (46). Thus, since ��nn Xn =

Pn
t=1 �

�t
n ut and �

2
n � 1 = 2c=n� +O (n�2�) ; we obtain

��2nn

n2��2n

nX
t=1

X2
t�1 =

1

2c

"
1

n�=2�n

nX
t=1

��tn ut

#2
+ op (1)

=
1

2c

�
1

L (n�)
Zn (�)

�2
+ op (1)

by Proposition 3.4.1(i). This completes the proof of Lemma 5.

4. Appendix

This section contains some asymptotic results for sums and integrals that are used in
the proof of Lemmas 1, 3 and 4. We begin by showing that the asymptotic equivalence
��tn � e�

c
n�
t as n!1 is valid uniformly in t 2 f1; :::; �n (�)g.

Lemma A1. Let �n (�) be the sequence de�ned in (9). Then

sup
1�t��n(�)

����tn � e�
c
n�
t
�� = O

�
1

n�=2

�
as n!1: (47)

Proof. Using the expansion log (1 + x) = x+O (x2) as x! 0, we obtain, as n!1

��tn = exp
n
�t log

�
1 +

c

n�

�o
= exp

�
�t
�
c

n�
+O

�
1

n2�

���
= e�

c
n�
t

�
1�

�
exp

�
O

�
t

n2�

��
� 1
��

:

Using the mean value theorem and monotonicity of the exponential function we obtain
the following elementary inequality: jex � 1j � xex for all x � 0. Application of this
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inequality yields

sup
1�t��n(�)

����tn � e�
c
n�
t
�� � sup

1�t��n(�)

����exp�O� t

n2�

��
� 1
����

� sup
1�t��n(�)

O

�
t

n2�

�
exp

�
O

�
t

n2�

��
= O

�
n3�=2

n2�

�
exp

�
O

�
n3�=2

n2�

��
= O

�
1

n�=2

�
as required.

In the remainder of this section we establish two types of asymptotic results that
have been used in Section 3: An Abelian theorem for integrals involving regularly
varying functions and approximation of sums by integrals by means of the Euler
summation formula. In the spirit of Apostol (1957) p.202 we derive the following form
of the Euler-Maclaurin formula: Let m;M 2 N. If f has �nite variation Vf (m;M)
on [m;M ] then applying the integration by parts formula for Stieltjes integrals onRM
m
f (x) d (x� bxc) yields

MX
j=m

f (j)�
Z M

m

f (x) dx = f (m) +

Z M

m

(x� bxc) df (x) :

Since x� bxc < 1, the above formula implies the following approximation:�����
MX
j=m

f (j)�
Z M

m

f (x) dx

����� � jf (m)j+ Vf (m;M) m;M 2 N: (48)

Lemma A2 is a standard Abelian theorem, see Korevaar (2004, Proposition 5.4).

Lemma A2. Given a slowly varying function L, let � (x) = x�L (x). If k is real
function satisfying

R1
0
x� jk (x)j dx <1 for some � 6= 0 and

1

x

Z B

0

k

�
t

x

�
� (t) dt = o (� (x)) as x!1 (49)

for any B > 0, thenZ 1

0

k (t)� (xt) dt = [1 + o (1)]� (x)

Z 1

0

k (t) t�dt as x!1:
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Lemma A3. Under Assumption LP(ii), let t0 be a positive constant such that
' (t) = L (t) t�� is non-increasing on [t0;1),

In (�;  ) =
1

L (n�)

Z c�n(�)
n�

 
n�

e�yy��L

�
n�y

c

�
dy  > 0

and �n = L (n�)n(1��)�: Then, the following hold as n!1 :

(i) ��1n
P�n(�)

t=1 L (t) t��
����tn � e�

c
n�
t
��! 0.

(ii)
�����1n P�n(�)

t=1 L (t) t��e�
c
n�
t � c��1In (�; bt0c+ 1)

��� = O
�
��1n
�
:

(iii) In (�;  )! � (1� �) for all  > 0:

Proof. For part (i), Lemma A1 yields that there exists C 2 (0;1) such that

1

�n

�n(�)X
t=1

L (t) t��
����tn � e�

c
n�
t
�� � C

�nn�=2

�n(�)X
t=1

t��L (t)

= O

 
L
�
n�
�
n(1��)�

L (n�)n�=2n(1��)�

!
= o (1)

by Karamata�s theorem, since (9) implies that �=2� (1� �) (� � �) > 0.
For part (ii), let fn (t) := L (t) t��e�

c
n�
t. Since ' (t) non-increasing on [t0;1) so

is fn (t) and

��1n

�n(�)X
t=1

fn (t) = ��1n

�n(�)X
t=bt0c+1

fn (t) +O
�
��1n
�
:

We now approximate the sum on the right by the corresponding integral using (48).
Since fn (�) is non-increasing on [t0;1);

sup
n2N

Vfn [t0;1) = sup
n2N

fn (t0) � sup
t�t0

L (t) t�� <1

so (48) implies that������
�n(�)X
j=1

fn (t)�
Z �n(�)

bt0c+1
fn (t) dt

������ = O
�
��1n
�

as n!1:

The result follows since
R �n(�)
bt0c+1 fn (t) dt = c��1In (�; bt0c+ 1) :
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For part (iii), we apply Lemma A2 on

Jn (�) =
1

L (n�)

Z 1

0

e�yy��L

�
n�y

c

�
dy (50)

=
c��+1

' (n�)

Z 1

0

e�cy' (n�y) dy:

Since
R1
0
e�cyy��dy < 1, the integrability condition of Lemma A2 is satis�ed. To

verify (49) write, for any B > 0 and any � 2 (0; 1� �),

1

n�

Z B

0

e�
c
n�
y' (y) dy � 1

n�

Z B

0

' (y) dy � sup
t2(0;B]

t�L (t)
1

n�

Z B

0

y����dy

= sup
t2[0;B]

t�L (t)
B1����

n�
= O

�
1

n�

�
= o (' (n�))

by (5). Thus, using Lemma A2 we obtain

Jn (�)! c��+1
Z 1

0

e�cyy��dy = � (1� �) as n!1: (51)

It remains to show that In (�;  ) and Jn (�) are asymptotically equivalent:

jIn (�;  )� Jn (�)j =
1

L (n�)

(Z  
n�

0

+

Z 1

c�n(�)
n�

)
e�yy��L

�
n�y

c

�
dy:

Choosing � 2 (0; 1� �) and using (5), we obtain that the �rst integral is bounded by

sup
y2[0;1]

y�L (y)
c�

n��L (n�)

Z  
n�

0

y����dy = O

�
1

L (n�)n�(1��)

�
:

For the second integral, using the property supx�u x
��L (x) � u��L (u) as u ! 1

(see Seneta, 1976, p.65) and (9), we obtain the following bound:

n��

c�L (n�)
sup

y��n(�)
y��L (y)

Z 1

c�n(�)
n�

e�ydy = o
�
e�

c
2
n���

�
:

Thus, jIn (�;  )� Jn (�)j ! 0 as n!1 and part (ii) follows by (51).

Lemma A4. Let f (t; y) := L (t+ y) (t+ y)�� L (y) y��, where � 2 (1=2; 1) and
L (t) is a slowly varying function such that ' (t) = t��L (t) is eventually non-increasing
on [t0;1) : Then, as n!1,

1

�2n

24�n(�)X
t=1

e�
c
n�
t

�n(�)X
j=1

f (t; j)�
Z �n(�)

bt0c+1
e�

c
n�
t

Z �n(�)

bt0c+1
f (t; y) dydt

35! 0

where �n is the sequence de�ned in (21). Under Assumption LP(iii), the above for-
mula applies with f (t; y) = (t+ y)�1 y�1, �n = log n and t0 = 0.
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Proof. Choosing � 2 (0; 1� �) and � = min (�; �) we obtain

1

�2n

�n(�)X
t=1

e�
ct
n�

24�n(�)X
j=1

f (t; j)�
�n(�)X

j=bt0c+1

f (t; j)

35 =
1

�2n
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�
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n� t�(���)

� O (1)
1

�2n

Z 1

1

e�
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n� t�(���)dt

= O
�
n�(1����)�

�
� (1� �+ �)! 0:

The above calculation shows that

1

�2n

24�n(�)X
t=1

e�
c
n�
t

�n(�)X
j=1

f (t; j)�
�n(�)X

t=bt0c+1

e�
c
n�
t

�n(�)X
j=bt0c+1

f (t; j)

35! 0 as n!1

so we only need to apply the Euler approximation (48) to the second sum, where
f (t; j) is non-increasing in both its arguments. We �rst show that

1

�2n

�n(�)X
t=bt0c+1

e�
c
n�
t

������
�n(�)X

j=bt0c+1

f (t; j)�
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������! 0 as n!1: (52)

Fixing t and regarding f (t; y) as a function of y, f is non-increasing on [t0;1) so
Vf [t0;1) = f (t; t0). Using (48), the left side of (52) is bounded by

2

�2n

�n(�)X
t=1

e�
c
n�
tf (t; t0) =

2L (t0) t
��
0

�2n

�n(�)X
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e�
c
n�
tL (t+ t0) (t+ t0)

��

= O

0@ 1

�2n

�n(�)X
t=1

e�
c
n�
tL (t) t��

1A = O

�
1

�n

�
by Lemma A3. This shows (52). The lemma will follow from combining (52) and

1

�2n

������
�n(�)X

t=bt0c+1

e�
c
n�
t

Z �n(�)

bt0c+1
f (t; y) dy �

Z �n(�)

bt0c+1
e�

c
n�
x

Z �n(�)

bt0c+1
f (x; y) dydx

������! 0: (53)

Since the function gn (t) = e�
c
n�
t
R �n(�)
bt0c+1 f (t; y) dy is non-increasing on [t0;1), Vgn [t0;1) =

gn (t0). By (48), the left side of (53) is bounded by

2

�2n
gn (t0) �

2

�2n

Z �n(�)

bt0c+1
f (t0; y) dy �

2

�2n

Z �n(�)

bt0c+1
L (y)2 y�2�dy = O

�
1

�2n

�
:
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This shows the lemma under Assumption LP(ii).
Under Assumption LP(iii), the same argument applies and the estimation error

is again O
�
��1n
�
with �n = log n. Note that the absence of the slowly varying

component implies that f (t; j) and gn (t) are non-increasing for all t; j � 1 so we
may take t0 = 0.
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