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Abstract

We propose two tests for the number of heteroskedastic factors in a generalized orthogonal

GARCH (GO-GARCH) model. The first test is the Gaussian likelihood ratio test, the second is a

reduced rank test applied to suitably defined autocovariance matrices. We characterize the asymp-

totic null distributions of the tests, and compare their finite sample size and power properties to an

alternative test proposed by Lanne and Saikkonen (2007).

1 Introduction

The GO-GARCH model was proposed by van der Weide (2002), as a generalization of the orthogonal

GARCH model of Ding (1994) and Alexander (2001). Closely related models were proposed by Vron-

tos et al. (2003) and Fan et al. (2008). The starting point of these models is that an observed vector of

returns can be expressed as a non-singular linear transformation of latent factors that are conditionally

uncorrelated, and that have a GARCH-type conditional variance specification.

In a recent paper, Lanne and Saikkonen (2007) consider a special case of the GO-GARCH model,

obtained by the restricting the volatility of a subset of the latent factors to be constant, reducing the

model to the factor GARCH model of Engle et al. (1990) They consider maximum likelihood estimation

of the model under the assumption of (mixed) normality of the standardized innovations of the model.

In addition, they propose a test for the number of heteroskedastic factors based on a serial correlation

test applied to the squares of the estimated factors that are assumed homoskedastic under the null.

In the present paper we consider two alternative tests for the number of heteroskedastic factors. The

first is a likelihood ratio test in the model of Lanne and Saikkonen (2007), which one could expect to

have higher power. The second is a test on the rank of a suitably defined weighted average of auto-

covariance matrices of squares and cross-products, inspired by reduced rank regression and canonical
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correlation tests. The main advantage of this approach is that it does not require a parametric model for

the heteroskedastic factors, and as such can be expected to be more robust than the other tests.

The outline of this paper is as follows. In Section 2, we introduce the model and assumptions.

Section 3 defines the likelihood ratio test, and discusses its asymptotic distribution, which is affected by

the fact that various parameters are not identified under the null hypothesis. Section 4 defines the new

reduced rank test, and proposes a (wild) bootstrap procedure to obtain asymptotically valid p-values.

Section 5 concludes with a small-scale Monte Carlo experiment to compare the finite-sample size and

power properties of the tests.

2 Model and assumptions

Consider an m-vector time series {xt}t≥1, representing a vector of (daily) returns on m different as-

sets. Letting {Ft}t≥0 denote the filtration generated by {xt}t≥1, we assume that any possibly non-zero

conditional mean has been subtracted from xt, such that E(xt|Ft−1) = 0, and

Σt := var(xt|Ft−1) = E(xtx′t|Ft−1).

The GO-GARCH model imposes a structure on the conditional variance matrix Σt, implied by:

Assumption 1 The process {xt}t≥1 satisfies the representation

xt = Zyt = ZH
1/2
t εt, (1)

Ht = diag (h1t, . . . , hmt) , (2)

where Z is an m × m non-singular matrix, where {{hit}t≥1, i = 1, . . . ,m} are positive, {Ft−1}-
adapted processes with E(hit) = 1, and where {εt}t≥1 is an independent and identically distributed

(i.i.d.) vector sequence with E(εt) = 0, var(εt) = Im, and with εt independent of Ft−1.

The model implies that the observed vector of returns xt can be written as a non-singular transfor-

mation of a latent vector process yt (of the same dimension m), the components yit of which satisfy

E(yit|Ft−1) = 0, var(yit|Ft−1) = hit, cov(yit, yjt|Ft−1) = 0, i 6= j = 1, . . . ,m,

such that the components of yt are conditionally uncorrelated. The original formulation of the GO-

GARCH model involved the stronger assumption of independence of the components of yt, but for

the methods presented in the present paper, the conditional uncorrelatedness assumption (proposed by

Fan et al. (2008)) suffices. The assumptions also imply that yt is a covariance-stationary process with

mean 0 and unconditional variance E(Ht) = Im. These properties of yt immediately imply that xt is

covariance-stationary with (conditional) mean zero, conditional variance Σt = ZHtZ
′, and uncondi-

tional variance Σ = ZZ ′.

The conditional variances hit are assumed to follow a GARCH-type structure. One possibility, as

considered by van der Weide (2002), is to assume separate univariate GARCH(1,1) specifications

hit = (1− αi − βi) + αiy
2
i,t−1 + βihi,t−1, αi, βi ≥ 0, αi + βi < 1, (3)
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which, under a suitable starting value assumption on hi0, implies independence of the components yit.

Fan et al. (2008) propose a more flexible structure, where hit may depend on yj,t−k, j 6= i, k ≥ 1. A

simple extension of (3) is their extended GARCH(1,1) specification:

hit =

1−
m∑
j=1

αij − βi

+
m∑
j=1

αijy
2
j,t−1 + βihi,t−1, αij , βi ≥ 0,

m∑
j=1

αij + βi < 1. (4)

Intermediate versions, where some of the αij , j 6= i are restricted to zero, can also be considered. Fan

et al. (2008) propose to use the Bayesian information criterion to select a submodel defined by αij = 0

for some i and j 6= i.

Lanne and Saikkonen (2007) analyze a special case of the GO-GARCH model with independent

components, in which only a subset of the components of yt have a time-varing conditional variance.

The motivation for this is that if the number of assets m is large, then it may be reasonable to expect

that the conditional variance matrix Σt can be described by a number r < m of heteroskedastic factors.

Indeed, the model then reduces to a parsimoniously parametrized version of the factor ARCH model of

Engle et al. (1990). Therefore, in this paper we consider tests for the hypothesis

Hr : hit = 1, i = r + 1, . . . ,m.

Note that the ordering of the factors is arbitrary, so the restriction that the final m − r components of

yt are homoskedastic is a notational convention. Also, the constant variances are restricted to 1 because

we have imposed that the unconditional variance of yt is given by Im, which in turn is without loss of

generality because the link matrix Z in (1) is unrestricted. The null hypothesis Hr is tested against the

unrestricted GO-GARCH alternativeHm.

Under the parametric assumptions (3) or (4), the null hypothesis corresponds to the parametric

restrictions αi = βi = 0 or αij = βi = 0, for r < i ≤ m and all j. For the independent GARCH

case, Lanne and Saikkonen (2007) testHr by testing for multivariate heteroskedasticity in the estimated

components (ŷr+1,t, . . . , ŷmt), obtained from estimating the model under Hr. In the next section we

consider a likelihood ratio test for the hypothesis, based on either (3) or (4), and the assumption εt ∼
i.i.d. N(0, Im). Next, we will propose a reduced rank test which is not based on such parametric

restrictions. Instead, this test will require the following:

Assumption 2 The process {vech(yty′t)}t≥1 is covariance-stationary, with γi0 := var(y2
it) < ∞, and

with autocorrelations ρik := corr(y2
it, y

2
i,t−k) and cross-covariances τ ijk = cov(y2

it, yi,t−kyj,t−k), sat-

isfying for some integer p,

max
1≤k≤p

|ρik| > 0, max
1≤j≤m,1≤k≤p

|τ ijk| = 0, i = 1, . . . , r.

The covariance-stationarity assumption, as well as the assumptions on the (cross-) autocorrelations,

would be implied by independent GARCH processes for yit, under suitable parameter restrictions to

guarantee a finite kurtosis, see He and Teräsvirta (1999). Because estimated GARCH parameters in

practice do not always satisfy such restrictions, this assumption is not without loss of generality. The
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non-zero autocorrelation assumption allows us to identify conditional heteroskedasticity in the first r

components of yit from the first p autocorrelation coefficients of y2
it, where p will appear as a lag

length parameter in the construction of the reduced rank test. It would be hard to think of processes

that do display volatility clustering but violate this assumption (i.e., with corr(y2
it, y

2
i,t−k) = 0 for all

k = 1, . . . , p). Finally, the zero cross-covariances τ ijk exclude dependence in hit on whether yi,t−k and

yj,t−k have the same sign. Although this may exclude particular asymmetries in volatility, note that the

assumption does allow for the extended GARCH model (4), possibly augmented with yi,t−1 and yj,t−1

(but not their product) to allow for leverage effects.

We conclude this section with some remarks on parametrization of the model, and an assumption

needed for identification. Let Σ = PLP ′ be the spectral decomposition of the Σ, such that L =

diag(l1, . . . , lm) contains its eigenvalues and P contains the corresponding eigenvectors. Since Σ =

ZZ ′, the singular value decomposition of Z is given by Z = PL1/2U , where U is an orthogonal

matrix (containing the eigenvectors of Z ′Z). It will be convenient to define st = L−1/2P ′xt, the

(unconditionally) standardized returns, such that st = Uyt, and hence Ωt := var(st|Ft−1) = UHtU
′

and var(st) = Im. Since information on P and L is directly available from the unconditional variance

matrix Σ of the returns, the main task for inference on the loading matrix Z is to identify the orthogonal

matrix U . Note that st in fact contains the (standardized) principal components of xt; the O-GARCH

model of Alexander (2001) assumes that these are independent GARCH processes, and therefore is

obtained as a special case with U = Im and hit given by (3).

Under Hr, partition Z = [Z1 : Z2] and U = [U1 : U2], where the m × r matrices Z1 and U1

correspond to the heteroskedastic components in yt, and the m × (m − r) matrices Z2 and U2 contain

the loadings of the homoskedastic factors (with Zi = PΛ1/2Ui, i = 1, 2). The matrices P and L are

identified from the unconditional variance matrix Σ as before. Using the result

Σt = Z1H1tZ
′
1 + Z2Z

′
2 = Σ + Z1(H1t − Ir)Z ′1,

and similarly Ωt = U1H1tU
′
1 + U2U

′
2 = Im + U1(H1t − Ir)U ′1, we observe that the matrices Z2

and U2 no longer determine the conditional variance of xt or st, so they are not identified (other than

by the properties U ′2U1 = 0 and Z2Z
′
2 = Σ − Z1Z

′
1, i.e., as functions of the other parameters). For

identification of U and hence Z in the unrestricted model, and of U1 and hence Z1 in the restricted

model, we require the time-varing variances to be distinct:

Assumption 3 In the modelHr, with r ≤ m, it is the case that hit 6= hjt for all 1 ≤ i < j ≤ r.

If this assumption is violated, i.e., if hit = hjt (a.s.) for some i 6= j, then the corresponding

submatrices of Z and U (or Z1 and U1) may be multiplied by any orthogonal matrix, and therefore is

not identified. This occurs because in that case var [(yit, yjt)′|Ft−1] = hitI2, such that Q(yit, yjt)′ will

have the same conditional variance matrix for any orthogonal matrix Q. One example of a violation of

Assumption 3 is when hit = hjt = 1 for i 6= j ≤ r, i.e., when the hypothesis Hq with q ≤ r − 2 is

satisfied, but the modelHr is analyzed.
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Under Assumption 3, the number of identified parameters is determined as follows. In the unre-

stricted model Hm, Z is an unrestricted m ×m matrix, therefore containing m2 unknown parameters.

These may be separated into 1
2m(m− 1) and m parameters characterizing the orthogonal matrix P and

the diagonal matrix L, respectively, (which together determine the 1
2m(m+ 1) parameters in Σ) and the

remaining 1
2m(m−1) parameters inU . Under Assumption 3, allm2 parameters are locally identified, in

the sense that Z is observationally equivalent only to matrices Z∗ with a permutation of the columns of

Z, possibly multiplied by −1 (corresponding to a reordering and sign change of the components of yt).

Exactly the same local identification property applies to the matrix U . In the restricted model Hr, the

semi-orthogonal matrix U1 is characterized bymr− 1
2r(r+1) parameters, which are again locally iden-

tified under Assumption 3. Therefore, the difference in identified parameters (in the loading matrixZ) in

the unrestricted and restricted models is given by 1
2m(m−1)−mr+ 1

2r(r+1) = 1
2(m−r)(m−r−1).

3 Likelihood ratio test

In this section we discuss the likelihood ratio test forHr againstHm, in a Gaussian GO-GARCH model,

i.e., with {εt} ∼ i.i.d. N(0, Im). The log-likelihood function therefore is given by

`(θ,Σ) = −nm
2

log 2π − n log |Z| − 1
2

n∑
t=1

(
m∑
i=1

log hit + x′tZ
−1′H−1

t Z−1xt

)
(5)

= −nm
2

log 2π − n

2
log |Σ| − 1

2

n∑
t=1

m∑
i=1

(
log hit + s′tUH

−1
t U ′st

)
. (6)

Here θ contains the GARCH parameters characterizing Ht, together with 1
2m(m− 1) parameters char-

acterizing U . The first expression is most convenient for full maximization of the log-likelihood over all

parameters. However, we may also follow the suggestion of van der Weide (2002) to replace Σ and st
in (6) by Σ̂ and ŝt, respectively, where Σ̂ = n−1

∑n
t=1 xtx

′
t and ŝt = L̂−1/2P̂ ′xt, with P̂ and L̂ are the

matrices of eigenvectors and eigenvalues of Σ̂, and then maximize the resulting estimated loglikelihood

over the remaining parameters θ. This considerably reduces the dimension of the parameter vector to

be estimated by maximum likelihood. A parametrization of the orthogonal matrix U in terms of the

product of 1
2m(m − 1) rotation matrices, each parametrized by an angle φj , is discussed by van der

Weide (2002).

Let Θm denote the unrestricted parameter space of θ, and let Θr be the parameter space implied by

the null hypothesis Hr, i.e., with αi = βi = 0 for i = r + 1, . . . ,m. The likelihood ratio statistic is

given by

LRr = −2
(

max
θ∈Θr,Σ>0

`(θ,Σ)− max
θ∈Θm,Σ>0

`(θ,Σ)
)
.

As discussed by van der Weide (2002) and Lanne and Saikkonen (2007), the GO-GARCH model is

a special case of the BEKK model of Engle and Kroner (1995), and as such the general results of

Comte and Lieberman (2003) concerning consistency and asymptotic normality of maximum likelihood

estimators can be directly applied. Asymptotic normality of the restricted and unrestricted maximum

likelihood estimators of (θ,Σ) requires the model to be a smooth submodel of the BEKK model, with
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identified parameters. Under the null hypothesisHr and Assumption 3, the restricted model does indeed

have identified parameters. However, in the unrestricted model some parameters are not identified under

Hr: the matrix U2 and hence Z2 is only identified up to an orthogonal rotation, and furthermore the

parameters βi, i = r + 1, . . . ,m in (3) are not identified because αi = 0 implies hit = 1 for all values

of 0 ≤ βi < 1. The latter identification problem is similar to the lack of identification in ARMA models

with common AR and MA roots.

These proporties put this testing problem in the framework of likelihood ratio testing with nuisance

parameters that are identified only under the alternative, as analyzed, e.g., by Andrews and Ploberger

(1994). Their asymptotic analysis may be used to characterize the asymptotic null distribution of LRr,

and in practice simulation methods may be used to obtain approximate p-values. In the specific case

of r = m − 1, where the test biols down to an LR test for αm = βm = 0 in the GARCH(1,1) model

for ymt, the limiting distribution is as given by Andrews and Ploberger (1996), and the likelihood ratio

statistic can be compared with the critical values as given in their Table 1. We will consider this special

case in the Monte Carlo simulation study in Section 5.

4 Reduced rank test

Consider the autocovariance matrices

Γk(y) := E
[
(yty′t − Im)(yt−ky′t−k − Im)

]
, k = 1, . . . , p. (7)

Note that Γk(y) does not contain all separate k-th order (cross-) autocovariances of squares and cross-

products of yt (which would require vectorizing yty′t), but is an m×m matrix with elements Γk(y)ij =∑m
`=1 cov(yity`t, y`,t−kyj,t−k). Therefore, Assumptions 1 and 2 imply

Γk(y)ij = cov(y2
it, yi,t−kyj,t−k) =

{
γi0ρik , j = i,

τ ijk = 0, j 6= i,

or in other words, Γk(y)ij = diag(γ10ρ1k, . . . , γm0ρmk).

The corresponding autocovariance matrices for the process st = L−1/2P ′xt = Uyt satisfy, using

the orthogonality of U ,

Γk(s) = E
[
(sts′t − Im)(st−ks′t−k − Im)

]
= UΓk(y)U ′, k = 1, . . . , p. (8)

Since Γk(y) is a diagonal matrix and U is orthogonal, it follows that under Assumptions 1 and 2 Γk(y)

contains the eigenvalues and U contains the eigenvectors of Γk(s). Because these eigenvectors do not

vary with k, the same result applies to a weighted average of the Γk(s) matrices, with non-negative

weights {w1, . . . , wp} summing to one. Defining

µi = γi0

p∑
k=1

wkρik, i = 1, . . . ,m, (9)

we find

Γw(s) :=
p∑

k=1

wkΓk(s) = U

(
p∑

k=1

wkΓk(y)

)
U ′ = U diag(µ1, . . . , µm)U, (10)

6



Under the null hypothesis Hr, we find ρik = 0 for i = r + 1, . . . ,m and k = 1, . . . , p, such that

µr+1 = . . . = µm = 0, i.e., the final m− r eigenvalues of Γw(s) are zero, and

Γw(s) = U1 diag(µ1, . . . , µr)U
′
1.

In other words, we may interpretHr as a reduced rank hypothesis on Γw(s).

These results suggest to use eigenvalues of the sample analog of Γk(s) or its weighted average Γw(s)

(or the eigenvalues of suitably defined symmetric versions of these matrices) as a basis for a test forHr
againstHm. Therefore, consider

Γ̂k(ŝ) =
1
n

n∑
t=1

(ŝtŝ′t − Im)(ŝt−kŝ′t−k − Im),

Γ̂w(ŝ) =
p∑

k=1

wkΓ̂k(ŝ) =
1
n

n∑
t=1

(ŝtŝ′t − Im)
p∑

k=1

wk(ŝt−kŝ′t−k − Im),

where the pre-sample values {ŝtŝ′t − Im}t≤0 are set to zero.

The main argument for considering the weighted average Γ̂w(ŝ) is that it allows us to pool the

information in the separate Γ̂k(ŝ) matrices, which should yield more powerful tests. The power of

the test is essentially its ability to distinguish the non-zero eigenvalues (µ1, . . . , µr0) from the zero

eigenvalues (µr0+1, . . . , µm), where r0 is the true rank of Γw(s). We conjecture that for this purpose, p

and {wk}pk=1 should maximize corr
(
y2
it,
∑p

k=1wky
2
i,t−k

)
, or its minimum over i = 1, . . . , r0. Given

the autocorrelation structure in empirically observed squared returns, a fairly robust choice would be an

exponentially weighted moving average wk = w1ν
k−1 with ν close to one (a common choice for daily

financial returns is ν = 0.94) and p chosen such that
∑∞

k=p+1 ν
k = νp+1/(1 − ν) is small relative to∑∞

k=1 ν
k = ν/(1− ν).

For any choice of weights, define Yt = (sts′t− Im), Xt =
∑p

k=1wk(st−ks
′
t−k− Im), and let Ŷt and

X̂t denote the corresponding quantities with st replaced by ŝt. This implies that we now wish to develop

a test for the rank of the matrix Γ̂w(ŝ) = n−1
∑n

t=1 ŶtX̂t =: SŶ X̂ . Although this is not a standard

reduced-rank regression problem, because Ŷt and X̂t are (estimated) matrices instead of (observed)

vectors, a natural test statistic to consider is the reduced-rank regression (or canonical correlation) test

statistic (see Anderson (1951))

Qr = −n
m∑

i=r+1

log(1− λ̂i), (11)

where λ̂1 ≥ . . . ≥ λ̂m ≥ 0 are the descending eigenvalues of the generalized eigenvalue problem∣∣∣λSŶ Ŷ − SŶ X̂S−1

X̂X̂
SX̂Ŷ

∣∣∣ = 0, (12)

with SŶ Ŷ = n−1
∑n

t=1 Ŷ
2
t , SX̂X̂ = n−1

∑n
t=1 X̂

2
t , and SX̂Ŷ = S′

Ŷ X̂
= n−1

∑n
t=1 X̂tŶt.

The standard proof that the reduced rank test statisticQr has an asymptotic χ2((m−r)2) distribution

under the null hypothesis is obtained as follows. First, it is shown that

Qr = n tr
{

(U ′2SŶ Ŷ U2)−1U ′2SŶ X̂U2(U ′2SX̂X̂U2)−1U ′2SX̂Ŷ U2)
}

+ op(1).
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Next, it is shown that
√
nU ′2SX̂Ŷ U2 has a limiting normal distribution with mean zero, and with a vari-

ance matrix that is consistently estimated by (U ′2SŶ Ŷ U2)⊗(U ′2SX̂X̂U2). In the present case, the second

step cannot be proved, essentially because even under the null hypothesis, U ′2Y
2
t U2 is correlated with

U ′2X
2
t U2. The same problem would arise in reduced rank regressions with conditional heteroskedastic-

ity. The consequence is that
√
nU ′2SX̂Ŷ U2 will still have a limiting normal distribution with mean zero,

but its conditional variance matrix cannot be written as a suitably defined kronecker product. This in

turn implies that the limiting distribution ofQr, based on an inconsistent estimate of the variance matrix

of
√
nU ′2SX̂Ŷ U2, will not be χ2((m− r)2) but the distribution of a weighted sum of independent χ2(1)

random variables.

As a solution to this problem, we propose a bootstrapping approach, obtained by combining a wild

bootstrap resampling scheme for the heteroskedastic factors (see Liu (1988) and Mammen (1993)) with

an ordinary resampling scheme for the homoskedastic factors. Specifically, let Û denote the matrix of

eigenvectors of the eigenvalue problem (12), and let ŷt = Û ′ŝt = (ŷ′1t, ŷ
′
2t)
′, where ŷ1t contains the

first r components of ŷt, and ŷ2t the remaining m− r components. The proposed procedure is to obtain

B bootstrap replications {Q(i)
r , i = 1, . . . , B} of the test statistic, based on resampled observations

{y(i)
t = (y(i)′

1t , y
(i)′
2t )′, t = 1, . . . , n, i = 1, . . . , B}, where the components of y(i)

1t are given by the

corresponding components of ŷ1t, multiplied by a random sign change, whereas {y(i)
2t , t = 1, . . . , n}

is obtained by taking n random draws (with replacement) from {ŷ21, . . . , ŷ2n}. The wild bootstrap

preserves the volatility clustering in y1t, whereas the ordinary (non-parametric) bootstrap preserves the

marginal distribution of y2t, while forcing these to be i.i.d. The bootstrap p-value of Qr is now simply

defined as 1− FB(Qr), where FB(x) is the bootstrap null distribution FB(x) = #(Q(i)
r < x)/B. This

is an estimate of the asymptotic p-value 1 − F (Qr), where F (x) is the asymptotic null distribution

F (x) = limn→∞ P (Qr < x|Hr).

Consistency of such bootstrap p-values builds on consistency of Û1, containing the first r rows of

Û . For this purpose, we need a slightly stronger version of Assumption 3:

Assumption 4 In the model Hr, with r ≤ m, the r largest eigenvalues (µ1, . . . , µr) of Γw(s) are

distinct and non-zero.

Theorem 1 Under Assumptions 1–2 and 4, and as n→∞,

FB(·)⇒ F (·),

where “⇒” denotes weak convergence. Under the alternative hypothesis Hm\Hr, the test statistic Qr
diverges, such that the test is consistent.

5 Monte Carlo simulations

In this section we study the finite-sample size and power performance of the tests proposed in this paper,

as well as a version of the test proposed by Lanne and Saikkonen (2007), in a small-scale Monte Carlo
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experiment. We consider a data-generating process with m = 2,

Σ =

[
1 ρ

ρ 1

]
, U =

[
cosφ sinφ

− sinφ cosφ

]
,

with ρ = 0.4 and φ = π/6. The components y1t and y2t are generated by independent Gaussian

GARCH(1,1) processes, with (α1, β1) = (0.1, 0.8), and with (α2, β2) = (0, 0) under the null hy-

pothesis r = 1, whereas (α2, β2) = (0.1, 0.4) under the alternative r = 2. The sample size is set to

n = 2000.

The likelihood ratio test statistic is compared with the 5% asymptotic critical value 6.01 obtained

from Table 1 of Andrews and Ploberger (1996). The reduced rank test is constructed based on p = 10

lags and exponential weights wk = w00.94k, k = 1, . . . , 10, where w0 = (1− 0.94)/(1− 0.9410). The

number of bootstrap replications is set to B = 99. The implementation of the Lanne and Saikkonen

(2007) test we consider is a Q-statistic with 10 lags applied to ỹ2
2t, where ỹ2t = Ũ ′2ŝt, with Ũ the

maximum likelihood estimator under the null hypothesis. The results in Table 1 are based on 5000

replications.

Table 1: Size (r = 1) and size-corrected power (r = 2) of the likelihood ratio (LR),

reduced rank (Q) and Lanne-Saikkonen (LS) tests for r = 1.
LR Q LS

r = 1 0.075 0.053 0.054

r = 2 0.959 0.667 0.899

We observe that in the present DGP all tests have reasonable size, although the LR test has displays

some over-rejection. Possibly better results can be obtained by bootstrapping its null distribution, or

by modelling y2t as a higher-order ARCH instead of a GARCH(1,1) process (as this would avoid the

idenfication problems with the GARCH(1,1) model with α2 = β2 = 0).

Concerning the power, we observe that the LR and LS have a very high and comparable power

against the alternative considered here. The power of the reduced-rank test is clearly less but still

substantial. This power loss may be seen as a price to be paid for the fact that the test is based on less

parametric restrictions. In case of misspecification of the GARCH components, we would expect the

LR and LS statistics to display bigger size distortions, and our Qr test to gain power relatively to the

other two. We intend to investigate this in a more extensive Monte Carlo study. Furthermore, the distinct

advantage of the Qr test is that it can be used to test for the number of heteroskedastic factors before a

parametric model for these factors needs to be specified and estimated, and as such avoids the need to

estimate partially unidentified models.

Appendix

Proof of Theorem 1 to be completed.
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