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Abstract

Valid instrumental variables must be relevant and exogenous. However, in practice

it is difficult to find instruments that are exogenous in that they satisfy the knife-

edged orthogonality condition and at the same time are strongly correlated with the

endogenous regressors. In this paper we show how a mild violation of the exogeneity

assumption affects the limit of the Anderson-Rubin test (1949). This test statistic

is frequently used in economics due to the fact that it is robust to identification

problems. However, when there is mild violation of exogeneity the test is oversized

and with larger samples the problem gets worse. In order to correct this problem,

we introduce the fractionally resampled Anderson-Rubin test (FAR) that is derived

by modifying the resampling technique introduced by Wu (1990). Our main result is

that in large samples, the FAR test does not overreject the null hypothesis when we

use half of the sample without replacement as the block size from the original sample.

We also show that subsampling will not achieve this. Simulations show that in finite

samples the FAR is conservative; thus, we suggest a block size choice that has very

good size and power when there are possible violations of the exogeneity assumption.

Thus, we show that we can conduct inference and get good size and power when

instruments mildly violate the exogeneity assumption.
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1 Introduction

Instrumental variable estimation is one of the most widely used methods in eco-

nomics. Valid instruments must be relevant and exogenous. Regarding the relevance

of instruments, there has recently been a growing interest in the asymptotics of weak

instruments. One of the most widely used test statistics in that research line is the

Anderson-Rubin (1949) test (for herein denoted the AR test). The AR test statistic

can be used when instruments are weak as shown by Stock and Wright (2000). How-

ever, recently Berkowitz, Caner and Fang (2008) find that AR test is oversized when

there is a minor violation of exogeneity assumption.

Even when researchers are careful in selecting instruments that are relevant and

plausibly exogenous, it is still unlikely that an instrument is perfectly exogenous. The

exogeneity assumption is a knife-edge condition in which a zero correlation between

the instruments and the structural error term must hold exactly. As described by

Conley, Hansen and Rossi (2007) and Kray (2008) and others, it is very difficult to

perfectly satisfy this orthogonality condition in empirical work.

To correct for this problem, we assume that there can be a mild violation of the

exogeneity assumption. This near exogeneity assumption allows for a local to zero

correlation between the instruments and the structural error. However, convergence

of this correlation to zero is slower than root n rate that is used in Berkowitz, Caner,

and Fang (2008). This new exogeneity assumption enables us to use a powerful

resampling method. And, this exogeneity assumption is realistic because it allows

the structural error to get larger as the sample size increases. Furthermore, the case

of root n convergence to zero covariance is analyzed in simulations as well. We find

that our method works well in both cases. We derive the limit of AR test and we

show that the limit depends on the correlation between the instruments and structural

error term. Furthermore, in larger samples, using critical values for the AR test based

on the perfect exogeneity assumption results in huge size distortions when in reality

there is a moderate correlation between the instruments and structural error term.

In this paper we propose a novel resampling technique for the Anderson-Rubin

(1949) test. This technique is based on the jackknife histogram estimator in section

2 of Wu (1990). Because we can write the AR test in terms of the sample mean

(see equation (2)), we can modify the results in section 2 of Wu (1990). Section 2 in

Wu (1990) uses sampling without replacement from the original sample by drawing

a fraction of the sample size. This is proportional to full sample. In this setup, we
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propose a fractionally resampled version of the AR test. Specifically, we find that by

drawing half of the sample, the AR test does not overreject the null. We show that

subsampling is oversized. We also find that the Kleibergen (2002) test may not be

amenable to the resampling technique that we use.

We conduct simulations to check for the size properties and power of this FAR

test. We find that a half-sample block size is very conservative; and, we find that

resampling without replacement that uses anywhere between one fourth to one third

of the sample size gives very good size and power results.

In related work, Kray (2008) and Conley, Hansen and Rossi (2007) both use

a Bayesian approach for solving the problem of working with instruments that do

not perfectly satisfy the orthogonality condition. They clearly show that even a

small violation of the orthogonality condition can lead to entirely different outcomes.

When they use the more realistic assumption of a mild violation of exogeneity, they

find that the confidence intervals for structural parameters are larger. Conley, Hansen

and Rossi (2007) analyze the support of the correlation parameter (i.e., the correlation

between the instrument and structural error) and, for each plausible parameter value,

they find the confidence interval for the structural parameters and take the union

of these intervals. This method provides a conservative solution. Conley, Hansen

and Rossi (2007) also use a local to zero approach; here, they assume the correlation

parameter comes from a normal distribution and they characterize its asymptotics. In

a third approach, Conley et al attach Bayesian priors to this parameter and derive the

posterior distribution. Kray (2008) takes a similar approach to this problem: however,

his prior for the correlation parameter is not drawn from a normal distribution. In

contrast to these methods that place priors on the correlation between the instrument

and structural error term, our method is completely data dependent and we derive

confidence intervals using subsamples of the data. In this paper we provide a solution

to the problem of drawing inferences when there is a minor violation of exogeneity

without attaching distributions to the correlation parameter. We resample the AR

test and our critical values are adjusted according to this parameter. Hahn and

Hausman (2006) also look at this issue.

In Section 2, we describe the problem of making inferences with instruments in

violation of exogeneity and we develop a novel way of resampling of the AR test.

Section 3 considers subsampling and shows that it will be oversized and will not solve

the problem of drawing reliable inferences with instruments violating the exogeneity
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assumption. Section 3 also contains an analysis of some of the variants of subsampling.

Section 4 contains Monte Carlo simulation. Section 5 concludes.

2 Inference with Violation of Exogeneity

We analyze a model that contains a specific violation of the exogeneity assumption.

Similar assumptions about the violation of exogeneity have been used by Newey (1985)

and Hall and Inoue (2003). Our assumption allows for a local to zero covariance

between the instruments and the structural error term and is more flexible than

the knife-edged exogeneity assumption used in the instrumental variables estimation

literature. The model that we use is:

y = Y θ0 + u,

Y = ZΠ + V,

where cov(u, V ) �= 0, Y : n × m, Z : n × k, k ≥ m, for i = 1, · · · , n

EZiui =
Cn√

n
,

where Cn is a k × 1 vector, where Cnj → ∞, as n → ∞, and Cnj/
√

n → 0, for

j = 1, · · · , k. This is the violation of the exogeneity assumption because it allows for

a mild correlation between the instruments and the structural error. Simultaneous

asymptotics are used, so Cn grows along with the sample size n, but it grows slower

than root n as shown in Assumption 1 below. This is different than the near exogeneity

used by Berkowitz, Caner and Fang (2008) in which the covariance between the

structural error and the instruments are ”C/
√

n” where C is a constant vector. The

reasons to choose this assumption are that it allows us to benefit from resampling

methods and it is realistic in that it allows the covariance between the instruments

and structural error to vary with the sample size. We should not forget that our

Assumption 1 below is only intended to get a better approximation in finite samples.

So our assumption is basically about using a non contiguous sequence opposed

to a constant ”C” (contiguous sequence). Our method does not cover both cases

simultaneously. Our assumption works in large samples only in the case of Cn. But

we show that in finite samples the size and the power results are similar in the

contiguous and non-contiguous cases.
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Another point to clarify is that we need Cn/
√

n rather than d/nκ, 0 < κ < 1/2

where d is a constant that we use for expositional purposes and for deriving Lemma

1. The proof of Lemma 1 is an extension of the contiguous case in Berkowitz, Caner,

Fang (2008) to the non- contiguous case. Formulating Assumption 1 in our way makes

clarifies this extension.

Note that there are no exogenous control variables in the system. This can be

projected out easily. In order to simplify the notation, we do not include exogenous

control variables in the equations above.

We want to test H0 : θ = θ0. We also assume EZiV
′
i = 0, for i = 1, · · ·n.

Now we start describing the Anderson-Rubin (1949) test. This is as follows:

AR(θ0) = [(y − Y θ0)
′Z ′/n1/2]Ω̂−1[Z ′(y − Y θ0)/n

1/2], (1)

where Ω̂ = 1
n

∑n
i=1 ZiZ

′
iu

2
i .

We can rewrite the Anderson-Rubin test (AR (θ0)) as

AR(θ0) = S̄ ′
n(varS̄n)

−1S̄n = nS̄ ′
nΩ̂−1S̄n, (2)

where S̄n =
∑n

i=1
Ziui

n
= Z′(y−Y θ0)

n
, and varS̄n = Ω̂/n. We can also demean Zi in the

variance formula but this does not make any difference in the asymptotics.

2.1 Assumptions

In this section we introduce our assumptions and discuss them.

Assumptions

Assumption 1. For i = 1 · · · , n,

(i).

EZiui =
Cn√

n
, for i = 1, · · · , n,

where Cn is k × 1 vector and Cnj/
√

n → 0, as n → ∞, and Cnj → ∞ as n → ∞ for

each cell j = 1, · · · , k in the vector Cn.

(ii).

Ω = lim
n→∞

1

n

n∑
i=1

EZiZ
′
iu

2
i ,

where Ω is nonsingular and finite. Note that various types of data is discussed after

the proof of Theorem 1 and here.

(iii).

cov(ui, Vi) �= 0.
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(iv).

EZiV
′
i = 0.

Assumption 2.

lim
n→∞n−1

n∑
i=1

E‖Ziui‖3 < ∞.

Assumption 1 allows a small covariance between the instruments and the struc-

tural error and is how we operationalize minor violations of exogeneity. Assumption

1 is discussed above in this section. The situation when Cn = O(
√

n) is discussed in

the remarks after Theorem 1.

Assumption 2 is needed for strong law of large numbers approximation needed for

obtaining the Berry-Esseen bounds. This assumption is discussed in Zhao, Wang, Wu

(2004), as Remark 3 after Corollary 1 in their paper. This is a sufficient condition for

the Berry-Esseen bound for the independent case. The triangular array case can also

be obtained by Theorem 1 in Zhao, Wang, Wu (2004), and Assumption 2 is again

sufficient.

2.2 Full Sample Result

In this subsection we derive the limiting distribution of the full sample Anderson-

Rubin (1949) test under our violation of exogeneity condition in Assumption 1. Let

q1
α be the 1 − α quantile of a noncentral chi-square distribution with k degrees of

freedom and with noncentrality parameter as C ′
nΩ−1Cn/2, (χ2

k,C′
nΩ−1Cn/2).

Lemma 1. Under Assumptions 1 and 2, we have

P (AR(θ0) ≥ q1
α) → α. (3)

.

In this noncentrality parameter as indicated in Assumption 1, Cn → ∞ but Cn =

o(n1/2). This shows that if we use the standard χ2
k critical values when there is a

violation of the exogeneity assumption, then increasing the sample size makes the size

of the AR-test worse. This is also what we observe in the simulations in Table 1 for the

setups discussed in Section 4. This extends the limit result for contiguous sequences

in Berkowitz, Caner, Fang (2008) which is a noncentral chi-square distribution, and

the noncentrality parameter depends on constants rather than a slowly diverging

sequence.
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2.3 Resampling Technique

In this section we first describe the resampling technique that we use. We take a

subset of size ”b” (block size) from n observations. We resample from data ”x”

where x = (x1, · · ·xn). The blocks in this resampling from ”x” are ”xb” with size

”b”, and equal probability of

⎛
⎝ n

b

⎞
⎠

−1

. This is done via simple random sampling

without replacement from the population. The size of the blocks plays a crucial role

in achieving our result. Denote this resampling technique by ”*”. Notation such as

P∗, E∗ refer to calculations under ∗.
For our setup, we are interested in resampling from the following quantity: Z ′u =∑n

i=1 Ziui, where u = y − Y θ0. Denoting the sample average by S̄n = n−1∑
i=1 Ziui,

S̄b is the mean of the simple random sample of size ”b” drawn without replacement

from ”n” observations (mean over b observations that are drawn out of n). Thus, for

block size b = fn, f ∈ [1/2, fu], fu < 1 1. Note that we are not using directly the

estimators in equations (1.2)(1.3) of Wu (1990). Instead we benefit from section 2,

equations (2.2)(2.3) of Wu (1990). We also extend his case to independent random

variables and the extension from iid to triangular arrays is simple and is discussed

after Theorem 1. In terms of block size choice, our approach is also different than Wu

(1990) where he considers all fractions between 0 and 1. In our problem, this results

in overrejections of the null in large samples. We discuss our choice of block size after

Theorem 1. Note that fraction of the sample ”f” is the choice of the researcher. We

now describe the fractionally resampled Anderson-Rubin test (FAR (θ0)).

FAR(θ0) = S̄ ′
b(var∗S̄b)

−1S̄b =
bS̄ ′

bΩ̂
−1S̄b

(1 − f)
, (4)

where immediately after equation (2.2) on p.1440 of Wu (1990) or Theorem 2.2. of

Cochran (1977) shows that var∗S̄b = 1−f
b

Ω̂. Observe that the right-hand side in

(4) is slightly different than the right hand side in (2). This is due to the property

of var∗S̄b =
[

Ω̂
b

]
(1 − f). This will play an important role in deriving our main

result. Even though the resampled test statistic above does not overreject the null

in large samples, except from the case of f = 1/2, it can waste power since it is not

asymptotically similar when f > 1/2. The optimal block size for perfect size and for

avoiding underrejections (or mitigating loss of power)is half the sample size.

1We can set b = [fn], where b/n → f and [.] is the integer part of the number fn. But to save

from notation and to keep up with section 2 of Wu (1990) framework we do not use that.
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We show that with f = 1/2, we get the optimal block size in a way that we

recover the limit of the Anderson-Rubin test under Assumption 1. In our method,

we basically resample from n/2 observations to obtain the score, and the estimate of

the variance term is not resampled. We will describe why n/2 is chosen in the proofs

rigorously. This is also intuitively described in the remarks after Theorem 1. The

optimal half-sampled FAR (θ0) is

FARo(θ0) = nS̄ ′
bo

Ω̂−1S̄bo , (5)

where bo = n/2. The optimal block size is n/2. The algorithm for obtaining the

empirical distribution function of these tests is described below after Theorem 1. The

following Theorem is the main result of the paper. Theorem 1 (ii) clearly shows that

the half-sampled FAR (θ0) does not overreject the null and recovers the limit in (3).

From Theorem 1i we realize that other than f = 1/2, all the fractions in [1/2, fu]

cause underrejections and hence waste power. Note that first we consider the general

test in (4) in Theorem 1i, then the optimally resampled test is given as its subcase in

Theorem 1ii.

Theorem 1.Given (3), under Assumptions 1 and 2,

(i). For f ∈ [1/2, fu], fu < 1, and the test in (4), define

Jb(t) = P∗(
bS̄ ′

bΩ̂
−1S̄b

(1 − f)
≤ t),

then

sup
t

|Jb(t) − φχ2
f
(t)| → 0 a.s.,

where φχ2
f
(t) is the noncentral chi-square distribution with k degrees of freedom and

with the noncentrality parameter f
1−f

C′
n(Ω)−1Cn

2
.

(ii). Set the optimal b, bo = n/2,f = 1/2, and define for the test in (5)

JH(t) = P∗(nS̄ ′
bo

Ω̂−1S̄bo ≤ t),

then

sup
t

|JH(t) − φχ2
1/2

(t)| → 0 a.s.,

where φχ2
1/2

(t) is the noncentral chi-square distribution with k degrees of freedom and

with the noncentrality parameter C ′
n(Ω)−1Cn/2. This is the distribution of the limit

in (3).
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Remark 1. Theorem 1ii clearly shows that the optimal half-sampled FAR (θ0) is

robust both to violations of exogeneity and to weak identification (the relevance of

the instrument). This is very important from applied perspective since as researchers

we are concerned about validity of the instruments. However as suggested above this

test in (5) is not a panacea for poorly selected instruments. Assumption 1 allows for

only for minor correlations between the instruments and the structural error. Our

test adjusts critical values according to these correlations and is data dependent.

Remark 2. We also observe from Theorem 1i that the fractionally resampled AR

(θ0) test does not recover the limit in (3) if we were to use the fractions 0 < f < 1/2

as in Wu (1990). For block sizes of f < 1/2 the situation is obvious. For example, if

f = 1/4, the noncentrality parameter is

1

3

(
C ′

n(Ω)−1Cn

2

)
.

In this case, the critical values shift to the left compared with noncentrality parameter

in (3). And, while there is size distortion, this distortion is not as bad as when the

regular AR (θ0) test is used. Still we overreject the null when if f = 1/4. Clearly, the

optimal block size is n/2, and is used in Theorem 1ii.

Remark 3. To give examples of the block size’s effects on the critical values, we set

the block sizes larger then n/2. If f=3/4 (b = 3
4
n), then the noncentrality parameter

is

3

(
C ′

n(Ω)−1Cn

2

)
,

which is three times the noncentrality parameter value in (3) under near exogeneity.

In this case, the critical values shift to right, the power is drastically reduced and the

test severely underrejects. This massive loss in power holds for all block sizes larger

than n/2.

Remark 4. Even though Theorem 1i shows that we do not overreject the null in

large samples as described in Andrews and Guggenberger (2007a), for all f, except

for f = 1/2, there is a loss of power. Since f = 1/2 is a knife-edged case, the

finite sample properties may not be as good as theory characterizing the large sample

properties. An alternative is to treat the fraction (f) as a sequence fn. In this case

the proof of Theorem 1 implies that uniformly over fn, the optimal f ∗
n → 1/2, where

fn = f + o(1/n). This means that in finite samples fn may be chosen to be smaller

than 1/2 given that the block sizes above that may result in underrejections. This
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point can be understood by considering the variance reduction that accompanies large

block sizes in our technique.

Remark 5. Consider the choice of Cn. The half-sampled FAR (θ0) can achieve

the correct size even when Cn = O(
√

n). The problem in that case is both limits

converge to infinity and the speed of convergence is very fast.

Remark 6. The proof uses Assumption 2 which is for independent data. The trian-

gular arrays can be easily done, and this is discussed and shown after the Assumption

2.

2.4 The Algorithm

Next we write the algorithm to test the null of H0 : θ = θ0 by using the critical values

obtained from empirical distribution function of the optimal half-sampled FAR(θ0)

in (5).

Step 1: First calculate the terms Ω̂ from the full sample of Zi, ui as described at

the beginning of this section.

Step 2: Denote ybo, Ybo , Zbo as draws of block size bo = n/2 from full sample y, Y, Z

without replacement, respectively. Note that ybo : n/2×1, Ybo : n/2×m, Zbo : n/2×k.

Form

S̄bo = [Z ′
bo

(ybo − Yboθ0)]/(n/2)

.

Step 3. Form FARo(θ0) in (5) by using steps 1-2.

Step 4. Repeat steps 2-3, J times. (J may be 1000, or 5000) Then sort J values

of FARo(θ0) to form the empirical distribution function.

Step 5. For a 5% test find the 95 percentile of the empirical distibution function

in step 4.

Step 6. Reject the null of H0 : θ = θ0, if the full sample AR(θ0) as described in

equation (1) is larger than the 95th percentile in step 5.

Note that in the above algorithm, Ω̂ is calculated from the full sample. Only the

numerator of the test statistic, the score, has to be resampled. The main technical

reason for that is shown in the proof of Theorem 1. Basically for any block size b,

p.1440 of Wu (1990) or Theorem 2.2 of Cochran (1977) shows that var∗S̄b = 1−f
b

Ω̂ in

our case.
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3 Comparison With Subsampling and Variants

In this section we compare the resampling technique employed here with subsampling.

Note that subsampling the AR (θ0) test will not work because it will be oversized.

A simple counterexample can be seen from our results since in that case
√

f =√
b/n = o(C−1

n ), so b/n → 0, as b → ∞, n → ∞, meaning f → 0. That means the

noncentrality parameter in Theorem 1 becomes with Cn = o(n1/2):

f

1 − f

C ′
nΩCn

2
→ 0.

Hence, the subsampled AR(θ0) test statistics will converge to the standard χ2 limit.

Clearly this is oversized. The subsampled limit is stochastically less than the one in

(3).

The work of Andrews and Guggenberger (2007a) is important for this section

because it analyzes cases in which the subsampling approach works and cases in

which it fails. Their assumptions do not cover the resampling used here. Andrews and

Guggenberger (2007a) specifically assume bn,s/n → 0 as bn,s → ∞, n → ∞, where bn,s

represents the block size in subsampling. In our case bn/n = f, f ∈ [1/2, fu], fu < 1,

where bn denotes the block size in the resampling method we use. This is also different

from Wu (1990) where he covers all 0 < f < 1. In other words, subsampling is only

concerned with small blocks and the technique that we use takes at least half of the

sample as the block size.

Apart from the treatment of the block size issue, another very important difference

between subsampling and the fractional resampling is the variance terms. In order

to illustrate this, take any sample mean X̄n = n−1∑n
i=1 Xi and resample with the

technique here (sample bn = fn observations out of n without replacement) and

denote the sample mean averaged over b observations as X̄b. Then the variance of X̄b

under simple random sampling without replacement is (1 − f)σ̂2/bn, where σ̂2 is the

standard sample variance of each Xi (p.1440, after equation (2.2), Wu, 1990). This

is entirely different from the subsampling. In subsampling the counterpart is σ̂2/bn,s.

This point will be analyzed in detail with an example below.

Even though the assumptions employed in Andrews and Guggenberger (2007a)

do not apply to our setup, whenever the resampled distribution of any test statistic is

stochastically greater than or equal to the original distribution (the target distribution

that we want to replicate), then the nominal level α ∈ (0, 1) of the resampled test has

the asymptotical level α. This is true since the critical value of the resampled test
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is greater than or equal to critical values from the original test limit. For this point

see equation (9.14) and Comment 2 after Theorem 2 in Andrews and Guggenberger

(2007a). This is clearly true in our case. By comparing the limits in Theorem 1 and

(3), it is obvious that the limit of fractionally resampled AR(θ0) test is stochastically

greater than or equal to (3). At f = 1/2, the limit is stochastically equal to (3).

Now we illustrate the difference between subsampling and fractional resampling in

a simple example used in section 2 of Andrews and Guggenberger (2007a) analyzing

the issue of a simple boundary problem. The true parameter θ0 is nonnegative.

Assume that Xi is iid with N (0,1), for i = 1, · · · , n. The Maximum Likelihood

Estimator (MLE) of θ0 is θ̂n = max{X̄n, 0}, and X̄n = 1
n

∑n
i=1 Xi. The distribution

of θ̂n is

θ̂n ∼ max{Zn, 0}, Zn ∼ N(θ0,
1

n
).

Then we subsample (bn,s/n → 0, as bn,s → ∞, n → ∞), which bn,s = o(n), the

subsampled estimator is θ̂bn,s,j = max{X̄bn,s,j, 0} where X̄bn,s,j = 1
bn,s

∑j+bn,s−1
i=j Xi and

the distribution is

θ̂bn,s,j ∼ max{Zbn,s , 0}, Zbn,s ∼ N(θ0,
1

bn,s
).

It is clear that the distribution of θ̂bn,j does not replicate the distribution of θ̂n.

This is thoroughly discussed in Andrews and Guggenberger (2007a). The main reason

is that the subsample estimator is closer to the boundary of parameter space than the

full sample estimator. To see this varθ̂bn,s,j when Zn > 0 is 1/bn,s, and varθ̂n is 1/n

when Zn > 0. Since bn,s = o(n), 1/bn,s is larger than 1/n and hence more variable

near the boundary.

In the fractional resampling bn = fn, f ∈ [1/2, fu], fu < 1, so bn = O(n). When

we use this technique in the case of the former example (with Zbn > 0), the variance

of the fractionally resampled estimator is:

varθ̃bn =
1 − f

bn
.

To understand this, we use section 2 of Wu (1990). The variance of the resampled

mean is (1−f)varXi

bn
, where varXi = 1 in this example. Then note that compared to

the original variance and the subsampled ones

varθ̂bn,s,j > varθ̂ ≥ varθ̃bn ,
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since
1

bn,s

>
1

n
≥ (1 − f)

bn

=

(
1 − f

f

)
1

n
,

and f ∈ [1/2, fu], fu < 1. At f = 1/2 we have the optimal choice and capture the

variance. This shows that variability in this technique is less than or equal to the

subsampling technique.

There are also other techniques suggested by Andrews and Guggenberger (2007b)

besides subsampling for recovering the limits of tests under nonstandard situations.

One test is the hybrid subsample method. In this test the researcher takes the maxi-

mum of the subsampling and the limit under the ”stochastically largest” critical value

of the distribution. The critical values using that approach will be very large and will

waste power in our case. The second approach suggested by Andrews and Guggen-

berger (2007b) to overcome the problems of subsampling is size-corrected subsam-

pling. This adjusts the critical values by adding constants depending on the problem.

This may help in our case, but when the system is over-identified, this requires a grid

search over Rk that is computationally very intensive. Our method does not require

a grid search, and is not computationally demanding. Andrews and Guggenberger

(2007b) show that these two methods give mixed results in small-samples in terms of

size and power of the tests in discontinuous limit cases.

4 Simulation

This section shows the small sample properties of the tests that are proposed in

equations (4) and (5). We consider several block sizes for (4). We use the setup in

section 2, namely

yi = Yiθ0 + ui,

Yi = ZiΠ + Vi,

for i = 1, · · · , n. The sample size is n and varies between 100 and 200. We consider

the case of one instrument and one endogenous regressor, so k = 1, m = 1 (exact

identification). A case with overidentification is also considered, but not reported here

because the results are very similar. Π can take the values of 1 (strong identification),

and 0.1 (weak identification). The iid data (Zi, ui, Vi) are generated from a joint
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normal distribution N(0, Ω) where

Ω =

⎡
⎢⎢⎢⎣

1 cov(Zi, ui) 0

cov(Zi, ui) 1 0.5

0.5 0 1

⎤
⎥⎥⎥⎦ .

So varZi = varui = varVi = 1, cov(Zi, Vi) = 0, cov(ui, Vi) = 0.5. For the size exercise

θ0 = 0, we test H0 : θ = 0. For the power θ0 = −1,−0.8,−0.5,−0.2, 0.2, 0.5, 0.8, 1.

We consider three setups for the cov(Zi, ui) term. The first setup is consistent

with the near exogeneity assumption in Berkowitz, Caner and Fang (2008):

cov(Zi, ui) =
C

n1/2
, (6)

and C takes the values of 2, 3, and 5. As C becomes larger, endogeneity becomes

more problematic. And, the researcher picks a terrible instrument when C = 5.

In the second setup we have:

cov(Zi, ui) = D, (7)

where D is a constant and takes values 0.1, 0.2, 0.3. With this setup we expect

large size distortions to emerge as the sample becomes larger because the drift D is

multiplied with the square root of the block size in the score in the test statistic. We

also used negative values for the covariance term but the results do not change and

hence are not reported.

In third setup, we return to Assumption 1 of this paper:

cov(Zi, ui) =
an1/3

n1/2
, (8)

where Cn = an1/3, and a takes the values of 0.25, 0.5, and 1. At n = 100, these

correspond to covariance (correlation, since variances are normalized at 1) of 0.12,

0.23, and 0.46 respectively for a = 0.25, 0.5, 1.

For both getting the distribution of the resampled FAR (θ0) in the algorithm in

section 2.3, and for calculating the rejection rates of the null (i.e. comparing the

full sample AR (θ0) with the 90% critical value calculated from resampled FAR(θ0)),

1000 iterations are used. We try the block sizes b = 25, 32, 37, 50 for n = 100 and for

n = 200, we set b = 50, 65, 75, 100. For the power exercise, n = 100 is used only with

Π = 1. When Π = 0.1, the power is very low due to weak identification.

When we use half the sample size our results are very conservative in every simu-

lation that is conducted (0 size with 0 power) and they are not reported. This result

13



is related to the behavior of the higher order terms. Clearly we obtain the asymptotic

result in Theorem 1 when we use half the sample. In the simulation that we have

done with n = 200, and C larger than 5, we approach the perfect size with a block size

near one half. This simulation is conducted to check if we approach the asymptotics

(it is not reported). Also we consider a = 2 and n = 200 and we see that we approach

the asymptotics. But as mentioned in Remark 2, it is clear that the optimal fn can

be thought as f ∗
n → 1/2.

However, it is not possible to replicate the second order term in our test statistics

via resampling, as can be seen in p.1450 of Wu (1990). This is an undesirable charac-

teristic. This is the reason we get very conservative results at half-sample. However,

with block sizes smaller than 1/2 we can do well in finite samples as shown below.

Table 1 reports the size of the full sample regular AR(θ0) test in (1). This is

compared with asymptotic critical values for χ2
1 distribution at 10% level. We report

the rejection rates of the true null in Table 1. We see that both in setups 1 and 2 the

actual size is very large. In setup 1, at C = 2, the size is 66% with n = 200. This

shows there is a major size distortion problem if we use AR(θ0) for tests when there

is a violation of exogeneity. This can also be seen for t-tests in Berkowitz, Caner and

Fang (2008). The size calculations are done for Π = 1. Simulations for the case when

Π = 0.1 are also done, but the results are not reported because they are very similar

to the case of Π = 1. Another point to make is the size gets worse with large sample

size in setup 2. This is an important warning to applied researchers who believe that

increasing the sample size can correct for size distortions! In fact, as is very clear

from setup 3, a larger sample size can also increase size distortions. With a = 1, and

n = 100, the correlation is 0.46, the instrument is poorly selected and there is a huge

size distortion.

Tables 2-4 and 5-7 report the actual size when we use FAR (θ0) in (4) with different

block sizes when there is strong identification and weak identification respectively.

Compared to Table 1, Tables 2-4 show that at each block size the size is reduced. An

important question is whether we can achieve the perfect size of 10%? For setup 1 in

Table 2, at n = 100 and b = 25, this block size results in a 12.1% size at C = 2, and

when b = 32 for C = 3 the size is 6.5%. For setup 2 in Table 3, when cov Zi, ui = 0.2,

and b = 25 the size is 12% size for n = 100. In setup 3 in Table 4, the size is 18.4%

when a = 0.50, with b = 25,. In Table 4, when n increases to 200, with block size of

50 at the same covariance level of 0.2 the size is 43.0%. When a = 0.5 (corresponding
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Table 1: Size at 10%, AR(θ0) test, Π = 1

Sample Size Setup 1 Setup 2 Setup 3

C = 2 C = 3 C = 5 D = 0.1 D = 0.2 D = 0.3 a = 0.25 a = 0.5 a = 1

100 65.0 93.0 100.0 26.0 64.0 93.0 32.8 77.9 93.0

200 66.0 93.0 100.0 43.0 88.0 99.0 42.2 91.7 100.0

Note: Setup 1 is explained in (6), Setup 2 is explained in (7). ”D” represents the

covariance between the instrument and the structural error. Setup 3 and constant

”a”is explained in (8).

to 0.23 correlation) we have sizes of 1.7% and 7.7% with n = 100, 200 respectively.

Generally we see that block sizes above 1/3 of the sample size are very conservative

when there is some low/mild correlation between the instrument and the structural

error. We see from the simulations that at low/mild correlation levels the block size

choice between 1/4 to 1/3 of the sample size gives good results. In an unrealistic case

of C = 5 we see that block size of 37 at n = 100 gives 9.6% size at 10% level. If we

are concerned with reducing size distortions, a good approach is to use a fraction of

1/3 for minor/moderate violations of the exogeneity assumption.

Even though it is not reported in Table 4, we have also simulated b = 80 for a = 1

with n = 200. The size is 2.9%. So there is a sharp decline of size from b = 75

to b = 80. We should note that we also try the very unrealistic case of a = 2 (this

corresponds to 0.83 correlation between the instrument and the structural error) with

n = 200, with b = 85 and we get a very good size that is close to 10%.

Next we analyze the power properties of the FAR (θ0). Tables 8-10 consider the

power of FAR (θ0) when b = 25, 32, 37 with n = 100, Π = 1. We see that b = 25 has

the best power, and also b = 32 has reasonably good power. If we are concerned with

by size and power, then a good strategy is first to resample with 1/4 of the sample

size and then try the 1/3 block size; and, if the results are the same, report them

them with the 1/3 block size. With larger sample sizes, if the results are in conflict,

a block of 1/3 should used; if the sample is small then a 1/4 block size is preferred.

We also try the minimum volatility method used in subsampling to obtain better

finite sample results, but the block b = n/3 has better size properties.
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Table 2: Setup 1, Size at 10%, FAR(θ0), Π = 1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

C = 2 12.1 0.1 0.0 12.6 1.0 0.0

C = 3 42.0 6.5 0.1 46.1 8.8 0.1

C = 5 96.0 66.7 9.6 98.0 74.0 12.7

Note: This is the test statistic in (4) and setup 1 is (6).

Table 3: Setup 2, Size at 10%, FAR(θ0), Π = 1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

D = 0.1 2.0 0.0 0.0 5.0 0.0 0.0

D = 0.2 12.0 0.9 0.0 11.9 5.4 0.2

D = 0.3 42.0 9.0 0.1 88.0 8.8 2.3

Note: This is the test statistic in (4) and setup 2 is (7). D represents the covariance

between the instrument and the structural error.

Table 4: Setup 3, Size at 10%, FAR(θ0), Π = 1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

a = 0.25 2.6 0.0 0.0 4.0 0.2 0.0

a = 0.50 18.4 1.7 0.0 43.0 7.7 0.0

a = 1 93.6 51.9 4.9 99.4 92.4 35.1

Note: This is the test statistic in (4) and setup 3 is (8). ”a” is in (8) as Cn = an1/3.

Table 5: Setup 1, Size at 10%, FAR(θ0), Π = 0.1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

C = 2 10.8 1.3 0.0 17.0 0.1 0.0

C = 3 39.1 8.1 0.1 43.4 8.9 0.1

C = 5 96.8 70.4 10.3 97.6 72.6 12.7

Note: This is the test statistic in (4) and setup 1 is (6).
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Table 6: Setup 2, Size at 10%, FAR(θ0), Π = 0.1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

D = 0.1 0.8 0.2 0.0 0.2 0.2 0.0

D = 0.2 12.2 1.1 0.0 38.7 6.0 0.1

D = 0.3 44.4 5.4 0.2 87.3 46.3 3.4

Note: This is the test statistic in (4) and setup 2 is (7). D represents the covariance

between the instrument and the structural error.

Table 7: Setup 3, Size at 10%, FAR(θ0), Π = 0.1

n = 100 n = 200

Block size b = 25 b = 32 b = 37 b = 50 b = 65 b = 75

a = 0.25 2.7 0.1 0.0 5.3 0.1 0.0

a = 0.50 20.7 2.1 0.0 41.0 6.9 0.1

a = 1 91.3 56.5 5.6 99.7 93.4 36.6

Note: This is the test statistic in (4) and setup 3 is (8). ”a” is in (8) as Cn = an1/3.

Table 8: Setup 1, Power , FAR(θ0)

b = 25, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

C = 2 99.2 98.8 55.2 0.2 57.2 93.7 98.0 99.1

C = 3 99.9 96.2 21.0 2.7 84.3 98.4 99.6 100.0

C = 5 88.8 66.0 0.2 65.4 99.4 99.9 100.0 100.0

b = 32, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

C = 2 95.4 83.6 13.2 0.0 16.8 58.3 81.1 87.7

C = 3 89.6 67.0 2.5 0.1 42.5 77.9 88.1 92.3

C = 5 43.6 21.3 0.0 20.3 87.7 95.4 97.2 96.8

b = 37, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

C = 2 43.9 21.3 0.6 0.0 0.5 8.2 15.3 23.7

C = 3 30.0 8.5 2.5 0.0 1.9 14.6 24.5 33.1

C = 5 0.3 0.7 0.0 0.6 25.1 44.6 51.0 52.7

Note: This is the test statistic in (4) and setup 1 is (6).
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Table 9: Setup 2, Power , FAR(θ0)

b = 25, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

D = 0.1 100.0 99.6 85.4 1.5 26.6 83.3 96.4 99.1

D = 0.2 99.9 99.2 55.6 0.2 56.3 94.5 98.5 99.5

D = 0.3 99.4 97.3 20.3 1.8 83.8 98.1 99.8 100.0

b = 32, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

D = 0.1 97.3 93.0 40.3 0.3 4.3 33.7 66.1 80.8

D = 0.2 95.2 86.5 12.1 0.0 14.7 56.3 80.0 86.9

D = 0.3 90.9 66.6 2.1 0.2 40.5 76.8 88.9 94.3

b = 37, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

D = 0.1 56.2 38.1 2.6 0.0 0.1 3.2 9.5 16.3

D = 0.2 41.7 21.5 0.3 0.0 0.5 5.8 18.3 25.8

D = 0.3 29.3 7.6 0.0 0.0 2.0 12.7 28.9 34.9

Note: This is the test statistic in (4) and setup 2 is (7).
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Table 10: Setup 3, Power , FAR(θ0)

b = 25, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

a = 0.25 100.0 99.8 81.3 1.2 32.1 85.8 97.8 98.6

a = 0.50 99.9 99.0 44.1 0.1 67.2 95.5 99.2 99.8

a = 1.00 96.4 78.2 0.4 48.3 98.5 99.7 99.7 99.9

b = 32, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

a = 0.25 97.7 91.5 34.5 0.0 4.0 37.1 68.6 82.3

a = 0.50 94.3 79.5 7.5 0.0 20.7 64.7 84.6 88.0

a = 1.00 73.0 28.3 0.0 9.7 82.4 93.2 96.3 97.4

b = 37, n = 100

θ0 = -1 -0.8 -0.5 -0.2 0.2 0.5 0.8 1

a = 0.25 52.0 32.1 2.2 0.0 0.0 4.4 9.0 16.7

a = 0.50 38.2 16.9 0.0 0.0 0.5 9.0 21.8 27.7

a = 1.00 13.1 1.4 0.0 0.3 16.7 36.7 47.7 51.8

Note: This is the test statistic in (4) and setup 3 is (8). ”a” is in (8) as Cn = an1/3
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5 Conclusion

This paper shows that it is possible to conduct inference using instrumental variables

when there is a mild violation of the strict exogeneity assumption. By using a re-

sampling technique which draws half the sample from the all of the sample without

replacement, we recover the distribution of the Anderson-Rubin test. The fraction-

ally resampled Anderson-Rubin test (FAR(θ0)) does not overreject the null in large

samples and this result is robust when the instruments are weak. Instruments that

perfectly satisfy the knife-edge orthogonality assumption are few and far between. If

researchers carefully pick instruments and use our method with a block between one-

quarter and one-third, they can draw reliable inferences using instrumental variable

methods.
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APPENDIX

Proof of Lemma 1. First see that

√
nS̄n =

1√
n

n∑
i=1

Ziui = [n−1/2
n∑

i=1

(Ziui − EZiui)] +
√

nEZiui.

Then via Central Limit Theorem

[n−1/2
n∑

i=1

(Ziui − EZiui)]
d→ N(0, Ω),

and by Assumption 1 √
nEZiui = Cn.

Then with Cn = o(
√

n), and using these in AR(θ0) we get the desired result. To

see this in detail, set the concentration parameter as λn = C ′
nΩ

−1Cn/2. Then by the

noncentral chi-square distribution (with mean k + λn, and variance 2(k + 2λn))

AR(θ0) − (k + λn)√
2(k + 2λn)

d→ N(0, 1).

Then by the standard result for the non central chi-square distributions, as Cn → ∞,

the (1 − α) th quantile q1
α of χ2

k,λn
we have

q1
α − (k + λn)√
2(k + 2λn)

converges to the 1 − α th quantile of N(0, 1). The points above can also be seen

by noncentral chi-square distribution properties when the concentration parameter

converges to infinity as in p.51-52 of Evans, Hastings, Peacock (1993). A similar

argument is used (when only the degrees of freedom converge to infinity and con-

centration parameter is constant) in proof of Theorem 4 in Newey and Windmeijer

(2007).

Next we have

P (AR(θ0) ≥ q1
α) = P

⎛
⎝AR(θ0) − (k + 2λn)√

2(k + 2λn)
≥ q1

α − (k + λn)√
2(k + 2λn)

⎞
⎠→ α.

In a sense the Anderson-Rubin limit converging to a limit with a parameter that

depends on sample size (Cn) is also observed in many weak moments context of

Theorem 4 in Newey and Windmeijer (2007) without the violation of exogeneity. In

their case the proof proceeds in the same way, but they do not have a noncentrality
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parameter, however in their case k → ∞ (the degrees of freedom converge to infinity

albeit slower than root n). So it is still the case, the mean and the variance of the

distribution converges to infinity when the sample size goes to infinity.Q.E.D.

Proof of Theorem 1.

(i). The first part of the proof extends Wu (1990) (equations (9)-(13)) to inde-

pendent case. Triangular array case is discussed after the proof of Theorem 1 here.

From page 1440 in Wu (1990), specifically benefiting from equations (2.1)(2.2) of Wu

(1990):

P∗

(
S̄b − E∗S̄b

(var∗S̄b)1/2
≤ t

)
= P∗

( √
b(S̄b − S̄n)

[(1 − f) ˆvarS]1/2
≤ t

)
, (9)

where f = b/n, and by the argument immediately after equation (2.2) of Wu (1990)

(or Theorem 2.2 of Cochran (1977))

var∗S̄b =
1 − f

b
ˆvarS. (10)

See that in our case

ˆvarS = Ω̂. (11)

Define as in Wu (1990)

J(t) = P∗

[ √
b(S̄b − S̄n)

[(1 − f) ˆvarS]1/2
≤ t

]
. (12)

Then under Ω being finite and nonsingular, via Assumption 2, Corollary 1 of Zhao,

Wang, Wu (2004) shows that

sup
t

|J(t) − φ(t)| → 0, a.s. (13)

where φ(t) is the standard normal distribution.

Then note that

√
bE∗S̄b =

√
bX̄n =

√
b√
n

(
n−1/2

n∑
i=1

Ziui − EZiui

)
+

√
b√
n

(
√

nEZiui). (14)

See that by the definition
√

b/n =
√

f ,

√
b√
n

(
n−1/2

n∑
i=1

Ziui − EZiui

)
d→ N(0, fΩ). (15)

Then by Assumption 1,
√

b√
n

(
√

nEZiui) =
√

bEZiui =

√
b√
n

Cn =
√

fCn. (16)
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Since Cn → ∞ as n → ∞, and Cn/n1/2 → 0, (16) dominates (15) in large samples.

In other words, we can see that, denoting the limit in (15) by L, for the concentration

parameter

C ′
nΩ−1Cn/(Cn + L)′Ω−1(Cn + L) → 1.

The test is defined as by (9)(10)

FAR(θ0) = (
√

bS̄b)
′((1 − f) ˆvarS)−1(

√
bS̄b).

Rewrite FAR(θ0) as

FAR(θ0) = [
√

b(S̄b − E∗S̄b + E∗S̄b)]
′((1 − f) ˆvarS)−1[

√
b(S̄b − E∗S̄b + E∗S̄b)].

The using the above expression, by (13)-(16), and the discussion below (16) and

at the end of the proof of Lemma 1, with JH(t) = P∗(FAR(θ0) ≤ t),

sup
t

|JH(t) − φχ2
f
(t)| → 0, a.s.,

where φχ2
f
(t) is the noncentral chi-square distribution with noncentrality parameter

f

1 − f

C ′
n (Ω)−1Cn

2

.

(ii). We show that a half-resampled version of Anderson-Rubin test(FARo) solves

the problem with the block size choice of b = n/2. When n → ∞, we do not

underreject and achieve the desired size.

Note that with optimal choice of fo = 1/2, we have the noncentrality parameter

as C ′
n(Ω)−1Cn/2. This is the noncentrality parameter in the full sample distribution

of AR(θ0) under near exogeneity. So with fo = 1/2, the FARo(θ0) fully recovers the

limit when there is mild violation of exogeneity and weak identification. The test

we describe is robust to these two important problems in the instrumental variable

literature.Q.E.D.

Remark. The only difference between the proof of iid case in Wu (1990) and the

one here is the Berry-Esseen bounds. The iid case in Wu (1990) is satisfied under

finite second moments as well. The extension to triangular arrays can be done using

Theorem 1 of Zhao, Wu and Wang (2004). The Berry-Esseen bounds are for a sample

sum from a finite set of independent random variables in Zhao, Wu, Wang (2004).
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