
Inference about the rank of cointegration of a

locally trending VAR process

Guillaume Chevillon∗

ESSEC Business School, Paris

and CREST-INSEE

September, 2008

Abstract

Standard tests for the rank of cointegration of a vector autoregressive (VAR) process present

nonstandard distributions that are affected by the presence of deterministic trends. When it

is known that the data generating process exhibits a linear trend, it is preferable to model it

explicitly and use the corresponding form of the Likelihood Ratio (LR) or Lagrange Multiplier

(LM) test statistics. In the presence of stochastic nonstationarity, such as in the cointegrated

VAR, deterministic linear trends may be present in the data but with an effect that is not strong

enough to be noticeable. Such a situation can be modeled by means of a cointegrated VAR process

that exhibits a local linear trend that has same asymptotic magnitude as the common stochastic

trends. We derive the properties of the LR and LM tests in this context. We show that whether

the trend is orthogonal to the cointegrating vector has a major impact on the distributions. The

LR statistics without unrestricted constant are mildlly powerful against the local alternative. The

LR with unrestricted trend and the LM are robust towards local trends, but other specifications

of the LR perform badly.
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1 Introduction

There has been a recent renewed interest in designing testing strategies for unit roots that are

robust to the possible presence or a linear trend, see Harvey, Leybourne and Taylor (2008) and

the multivariate extension in Lütkepohl and Demetrescu (2008). These studies draw on the long

established difficulties in distinguishing in finite samples between stochastic and deterministic

trends, see e.g. see Sampson (1991) and Murray and Nelson (2000) for an empirical example. In a

multivariate context, the difficulties are compounded by the presence of many nuisance parameters

and many analyses have focused on their influences, see Hubrich, Lütkepohl and Saikkonen (2001)

for an overview.

Also, in the joint occurrence of stochastic and deterministic trends, the latter can be restricted

or not to lie within the space spanned by the cointegrating vectors. This is the reason why Perron

and Campbell (1993) distinguished between “stochastic” and “deterministic” cointegration: only

in the latter is the trend orthogonal to the cointegrating vector. In a simulation experiment,

Toda (1994) showed that the likelihood ratio (LR) test (see Johansen, 1988 and 1991) can be

strongly affected by nuisance parameters when a trend is also present. This realization has led

H. Lütkepohl and P. Saikkonen to propose in a series of papers (in 1999 and 2000) a Lagrange

Multiplier (LM) test which estimates the deterministic parameters under the null and proceeds to

correct for them. In parallel, S. Johansen has suggested, also in a series of papers (in 2000 and

2002) a Bartlett correction for the LR test in finite samples. This correction works well in the

presence of deterministic cointegration when, as in Nielsen and Rahbek (2000), the parameters

are restricted so that similarity of the tests results. Unfortunately, in finite samples and in the

presence of stochastic cointegration, Chevillon (2008) showed that the finite sample distributions

are affected by the parameters of the deterministic components.

In view of these difficulties, Lütkepohl and Demetrescu (2008) have proposed extending the

work by Harvey et al. (2008) to the vector autoregressive (VAR) process. This technique consists

in estimating the two models with a deterministic trend restricted or not to lie in the space

orthogonal to the cointegrating vector and reject the null if either statistic is significant. These

authors show that their methodology compares advantageously to pretesting for the correct trend

specification.

In this paper, we derive the distribution of the LR and LM tests in the presence of a, possibly

misspecified, local deterministic trend. The latter has a parameter that is asymptotically vanishing

at the rate O
(
T−1/2

)
so that both the stochastic and deterministic trends interact asymptotically.

This allows us to analyze the robustness of the test for the rank of cointegration when a linear trend

is present in the data but whose impact is small and possibly goes unnoticed. We show that very

different behaviors result, depending on whether the data are stochastically or deterministically
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cointegrated. In a Monte Carlo simulation, we also observe that the LR statistic with a restricted

trend is not as robust in finite samples as asymptotically. By contrast, the LR statistic that

corrects for an unrestricted trend and the LM are, as expected, robust to the local trend. The LR

without deterministic element exhibits some power against a misspecified local trend; hence it may

be useful to use it as a specification tool by comparison with the other statistics.

The paper is organized as follows. Section 2 present the model and local asymptotic frame-

work. We then derive in section 3 the distributions of the various statistics for the tests on the

cointegration rank. A Monte Carlo analysis follows in section 4 and the last section concludes. An

appendix collects the proofs. Throughout the paper, row vectors are denoted by (a : b) ; also, for

any (p× q) matrix α of full rank, we define α⊥ of dimension p× (p− q) such that (α : α⊥) is of

full rank. We also let the generalized projection operator α = α (α′α)−1
.

2 The model

Consider a p-dimensional vector of variables xt that admits a vector autoregressive representation

of order k such that, for t = 1, ..., T,

∆xt = Πxt−1 +
k−1∑
i=1

Γi∆xt−i + εt. (1)

Assume that the disturbances εt follow a martingale difference sequence with bounded fourth

moments and variance covariance given by Ω = ΣΣ′ for some positive definite matrix Σ. If xt is

I(1) and Π is of reduced rank q, then there exist α and β of order (p× q) such that Π = αβ′ and

that β′xt − E
[
β′xt

]
is stationary. xt is then said to cointegrate, with cointegrating vector β. We

also let x0 = 0 in (1), although this is not an unconsequential assumption (see Müller and Elliott,

2003). We use the notation in Lütkepohl and Saikkonen (2000) and define yt as the sum of xt and

of a deterministic trend which we assume local

yt = xt + µ+ψ
t√
T

= xt + Ψdt (2)

where Ψ = (µ : ψ) is a matrix of dimension p×2, dt =
(
1 : T−1/2t

)′
. Then yt admits the following

moving average representation (see Johansen, 1995, theorem 4.2):

yt = C
t∑

i=1

εi + Ψdt + C1 (L) εt + At, (3)

where L is the lag operator, C = β⊥ (α′⊥Γβ⊥)−1
α′⊥, Γ = Ip −

∑k−1
i=1 Γi, the power series for

C1 (z) is convergent for |z| < 1 + δ for some δ > 0 and At is a stationary process that depends on

initial values such that β′At = 0.

In the model above we only consider local deterministic trends since our purpose is to study

the robustness of the cointegration tests in the presence of potential deterministic misspecification.
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This differs from analyses such as in Johansen (1995), chapter 14, Rahbek (1994) and Saikkonen

and Lütkepohl (1999) where it is the power of the test for the rank of cointegration vis-à-vis a locally

larger rank. The interaction between both local cointegration and local deterministic trends has

been studied by Chevillon (2008) who focuses on the finite sample nonsimilarity of the Likelihood

Ratio test with respect to the coefficients of the linear trend. Also, as noted by Lütkepohl and

Saikkonen (2000), the reason why we represent the trend as additive is to preclude a potential

quadratic trend in the data that may arise from the model

∆y†t = Πy†t−1 + Ψ
(
T−1/2 : T−3/2t

)′
+ εt. (4)

A well-known solution (see Johansen, 1994) is to restrict the linear trend to lie within the cointe-

grating space and let a constant enter unrestrictedly. Lütkepohl and Saikkonen (2000), expression

(2.7), show that (1) rewrites as

∆yt = νT +α
(
β′yt−1 − δT (t− 1)

)
+

k−1∑
i=1

Γi∆yt−i + εt (5)

where νT = −Πµ+T−1/2Γψ and δT = T−1/2β′ψ. Unfortunately, such a specification does not

explicitly model the linear trend that lies in the space spanned by α⊥, i.e. that interacts with the

common stochastic trends. This has significant impact in our analysis and motivates our choice of

representation. We follow in this Lütkepohl and Saikkonen (2000).

The asymptotic distribution of yt follows a straightforward multivariate extension of the random

walk with a local drift as in Chevillon (2008) who draws on Haldrup and Hylleberg (1995) and

Stock and Watson (1996). For this, we let, as usual, [w] denote the integer part of w for any

real scalar w. Define, then, UT in Dp [0, 1], the space of Rp-valued functions on the interval [0, 1]

which are right continuous and have finite left limits (càdlàg). Hence ∀r ∈ [0, 1] , UT (r) =

T−1/2
∑[Tr]

i=0 εi ⇒ ΣW (r), as T → ∞, where ‘⇒’ denotes weak convergence of the associated

probability measure, and W is a standard Brownian motion on Cp [0, 1] , the subspace of Dp [0, 1]

of continuous functions.

Then T−1/2y[Tr] retains asymptotically the sum of both the stochastic and of the degenerate

linear trend for, i.e. for r ∈ [0, 1] :

T−1/2y[Tr] ⇒ CΣW (r) +ψr
def
= Kψ,CΣ (r) (6)

where Kψ,CΣ is a Brownian motion with drift.

Motivated by expressions (5) and (6), and by our interest in allowing for a local trend, we

assume in the rest of the paper that y0 = 0, i.e. µ = 0.
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3 Cointegration tests

In this section, we derive the distributions of test statistics in the presence of local trends. We

aim to establish the properties of the types of tests for inference about the rank of cointegration

of the vector yt. The null hypothesis is that of Π in (1) being of rank q ≤ p. We assume that

this null is true but that the model that is used is misspecified. Indeed the modeler assumes that

the observables are {xt} where she is in fact dealing with {yt} , hence erroneously assuming no

deterministic terms in the DGP. For simplicity we let the modeler be mistaken about µ being

potentially non zero, but this matters less than the important aspect whether ψ is zero. In this

setting, we are not analyzing the power of the test for the rank of cointegration, but its local

robustness in the presence of misspecified deterministic trends: whether correct inference about

the rank of Π is achieved. We refer to power against the local trend when the probability that the

test statistic is significant tends to 1 under the local alternative.

3.1 Likelihood ratio test

Assume that the modeler wrongly assumes that the DGP follows equation (1) so that no determin-

istic component is included in the model. Then reduced rank regression of ∆xt on xt−1 corrected

for the lagged differences leads to computing the likelihood ratio test statistic

−2 logQ (H (q) |H (p)) = −T
p∑

i=q+1

log
(
1− λ̂i

)
(7)

where the eigenvalues λi are estimated as solutions to the problem
∣∣λS11 − S10S

−1
00 S01

∣∣ = |S (λ)| =

0, with Sij = T−1
∑T

i=1RitR
′
jt, Rit = Zit −Mi2M

−1
22 Z2t, Mij = T−1

∑
T
i=1ZitZ

′
jt, Z0t = ∆yt,

Z1t = yt−1 and Z2t is made of the stacked lagged differences of yt. Alternatively, the modeler may

wish to use another of the LR statistics that have been proposed in the literature. The purpose of

these is to take into account various assumptions about the deterministic terms that are present

in the data. Under the null that Ψ = 0, using another statistic than in expression (7) would imply

a loss of power against an alternative rank of cointegration. But a modeler may be willing to

trade in this loss for a gain in robustness against misspecifying Ψ. Following the definitions in

Johansen (1995), section 5.7, but with different notation, we define the statistic in (7) as LR for

the hypothesis H : (rk (Π) ,Ψ) = (q,0) . Two main alternatives are (i) also including a constant in

Z2t, which provides the statistic LR1, or (ii) including both a constant and a linear trend in Z2t,

thus yielding LR2. The underlying rationale for such statistics is that Ψ may be nonzero. Then

LR1 should be robust against hypotheses such as H1 : Ψ = (µ,ψ) , ψ = 0 and LR2 against the

presence of a linear trend. As is well known the latter assumptions might be too strong, hence the

two other assumptions form: H∗ or H∗
1 in which cases Z1t is augmented of a constant or a linear

trend, respectively, and Z2t contains, no deterministic terms or a constant, yielding LR∗ and LR∗1.
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These assumptions are specific to the error correction form (4) where they consist in restricting,

respectively, the drift (H∗) or the trend (H∗
1) to the cointegrating space.

Let the (p− q)-variate diffusion, for r ∈ [0, 1] ,

G (r) = V (r) +

 0(p−q−1)×1(
ψ
′
β⊥

CΩ′C′ψβ⊥

)−1/2

r

 (8)

where V (r) is a standard Brownian motion of dimension (p− q) and ψ = ψ
(
ψ′ψ

)−1 and the nota-

tion ψβ⊥
refers to the decomposition ψ = ψβ +ψβ⊥

alongside the two orthogonal supplements. We

also define G1 (r) = G (r)−
∫ 1

0
G (u) du = V (r) −

∫ 1

0
V (u) du +

[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

(r − 1/2) ,

and G2 (r) = V (r)−av−bvr where av,bv are coefficients correction V for a constant and a trend.

Finally, we denote by Jψα⊥
(r) = (α′⊥Ωα⊥)−1/2

α′⊥Kψ,Σ (r) = V (r) + (α′⊥Ωα⊥)−1/2
α′⊥ψα⊥

r.

Proposition 1 Under the assumption that the DGP is generated as (1) and (2), with y0 = 0,

then the asymptotic distributions of the Likelihood Ratio test statistics LRi
j , for h ∈ {∅, 1, 2} and

m ∈ {∅, ∗} , with (h,m) 6∈ {(∅, ∅) , (2, ∗)} , is given by

LRm ⇒ tr

{∫ 1

0

Gm
(
dJψα⊥

)′ [∫ 1

0

GmGm′
]−1 ∫ 1

0

(
dJψα⊥

)
(Gm)′

}

LRm
h ⇒ tr

{∫ 1

0

Gm
h (dV)′

[∫ 1

0

Gm
h Gm′

h

]−1 ∫ 1

0

(dV) (Gm
h )′

}
, if h 6= ∅ (9)

for all ψβ under hypothesis H2 and for ψβ = 0 under the other hypotheses.

The presence of a local trend brings a major departure from the null inasmuch as the distribu-

tions of the LR statistics no longer depend only on the number of common trends p−q irrespective

of the number of cointegrating relations. As seen in proposition 1, the distributions depend on

β′ψ and β′⊥ψ which vary, at least in dimension, with q.

According to the proposition, the formulation of the statistic under hypothesis H is be locally

non robust for all cases where ψ 6= 0 except under H2 where the distribution is asymptotically

similar with respect to ψ (see also Nielsen and Rahbek, 2000). But the robustness of LR2, and

potentially LR∗1, can come at the cost of a loss of power. The cases considered in this proposition

are those that Perron and Campbell (1993) labeled “deterministic” cointegration and that can be

treated using Johansen (1991). In the case of a linear trend which is not entirely contained in the

space spanned by β⊥, i.e. in the presence of “stochastic” cointegration, the statistic LR2 is not

affected, but it is not the case under the other assumptions.

The above proposition does not cover hypotheses other than H2 for stochastic cointegration.

This is because the deterministic components are the underspecified. Indeed, for ψβ 6= 0, it is

shown in the appendix that under assumption H, the statistic LR is the sum of the smallest p− q

eigenvalues of the matrix

S = N−1M + op (1)
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where the matrices N and M are random. In particular

E [N] = −


1
6β

′ψβψ
′
ββ 0 0

0 0 0

0 0 0

 +
1
2


β′ψβ

0

1



β′ψβ

0

1


′

+


0

γ′CΣ

ψ
′
β⊥

CΣ




0

γ′CΣ

ψ
′
β⊥

CΣ


′

which shows that if q = p then E [N] is not invertible. The test statistic will diverge as the rank

of Π in (1) increases. Also, when the dimension of ψβ increases with q and then dominates ψ
′
β⊥

and CΣ, so E [N] becomes near singular and LR diverge for large q. We show in the appendix that

the pattern is identical for LR∗.

The situation is worse for H1 (and this also holds under H∗
1) : we show in the appendix that the

matrix N becomes N1 a matrix with singular expectation. Hence LR1 and LR∗1 are not robust at

all to the presence of local trends that are not orthogonal to β. Due to the complicated distribution

that result, we observe the rejection rates via a Monte Carlo experiment in section 4.

3.2 Lagrange Multiplier test

Because of the difficulty associated with choosing the correction deterministic specification for the

Likelihood Ratio test, Helmut Lütkepohl and Penti Saikkonen have proposed in a series of papers

(Lütkepohl and Saikkonen, 2000, L&S henceforth, and Saikkonen and Lütkepohl, 1999, 2000a,

2000b) an alternative test which they deem a Lagrange-Multiplier test.

This LM test consists in estimating Ψ under the null hypothesis of q cointegrating relation and

hence detrending yt into x̃t = yt−
(
µ̃ : ψ̃

)
(1 : t)′ and then testing for ρ∗ = 0 in a feasible version

of

α′⊥∆x̃t = ρ∗β
′
⊥x̃t−1 +

k−1∑
i=1

Γ∗,i∆x̃t−i + εx,t.

In the locally trending alternative, ψ̃ is not consistent since it is an estimator of T−1/2ψ. Under

the null of q cointegrating relations and in the presence of a deterministic trend, L&S, theorem 1,

derive the asymptotic distribution of the LM statistic as

LM ⇒ tr

{∫ 1

0

B∗dB′
∗

[∫ 1

0

B∗B′
∗

]−1 ∫ 1

0

(dB∗)B′
∗

}
(10)

with B∗ a(p− q)-dimensional standard Brownian bridge.

Under the hypothesis of a local trend, although the estimators of the deterministic components

are not consistent, detrending still proves effective. Indeed, consider the case of the estimator ψ̃

in lemma (A.3) of L&S (it is µ̃1 in their notation).
√
Tβ′⊥

(
ψ̃ − T−1/2ψ

)
L→ β′⊥CΣB (1) . ψ̃ is in

turn used to derive the distribution of the sample moments of

wt = β′⊥x̃t = β′⊥

(
yt − ψ̃t

)
= β′⊥xt − β′⊥T

(
ψ̃ − T−1/2ψ

) t

T
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hence, as in L&S, section A.2,

T−1/2w[Tr]
L→ β′⊥CΣB∗ (s)

and the procedure does provide the asymptotic distribution (10).

4 Monte Carlo

We observe the robustness of the tests via a Monte Carlo experiment where we compute the trace

statistic of the LR test over 10,000 replications of the processes. In the simulations, we set Ω = Ip,

k = 1 and let, for a cointegration rank q, the vectors α = β =
(
Iq : 0q×(p−q)

)′ where Iq is the q

dimensional unit matrix and 0m×n a (m× n)-matrix of zeros. Then Π = diag(Iq,0(p−q)×(p−q))

and we choose α⊥ = β⊥ =
(
0(p−q)×q : I(p−q)

)′ and C = β⊥ (α′⊥β⊥)−1
α′⊥ = diag

(
0q×q, I(p−q)

)
.

Hence, the process xt consists of p− q independent random walks and q white noises.

We simulate three different experiments: pure deterministic cointegration, pure stochastic (non-

deterministic) cointegration and a hybrid, as in

A : ψ = ψ
(
0′q : 1′p−q

)′
B : ψ = ψ

(
1′q : 0′p−q

)′
C : ψ =ψ1′p

for ψ ∈ [0, 10] , with 1(p−q) a vector (1 : 1 : ...)′ of dimension p−q. Hence, in experiment A, ψβ = 0,

in B,ψβ⊥
= 0 and in C, β′ ψ and β′⊥ψ are both nonzero. In this setting, the coefficient of the

trend in G in (8) is
(
ψ
′
β⊥

CΩ′C′ψβ⊥

)−1/2

= (p− q)−1/2 in experiments A and C, and 0 in B.

We report in figures 1 to 3 the rejection probabilities of the null of q cointegrating relations out

of p = 6 variables. In order to reduce Monte Carlo and finite sample variability, we compute the

critical values under the corresponding null with ψ = 0. This allows to focus specifically on the

robustness vis-à-vis the local trend. In the simulation, we let the sample sample vary from 100 to

400 but with very little impact on the conclusions; for this reason, we comment mostly the case

T = 100.

As expected from proposition 1, the test that corresponds to the null H2 is robust to local

trends. This appears in all the figures as the rejection probability is independent on ψ for all

experiments and nominal sizes. All the other statistics are affected by ψ. Indeed, even LR∗1 which

is asymptotically robust in experiment A is affected in finite samples. We comment on the various

results in turn, except LR2 which is robust to the local trend even in finite samples.

In the case q = p − 1 of a unique unit root in {xt} , the LR test under the null is the square

of the corresponding Dickey-Fuller distribution. This is presented figure 1. First, in experiment

A, two patterns appear. Under assumptions H and H∗, where the process is not corrected for

a constant, the rate of rejection of the null increases with ψ: these statistics are not robust to
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Figure 1: Rejection probabilities of the Likelihood Ratio test as a function

of the local trend parameter. The process follows a p = 6 dimensional

VAR(1) with cointegration rank of q = 5 : there is a unique common trend.

Critical values at sizes 10 (x90) and 5 (x95) are obtained from simulation (10,000

replication) of the distribution of test statistic under the null, with ψ = 0.

Experiments A, B and C are described section 4, depending on whether β′ψ = 0, β′⊥ψ = 0 or

neither. The sample size is 100.
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misspecified local trends but powerful against the misspecification. The power tends to 100% as ψ

increases. By contrast, LR1 and LR∗1 are, as expected, more robust to the local trend. Yet, these

statistics tend to under reject when ψ increases. This is a finite sample issue that is not resolved

at T = 400.

In experiment B, ψβ 6= 0 so proposition 1 only applies to LR2. As a result, we see that LR1 and

LR∗1 even more strikingly undereject the null: whereas in A the empirical size is half the nominal

for ψ = 2, in experiment B it drops almost to zero for values of ψ as low as 0.6. Although LR∗1 has

a size closer to the nominal than LR1, this is only slightly so. It is understandable that LR1 and

LR∗1 present similar rejection probabilities since the linear trend is orthogonal to β, i.e. also to α

here and the value added in robustness of LR∗1 over LR∗1 is only vis-à-vis the linear trend in sp (α) .

The pattern for LR and LR∗ differs greatly from that in A. These two tests also witness a drop in

the rejection rate for small values of ψ; even more so for LR. But as ψ increases, test significance

increases under both H and H∗. Yet, contrary to experiment A, the rejection rate does not tend to

100% as ψ increases but stabilizes below (depending on the statistic, at about 40% for a nominal

size of 10% and 20 for a size of 5%). LR rejects more often than LR∗ for large values of ψ, whereas

it rejects less for low values of the local trend parameter.

Experiment C is clearly affected by the non zero ψβ as the patterns resemble experiment B,

yet with a slightly higher rejection probability overall.

As the number of common trend increases, the pattern vary. In particular, as figures 2 and 3

show, experiment C tends to resemble A more. This is consistent with q decreasing, and also the

dimension of the space spanned by β: ψβ⊥
gets to dominate ψβ . In addition, experiment A then

yields rejection probabilities which are more in line with the asymptotic distributions: LR1 and

LR∗1 become more robust and LR and LR∗ more powerful (in the sense that they reject a model that

is misspecified). We record the rates for ψ up to 10 in figure 3 because of experiment B. Indeed,

as p− q increases, the drop in the rejection rate of LR1 and LR∗1 occurs for larger values of ψ; and

LR and LR∗ under reject over a wider range of ψ, crossing back the nominal size at values close to

ψ = p − q. Also, in the presence of stochastic cointegration, the difference in rejection rates of H

and H∗ vanishes as q decreases. We omit for brevity the situation where q = 0, i.e. in the absence

of cointegration. Simulations show that in experiment A, the pattern follows from the other cases

considered: LR1 and LR∗1 are more robust and LR and LR∗ reject even more. Clearly A and C

coincide in this case. Also, experiment B then implies that ψ = 0 since β⊥ = Ip.

The LM test being robust to local trends, we do not simulate it in this paper, results will be

similar to LR2. The only difference lies with respect to the respective power of LR2 and LM with

respect to other forms of misspecification, in particular viz. the rank of cointegration. Against

alternatives with higher cointegration rank, L&S show that the LM test is locally more powerful

than LR2, but that LM is conservative when testing low ranks and hence should be preferred for
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Figure 2: Rejection probabilities of the Likelihood Ratio test as a function of

the local trend parameter. The process follows a p = 6 dimensional VAR(1)

with cointegration rank of q = 4; i.e. there are 2 common stochastic trends.

Critical values at sizes 10 (x90) and 5 (x95) are obtained from simulation (10,000 replication)

of the distribution of test statistic under the null, with ψ = 0. Experiments A, B and C are

described section 4, depending on whether β′ψ = 0, β′⊥ψ = 0 or neither. The sample size is 100.
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Figure 3: Rejection probabilities of the Likelihood Ratio test as a function of

the local trend parameter. The process follows a p = 6 dimensional VAR(1)

with cointegration rank of q = 1, i.e. with 5 common stochastic trends.

Critical values at sizes 10 (x90) and 5 (x95) are obtained from simulation (10,000 replica-

tion) of the distribution of test statistic under the null, with ψ = 0. Experiments A, B and C are

described section 4, depending on whether β′ψ = 0, β′⊥ψ = 0 or neither. The sample size is 100.
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higher values of q. As for comparing with LR∗1, Saikkonen and Lütkepohl (1999) show that the

latter tends to be locally more powerful than LR2, yet we show that it is not locally robust to

linear trends. The recommendation that can be drawn from this analysis is hence to avoid LR∗1

in finite samples where the presence of a deterministic trend cannot be precluded on theoretical

grounds, and especially if it is possibly not orthogonal to the cointegrating vector β, i.e. in the

presence of non-deterministic cointegration.

5 Conclusion

In this paper, we have studied the robustness of the test for cointegration in the cointegrated VAR

process towards misspecified local linear trends. This situation arises when the data exhibit both

stochastic and deterministic trends but the latter have a low magnitude that render them hardly

noticeable and not significant. In this setting we have considered five versions of the likelihood

ratio test and the Lagrange multiplier test of Lütkepohl and Saikkonen (2000). We have shown

that both the LR with unrestricted trend (LR2) and the LM statistics are asymptotically robust

to the local trend when testing for the rank of cointegration in a stochastically cointegrated VAR

(from the definition in Perron and Campbell, 1993). In such a setting where β′ψ 6= 0, using the

test statistics LR1 and LR∗1 leads to invalid inference as the rejection rate drops when the local trend

coefficient increases. Yet, LR∗1 is locally robust to the trends when the data are deterministically

cointegrated (i.e. β′ψ = 0), but we show that in finite samples it seriously undereject, even in the

presence of small departures from zero trend, when the rank of cointegration is large. In practice,

there is little gain in moving from LR1 to LR∗1. When the data are stochastically cointegrated with

β′⊥ψ = 0, both LR1 and LR∗1 yield flawed inference.

As for the two statistic who never correct for a trend, LR and LR∗, they both show power

against a local trend. Yet, when β′ψ 6= 0, they undereject in the presence of small departures and,

although they gain power in the presence of larger departures from zero trend, they do not reject

more than half the time. Discrepancies between inference based on LR and LR∗ on the one side,

and on LR2 and LM on the other may hence be used as a diagnostic tool for the presence of a small

deterministic trend.

Finally, in the general case of stochastic cointegration where the trend spans both β and β⊥,

it is the dimensions of the two subspaces that govern the distributions of the test statistics. Low

cointegration ranks imply that the dimension of sp (β) is low and hence a pattern close to that

encountered when β′ψ = 0; by contrast high ranks of cointegration imply that non-deterministic

cointegration prevails.

As a recommendation, given the bad performances of LR1 and LR∗1, these should only be

used in moderately or largely sized samples and when there are strong reasons why deterministic

13



cointegration must hold. On the other hand, it is known that when the trend is over-specified,

the power of the tests for cointegration can prove low. Hence, although it proves useful to use

a multivariate extension, as in Lütkepohl and Demetrescu (2008), to the combination of several

statistics that was proposed by Harvey et al. (2008), it might prove preferable to use (LR2, LM) or

some other combination that does not include LR1 and LR∗1.
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6 Appendix

Proof of theorem 1.

6.1 Sample Moments

In the appendix, we assume that xt admits a VAR(1) representation, i.e. k = 1 in (1). It is straightforward

to extend the results to more general dynamics. We follow the lines of the proofs Johansen (1991). We
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first let ψ = ψβ +ψβ⊥ and choose γ orthogonal to β and ψβ⊥ such that
(
β : γ : ψβ⊥

)
has full rank.

T−1/2
(
γ : ψβ⊥

)′
y[Tr] ⇒

(
γ : ψβ⊥

)′
Kψ,CΣ (r)

=
(
γ : ψβ⊥

)′
CΣW (r) + (0 : 1)′ r

def
= H (r)

and let also

H1 (r) =
(
γ : ψβ⊥

)′
CΣ

(
W (r)−

∫ 1

0

W (r) dr

)
+ (0 : 1)′ (r − 1/2)

and H2 (r) =
(
γ : ψβ⊥

)′
CΣ (W (r)− a− br), where the coefficients are obtained by correcting W (r)

for a constant and a linear trend. Now let the variance-covariance matrices

Var

[
∆xt
β′xt−1

]
=

 Σ00 Σ0β

Σβ0 Σββ

∣∣∣∣∣∣∆xt−1, ..., ∆xt−k+1


which satisfy the relations in lemma 10.1 from Johansen (1995) (denoted lemma J-10.1, and we use similar

notation in the following). In the remainder of the appendix, we do not write explicitly that the process

is corrected for lagged values since it only affects the definition of Γ. Now recall that Sij is the uncentered

sample mean of RitR
′
jt where (R0t : R1t) is (∆yt : yt−1) corrected for the deterministic terms present in the

model under the null. We consider the hypotheses H, H1 and H2 in turn, noting that T−2∑T
t=1

t√
T

t√
T

=

1
3
+ 1

2T
+ 1

6T2 and T−1∑T
t=1

[
t−(T+1)/2√

T

]2
= T

12
− 1

12T
. Under the hypotheses, the model rewrites as (where

we keep the notation εt although this may also corrected for a constant and possibly a trend):

H : R0t = T−1/2 (Γψ −αβ′ψβ (t− 1)
)

+αβ′R1t + εt

H1 : R0t = −T−1/2αβ′ψβ (t− 1− T/2) +αβ′R1t + εt

H2 : R0t = αβ′R1t + εt

Hence the following results.

• First, under H, the residuals Rit are not corrected, hence, different limits result, depending on

whether ψβ = 0 :

First if ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β′S10

p→ Σβ0 and(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
∫ 1

0
H (r) dK′

Γψ,CΣ (r)(
γ : ψβ⊥

)′
S10 ⇒

∫ 1

0
H (r) dK′

ψ,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HH′dr(

γ : ψβ⊥

)′
S11β = Op (1)

and for ψβ 6= 0, S00
p→ Σ00, T−1β′S11β

p→ 1
3
β′ψβψ

′
ββ, β′S10 ⇒ Σβ0 +Σβ0 +β′ψβ

∫ 1

0
rdK′

ψ,CΣ (r)

and

T−1
(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
(∫ 1

0
rH (r) dr

)
α′βψ′β(

γ : ψβ⊥

)′
S10 ⇒

∫ 1

0
H (r) dK′

ψ,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
HH′dr

T−1
(
γ : ψβ⊥

)′
S11β ⇒

(∫ 1

0
rH (r) dr

)
ψ′ββ
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• Under H1,

If ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β′S10

p→ Σβ0 and also(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
∫ 1

0
H1dK

′
0,Σ (r)(

γ : ψβ⊥

)′
S10 ⇒

∫ 1

0
H1dK

′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
H1H

′
1dr(

γ : ψβ⊥

)′
S11β = Op (1)

and for ψβ 6= 0, S00
p→ Σ00, T−1β′S11β

p→ 1
12
β′ψβψ

′
ββ, β′S10 ⇒ Σβ0+β′ψβ

∫ 1

0

(
r − 1

2

)
dK′

0,CΣ (r)

and

T−1
(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
(∫ 1

0

(
r − 1

2

)
H1 (r) dr

)
α′βψ′β(

γ : ψβ⊥

)′
S10 ⇒

∫ 1

0
H1 (r) dW′ (r)Σ′C′ =

∫ 1

0
H1dK

′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
H1H

′
1dr

T−1
(
γ : ψβ⊥

)′
S11β ⇒

(∫ 1

0

(
r − 1

2

)
H1 (r) dr

)
ψ′ββ

• and finally, under H2, whether or not ψβ = 0, then S00
p→ Σ00, β

′S11β
p→ Σββ , β′S10

p→ Σβ0 and(
γ : ψβ⊥

)′
(S10 − S11βα

′)⇒
∫ 1

0
H2dK

′
0,Σ (r)(

γ : ψβ⊥

)′
S10 ⇒

∫ 1

0
H2dK

×′
0,CΣ (r)

T−1
(
γ : ψβ⊥

)′
S11

(
γ : ψβ⊥

)
⇒
∫ 1

0
H2H

′
2dr(

γ : ψβ⊥

)′
S11β = Op (1)

where we denote by K×′
0,CΣ (r) the detrended version of K0,CΣ (r) .

We complete the analysis above with the two hypotheses H∗ and H∗1. Note that, under H∗, R2t = 1 and

under H∗1 : R2t = t− 1− T/2. Now let (Γψ)α = α (β′α)
−1
β′Γψ and (Γψ)α⊥ = Γψ− (Γψ)α , then

H∗ : R0t = −T−1/2αβ′ψβ (t− 1) + T−1/2 (Γψ)α⊥ +αβ′R1t + T−1/2 (Γψ)α R2t + εt

H∗1 : R0t = αβ′R1t − T−1/2αβ′ψβR2t + εt.

We therefore derive the following properties of the sample moments under linear restrictions of the param-

eters.

• First under H∗ : letting R∗
1t = (R′

1t : R′
2t)

′
and β∗′ =

(
β′ : (β′α)

−1
β′Γψ

)
= (β′ : β2) . We also

define the vectors γ∗′ =
([
γ : ψβ⊥

]′
: 0
)

and τ∗′ = (0 : 1) such that (β∗ : γ∗ : τ∗) is of full rank

p + 1, then

(
T−1/2γ∗ : τ∗

)′  y[Tr]

1

⇒ (
T−1/2γ∗ : τ∗

)′  Kψ,CΣ (r)

1

 =

 H (r)

1

 def
= H∗ (r)

if ψβ = 0, then S00
p→ Σ00, β

∗′S∗11β
∗ p→ Σββ + β2β

′
2, β

∗′S∗10
p→ Σβ0 and(

γ∗ :
√

Tτ∗
)′

(S∗10 − S∗11β
∗α′)⇒

∫ 1

0
H∗ (r) dK′

(Γψ)α⊥
,Σ (r)(

γ∗ :
√

Tτ∗
)′

S∗10 ⇒
∫ 1

0
H∗ (r) dK′

ψ,CΣ (r)

T−1
(
γ∗ :

√
Tτ∗

)′
S11

(
γ∗ :

√
Tτ∗

)
⇒
∫ 1

0
H∗ (r)H∗′ (r) dr(

γ∗ :
√

Tτ∗
)′

S11β = op (T )
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and for ψβ 6= 0, then S00
p→ Σ00, T−1β∗′S∗11β

∗ p→ 1
3
β′ψβψ

′
ββ and

β∗′S∗10 ⇒ Σβ0 + β′ψβ

∫ 1

0

rdK′
ψ,CΣ (r)

with also

T−1
(
γ∗ :

√
Tτ∗

)′
(S∗10 − S∗11β

∗α′)⇒ −
∫ 1

0
rH∗ (r)ψ′ββα

′dr(
γ∗ :

√
Tτ∗

)′
S∗10 ⇒

∫ 1

0
H∗ (r) dK′

ψ,CΣ (r)

T−1
(
γ∗ :

√
Tτ∗

)′
S∗11

(
γ∗ :

√
Tτ∗

)
⇒
∫ 1

0
H∗ (r)H∗′ (r) dr

T−1
(
γ∗ :

√
Tτ∗

)′
S∗11β

∗ ⇒
∫ 1

0
rH∗ (r)ψ′ββdr

• And finally under H∗1, letting R∗
1t = (R′

1t : R′
2t)

′
and β∗′ =

(
β′ : β′ψβ

)
. We also define the matrices

γ∗′ =
([
γ : ψβ⊥

]′
: 0
)

and τ∗′ = (0 : 1) such that (β∗ : γ∗ : τ∗) is of full rank p + 1, then

T−1/2
(
γ∗ : T−1/2τ∗

)′  y[Tr]

[Tr]

⇒ (γ∗ : τ∗)
′

 Kψ,CΣ (r)

r

 =

 H (r)

r


Hence, ifψβ = 0, S00

p→ Σ00,β
∗′S∗11β

∗ p→ Σββ ,β∗′S∗10
p→ Σβ0 and, letting H∗

1 (r) = (H′
1 (r) : r − 1/2)

′

(
γ∗ : T−1/2τ∗

)′
(S∗10 − S∗11β

∗α′)⇒
∫ 1

0
H∗

1 (r) dK′
0,Σ (r)(

γ∗ : T−1/2τ∗
)′

S∗10 ⇒
∫ 1

0
H∗

1 (r) dK′
0,CΣ (r)

T−1
(
γ∗ : T−1/2τ∗

)′
S∗11

(
γ∗ : T−1/2τ∗

)
⇒
∫ 1

0
H∗

1 (r)H∗′
1 (r) dr(

γ∗ : T−1/2τ∗
)′

S∗11β
∗ = (op (T ) : op (T ))′

and for ψβ 6= 0, S00
p→ Σ00, T−2β∗′S∗11β

∗ p→ 1
12
β′ψβψ

′
ββ, β∗′S∗10

p→ Σβ0,

T−1
(
γ∗ : T−1/2τ∗

)′
(S∗10 − S∗11β

∗α′)⇒ −
∫ 1

0

(
r − 1

2

)
H∗

1 (r)ψ′ββα
′dr(

γ∗ : T−1/2τ∗
)′

S∗10 ⇒
∫ 1

0
H∗

1 (r) dK′
0,CΣ (r)

T−1
(
γ∗ : T−1/2τ∗

)′
S∗11

(
γ∗ : T−1/2τ∗

)
⇒
∫ 1

0
H∗

1 (r)H∗′
1 (r) dr

T−3/2
(
γ∗ : T−1/2τ∗

)′
S11β

∗ ⇒
∫ 1

0

(
r − 1

2

)
H∗

1 (r)ψ′ββdr

6.2 Trace statistic

We turn next to the asymptotic distribution of

|S (λ)| =
∣∣λS11 − S10S

−1
00 S01

∣∣
where the trace statistic is the sum of the p− q smallest solutions to the equation |S (λ)| = 0 (except for

the hypotheses H∗ and H∗1 which we treat later). The matrix
(
β : ψβ⊥ : γ

)
has full rank, then denote

AT =
(
β :T−1/2ψβ⊥ : T−1/2γ

)
such that we obtain distributions under the various hypotheses. We

provide standardizing matrices at the end of the section.

• Under assumption H, if ψβ = 0
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∣∣A′
TS (λ)AT

∣∣ ⇒

∣∣∣∣∣∣λ
 Σββ 0

0
∫ 1

0
HH′dr

−
 Σβ0Σ

−1
00 Σ0β 0

0 0

∣∣∣∣∣∣
=

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ∫ 1

0

HH′dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now, consider

∣∣∣(β :γ : ψβ⊥

)′
S (λ)

(
β :γ : ψβ⊥

)∣∣∣
=

∣∣∣∣∣∣ β′S (λ)β β′S (λ)
(
γ : ψβ⊥

)
(
γ : ψβ⊥

)′
S (λ)β

(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
∣∣∣∣∣∣

=
∣∣β′S (λ)β

∣∣ ∣∣∣(γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)∣∣∣
where the first factor has no roots:

β′S (λ)β →−Σβ0Σ
−1
00 Σ0β

and, letting ρ = Tλ

(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
= ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)
Σ−1

00

∫ 1

0

dKψ,CΣ (r)H′ (r)(
γ : ψβ⊥

)′
S (λ)β = Op (λ)−

(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)
Σ−1

00 Σ0β

⇒
(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)
Σ−1

00 Σ0β

hence

(
γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S′ (λ)

}(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)
Σ−1

00

∫ 1

0

dKψ,CΣ (r)H′ (r)

+

(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)
Σ−1

00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ

−1
00

∫ 1

0

dKψ,CΣ (r)H′ (r)

= ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′
ψ,CΣ (r)

)[
Σ−1

00 −Σ−1
00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ

−1
00

] ∫ 1

0

dKψ,CΣ (r)H′ (r)

where Σ−1
00 − Σ−1

00 Σ0β

[
Σβ0Σ

−1
00 Σ0β

]−1
Σβ0Σ

−1
00 = α⊥ (α′⊥Ωα⊥)

−1
α′⊥. Noting that S10α⊥ =

(S10 − S11βα
′)α⊥The above expression is therefore equal to

ρ

∫ 1

0

HH′dr −
(∫ 1

0

H (r) dK′
ψ,Σ (r)

)
α⊥

(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dKψ,Σ (r)H′ (r) (11)
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Now for ψβ 6= 0, define the two matrices

N =

 1
3
β′ψβψ

′
ββ β′ψβ

(∫ 1

0
rH′ (r) dr

)
(∫ 1

0
rH (r) dr

)
ψ′ββ

∫ 1

0
HH′dr


M =

 (
Σβ0 + β′ψβ

∫ 1

0
rdK′

ψ,CΣ (r)
)
Σ−1

00

(
Σβ0 + β′ψβ

∫ 1

0
rdK′

ψ,CΣ (r)
)′

∫ 1

0
H (r) dK′

ψ,CΣ (r)Σ−1
00

(
Σβ0 + β′ψβ

∫ 1

0
rdK′

ψ,CΣ (r)
)′

(
Σβ0 + β′ψβ

∫ 1

0
rdK′

ψ,CΣ (r)
)
Σ−1

00

∫ 1

0
dKψ,CΣH′ (r)∫ 1

0
H (r) dK′

ψ,CΣ (r)Σ−1
00

∫ 1

0
dKψ,CΣH′ (r)


then (

β :γ : ψβ⊥

)′
S (λ)

(
β :γ : ψβ⊥

)
= λTN−M + op (1)

which shows that if |N| 6= 0, then the test statistic has the same distribution as

Ttr
{
S−1

11 S10S
−1
00 S01

}
⇒ tr

{
N−1M

}
Now recall the definition H (r) =

(
γ : ψβ⊥

)′
CΣW (r) +

(
ψ′βγ : 1

)′
r, then

(
γ : ψβ⊥

)′
CΣW (r) +

(0 : 1)′ r
def
= H (r)

E [N] =

 1
3
β′ψβψ

′
ββ β′ψβ

(
0 : 1

2

)(
0 : 1

2

)′
ψ′ββ

(
γ : ψβ⊥

)′
CΩC′

(
γ : ψβ⊥

)
+ 1

2
(0 : 1)′ (0 : 1)



= −


1
6
β′ψβψ

′
ββ 0 0

0 0 0

0 0 0

+
1

2


β′ψβ

0

1



β′ψβ

0

1


′

+


0

γ′CΣ

ψ
′
β⊥

CΣ




0

γ′CΣ

ψ
′
β⊥

CΣ


′

hence the expectation of the matrix has nonzero determinant as long as q < p.

• Under assumption H1, if ψβ = 0

∣∣A′
TS (λ)AT

∣∣⇒ ∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ∫ 1

0

H1H
′
1dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now, consider∣∣∣(β :γ : ψβ⊥

)′
S (λ)

(
β :γ : ψβ⊥

)∣∣∣ = ∣∣β′S (λ)β
∣∣ ∣∣∣(γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)∣∣∣
where the first factor has no roots as λ → 0

β′S (λ)β →−Σβ0Σ
−1
00 Σ0β

and,

(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
= ρ

∫ 1

0

H1H
′
1dr −

(∫ 1

0

H (r) dK′
0,CΣ (r)

)
Σ−1

00

∫ 1

0

dK0,CΣ (r)H′ (r)(
γ : ψβ⊥

)′
S (λ)β = Op (λ)−

(∫ 1

0

H1 (r) dK′
0,CΣ (r)

)
Σ−1

00 Σ0β

⇒
(∫ 1

0

H1 (r) dK′
0,CΣ (r)

)
Σ−1

00 Σ0β
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hence

(
γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S′ (λ)

}(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

H1H
′
1dr −

(∫ 1

0

H1 (r) dK′
0,Σ (r)

)
α⊥

(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK0,Σ (r)H′
1 (r)

Now, for ψβ 6= 0, as previously, let

N1 =

 1
12
β′ψβψ

′
ββ β′ψβ

(∫ 1

0

(
r − 1

2

)
H′

1 (r) dr
)

(∫ 1

0

(
r − 1

2

)
H1 (r) dr

)
ψ′ββ

∫ 1

0
H1H

′
1dr


M1 =

 (
Σβ0 + β′ψβ

∫ 1

0

(
r − 1

2

)
dK′

ψ,CΣ (r)
)
Σ−1

00

(
Σβ0 + β′ψβ

∫ 1

0

(
r − 1

2

)
dK′

ψ,CΣ (r)
)′

∫ 1

0
H1 (r) dK′

0,CΣ (r)Σ−1
00

(
Σβ0 + β′ψβ

∫ 1

0

(
r − 1

2

)
dK′

ψ,CΣ (r)
)′

(
Σβ0 + β′ψβ

∫ 1

0

(
r − 1

2

)
dK′

ψ,CΣ (r)
)
Σ−1

00

∫ 1

0
dK0,CΣH′

1 (r)∫ 1

0
H1 (r) dK′

0,CΣ (r)Σ−1
00

∫ 1

0
dK0,CΣH′

1 (r)


where E [N1] has zero determinant since it is the sum of two outer products of matrices:

E [N1] =
1

12


β′ψβ

0

1



β′ψβ

0

1


′

+
1

6


0

γ′CΣ

ψ
′
β⊥

CΣ




0

γ′CΣ

ψ
′
β⊥

CΣ


′

.

The trace statistic therefore tends to a random variable whose expectation can take any values.

• Under H2, if ψβ = 0 or ψβ 6= 0

∣∣A′
TS (λ)AT

∣∣⇒ ∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ∫ 1

0

H2H
′
2dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now, consider

∣∣∣(β :γ : ψβ⊥

)′
S (λ)

(
β :γ : ψβ⊥

)∣∣∣
=

∣∣β′S (λ)β
∣∣ ∣∣∣(γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S′ (λ)

}(
γ : ψβ⊥

)∣∣∣
where the first factor has no roots as λ → 0, since β′S (λ)β →−Σβ0Σ

−1
00 Σ0β , and,

(
γ : ψβ⊥

)′
S (λ)

(
γ : ψβ⊥

)
= ρ

∫ 1

0

H2H
′
2dr −

(∫ 1

0

H2 (r) dK′
0,CΣ (r)

)
Σ−1

00

∫ 1

0

dK0,CΣ (r)H′
2 (r)(

γ : ψβ⊥

)′
S (λ)β = Op (λ)−

(∫ 1

0

H2 (r) dK′
0,CΣ (r)

)
Σ−1

00 Σ0β

⇒
(∫ 1

0

H2 (r) dK′
0,CΣ (r)

)
Σ−1

00 Σ0β

hence

(
γ : ψβ⊥

)′ {
S (λ)− S (λ)β

[
β′S (λ)β

]−1
β′S (λ)

}(
γ : ψβ⊥

)
⇒ ρ

∫ 1

0

H2H
′
2dr −

(∫ 1

0

H2 (r) dK′
0,Σ (r)

)
α⊥

(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK0,Σ (r)H′
2 (r)
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• under H∗, with A∗
T =

(
β∗ : T−1/2γ∗ : τ∗

)
, if ψβ = 0, then

∣∣A∗′
T S∗ (λ)A∗

T

∣∣
⇒

∣∣∣∣∣∣λ
 Σββ + β2β

′
2 0

0
∫ 1

0
H∗H∗′dr

−
 Σβ0Σ

−1
00 Σ0β 0

0 0

∣∣∣∣∣∣
=

∣∣λ (Σββ + β2β
′
2

)
−Σβ0Σ

−1
00 Σ0β

∣∣ ∣∣∣∣λ∫ 1

0

H∗H∗′dr

∣∣∣∣
which has q positive roots given by

∣∣λ (Σββ + β2β
′
2)−Σβ0Σ

−1
00 Σ0β

∣∣ . Now, consider

∣∣∣(β∗ : γ∗ :
√

Tτ∗
)′

S∗ (λ)
(
β :γ∗ :

√
Tτ∗

)∣∣∣
=

∣∣β∗′S∗ (λ)β∗
∣∣ ∣∣∣(γ∗ :

√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗ (λ)

}(
γ∗ :

√
Tτ∗

)∣∣∣
where the first factor has no roots as λ → 0 since β∗′S∗ (λ)β∗→−Σβ0Σ

−1
00 Σ0β and, letting ρ = Tλ

(
γ∗ :

√
Tτ∗

)′
S∗ (λ)

(
γ∗ :

√
Tτ∗

)
⇒ ρ

∫ 1

0

H∗H∗′dr −
∫ 1

0

H∗dK′
ψ,CΣ (r)Σ−1

00

∫ 1

0

dKψ,CΣ (r)H∗′

(
γ∗ :

√
Tτ∗

)′
S∗ (λ)β∗ ⇒

∫ 1

0

H∗dK′
ψ,CΣ (r)Σ−1

00 Σβ0

hence

(
γ∗ :

√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗′ (λ)

}(
γ∗ :

√
Tτ∗

)
⇒ ρ

∫ 1

0

H∗H∗′dr −
∫ 1

0

H∗dK′
ψ,CΣ (r)

(
Σ−1

00 −Σ−1
00 Σβ0

(
Σβ0Σ

−1
00 Σ0β

)−1
Σβ0Σ

−1
00

)∫ 1

0

dKψ,CΣ (r)H∗′

= ρ

∫ 1

0

H∗H∗′dr −
∫ 1

0

H∗dK′
(Γψ)α⊥

,Σ (r)α⊥
(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK(Γψ)α⊥
,Σ (r)H∗′

For ψβ 6= 0,

(
T−1/2β∗ : T−1/2γ∗ : τ∗

)′
S∗ (λ)

(
T−1/2β∗ : T−1/2γ∗ : τ∗

)
⇒ λ

 1
3
β′ψβψ

′
ββ β′ψβ

∫ 1

0
rH∗′ (r) dr∫ 1

0
rH∗ (r)ψ′ββdr

∫ 1

0
H∗ (r)H∗′ (r) dr


which implies a behavior similar to that under H.

• under H∗1, with A∗
T =

(
β∗ : T−1/2γ∗ : T−1τ∗

)
, if ψβ = 0, then

∣∣A∗′
T S∗ (λ)A∗

T

∣∣
⇒

∣∣∣∣∣∣λ
 Σββ 0

0
∫ 1

0
H∗

1H
∗′
1 dr

−
 Σβ0Σ

−1
00 Σ0β 0

0 0

∣∣∣∣∣∣
=

∣∣λ (Σββ)−Σβ0Σ
−1
00 Σ0β

∣∣ ∣∣∣∣λ∫ 1

0

H∗
1H

∗′
1 dr

∣∣∣∣
which has q positive roots given by

∣∣λΣββ −Σβ0Σ
−1
00 Σ0β

∣∣ . Now, consider

∣∣∣(β∗ : γ∗ : T−1/2τ∗
)′

S∗ (λ)
(
β :γ∗ : T−1/2τ∗

)∣∣∣
=

∣∣β∗′S∗ (λ)β∗
∣∣ ∣∣∣(γ∗ : T−1/2τ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗ (λ)

}(
γ∗ : T−1/2τ∗

)∣∣∣
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where the first factor has no roots as λ → 0 since β∗′S∗ (λ)β∗→−Σβ0Σ
−1
00 Σ0β , and

(
γ∗ : T−1/2τ∗

)′
S∗ (λ)

(
γ∗ : T−1/2τ∗

)
⇒ ρ

∫ 1

0

H∗
1H

∗′
1 dr −

∫ 1

0

H∗
1dK

′
0,CΣ (r)Σ−1

00

∫ 1

0

dK0,CΣ (r)H∗′
1(

γ∗ :
√

Tτ∗
)′

S∗ (λ)β∗ ⇒
∫ 1

0

H∗
1dK

′
0,CΣ (r)Σ−1

00 Σβ0

hence

(
γ∗ :

√
Tτ∗

)′ {
S∗ (λ)− S∗ (λ)β∗

[
β∗′S∗ (λ)β∗

]−1
β∗′S∗′ (λ)

}(
γ∗ :

√
Tτ∗

)
⇒ ρ

∫ 1

0

H∗
1H

∗′
1 dr −

∫ 1

0

H∗
1dK

′
0,Σ (r)α⊥

(
α′⊥Ωα⊥

)−1
α′⊥

∫ 1

0

dK0,Σ (r)H∗′
1

For ψβ 6= 0, then

T−1
(
β∗ : γ∗ : T−1/2τ∗

)′
S∗ (λ)

(
β∗ : γ∗ : T−1/2τ∗

)
⇒ λ

 1
12
β′ψβψ

′
ββ β′ψβ

∫ 1

0
(r − 1/2)H∗′

1 (r) dr∫ 1

0

(
r − 1

2

)
H∗

1 (r)ψ′ββdr
∫ 1

0
H∗

1 (r)H∗′
1 (r) dr


and again the determinant of this matrix has zero expectation., as under H1.

• Define V =
(
V′
γ : V′

ψ

)′
with Vγ = [γ′CΩC′γ]

−1/2
γ′CΣW and Vψ =

[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

ψ
′
β⊥

CΣW.

V is a standard Brownian Motion. Also, let

G (r) =

 [γ′CΩC′γ]
−1/2

0

0
[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

H (r) = V (r) +

 0[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

r


Jψα⊥

(r) =
(
α′⊥Ωα⊥

)−1/2
α′⊥Kψ,Σ (r) = V (r) +

(
α′⊥Ωα⊥

)−1/2
α′⊥ψα⊥r

The trace statistic therefore admits the following distributions

LR ⇒ tr

(∫ 1

0
GdJ′ψα⊥

[∫ 1

0
GG′

]−1 ∫ 1

0

(
dJψα⊥

)
G′
)

if ψβ = 0 (12)

Now, let G1 (r) = G (r)−
∫ 1

0
G (u) du = V (r)−

∫ 1

0
V (u) du +

[
ψ
′
β⊥

CΩC′ψβ⊥

]−1/2

(r − 1/2) , and

G2 (r) = V (r) − av − bvr where av,bv are coefficients correction V for a constant and a trend.

Then

LR1 ⇒ tr

(∫ 1

0
G1dJ

′
0

[∫ 1

0
G1G

′
1

]−1 ∫ 1

0
(dJ0)G

′
1

)
if ψβ = 0

LR2 ⇒ tr

(∫ 1

0

G2dJ
′
0

[∫ 1

0

G2G
′
2

]−1 ∫ 1

0

(dJ0)G
′
2

)

and for the other two restricted hypotheses

LR∗ ⇒ tr

(∫ 1

0
G∗dJ′(Γψ)α⊥

[∫ 1

0
G∗G∗′

]−1 ∫ 1

0

(
dJ(Γψ)α⊥

)
G∗′

)
if ψβ = 0

LR∗1 ⇒ tr

(∫ 1

0
G∗

1dJ
′
0

[∫ 1

0
G∗

1G
∗′
1

]−1 ∫ 1

0
(dJ0)G

∗′
1

)
if ψβ = 0
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