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Abstract: The analysis of volatility transmission is not only essential to understand the infor-

mation flow process, but also helps identifying the appropriate multivariate model for estimating

and predicting volatility. In this paper, we develop formal statistical tools for testing conditional

independence and noncausality that are suitable for checking for volatility spillovers in asset prices.

We take a different route from the previous papers in the literature in that we make no parametric

assumption on the stochastic volatility processes and on the form that they interrelate. In par-

ticular, our testing procedure is in two steps. In the first stage, we estimate the daily volatilities

of the assets under consideration by means of realized measures under the mild assumption that

asset prices follow continuous-time jump-diffusion processes with stochastic volatility. In the sec-

ond step, we then test for conditional independence by checking whether the corresponding density

restrictions hold for the nonparametric estimates of the volatility distributions. The asymptotic

results that we derive entail some interesting contributions to the nonparametric literature by clar-

ifying the impact of the realized volatility estimation error. We also contribute to the volatility

transmission literature by empirically investigating volatility spillovers between the stock markets

in China, Japan, and US.
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1 Introduction

Even though testing for the presence of international market links has a long history in asset pricing

(see survey by Roll, 1989), the literature has been gaining momentum since the October 1987 crash.

In particular, the main interest lies on the analysis of volatility transmission across markets. King

and Wadhwani (1990) indeed argue that the strength of international market links depends mainly

on volatility. As the latter declines, the correlation between price changes in the different markets

also decreases and so market links become weaker. In contrast, international market links become

stronger in periods of high volatility. The idea is that, with Bayesian update of beliefs about

variances, a common shock to all markets would result in an increase in the perceived variance of

any common factor and hence of the correlation.

This paper develops formal statistical tools for testing noncausality in volatility. We propose a

nonparametric approach in stark contrast with most papers in the literature. In particular, under

the assumption that asset prices follow continuous-time jump-diffusion processes with stochastic

volatility, we show how to test whether the transition distribution of the integrated variance of a

given stock market index also depends on the integrated variance of another country’s stock market

index. Our testing procedure involves two steps. In the first stage, we estimate the daily (inte-

grated) variances using intraday returns data from both countries. We employ realized measures of

daily integrated variance essentially to alleviate misspecification risks. In the second step, we test

for noncausality by checking whether the transition distribution of the daily variance satisfies the

conditional independence restrictions implied by noncausality. We focus on the transition distri-

bution for two reasons. First, it allows for nonlinear channels of volatility transmission in contrast

to the standard practice of carrying out pointwise analyses based on the conditional mean of the

stochastic volatility. Second, the distribution of the daily integrated variance is also of particular

interest for pricing variance swap contracts (Carr, Geman, Madan and Yor, 2005).

Apart from showing how to carry out a nonparametric analysis of noncausality in volatility, we

also investigate the realized volatility transmission across international stock markets using intraday

data from China, Japan, and US.

TBW: ANTICIPATE MAIN EMPIRICAL RESULTS

Our empirical findings are also consistent with King and Wadhwani’s (1990) non-fully-revealing

rational expectations model. Contagion between markets may take place in the latter as a result of
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attempts by rational agents to infer information from price changes in other markets. This provides

a transmission channel in which idiosyncratic price changes in one market may spill over to other

markets, thus increasing volatility.

There are several papers in the literature that carry out similar, though mostly parametric,

analyses of volatility transmission across international stock markets. Engle and Ng (1988), Hamao,

Masulis and Ng (1990), Engle, Ito and Lin (1990), King, Sentana and Wadhwani (1994), Lin,

Engle and Ito (1994), Karolyi (1995), and Wongswan (2006) employ multivariate GARCH models

to show that volatility spillovers indeed occur among international stock markets as well as in

foreign exchange markets. In contrast, Cheung and Ng (1996), Hong (2001), Pantelidis and Pittis

(2004), Sensier and van Dijk (2004), and van Dijk, Osborne and Sensier (2005) propose simple

tests of noncausality in variance based on the cross-correlation between leads and lags of squared

GARCH-standardized residuals. The testing strategy of the above papers differs from ours chiefly

in three aspects. First, they assume a discrete-time data generating mechanism in which the

conditional variance is a measurable function of past asset returns. In contrast, we assume that

asset prices follow a continuous-time jump-diffusion process with stochastic volatility. Second, their

tests are sensitive to any misspecification in the conditional mean and variance equations, whereas

the nonparametric nature of our tests alleviates substantially misspecification risk. Third, they

do not contemplate any sort of nonlinear dependence between variances as opposed to our testing

procedures, whose nontrivial power against nonlinear channels of volatility transmission results

from looking at the whole distribution of the stochastic volatility.

Finally, we contribute not only to the literature on volatility transmission, but also to the liter-

ature on nonparametric tests of density restriction. The asymptotic theory we put forth specifically

accounts for the impact of the realized volatility estimation error in the first step of the testing

procedure (Corradi, Distaso and Swanson, 2007). Moreover, we also consider a more general setup

in which the transition distribution may depend on a state vector of any dimension. Most papers in

the literature indeed assume that the transition distribution depends at most on two conditioning

variables (see, e.g., Aı̈t-Sahalia, Fan and Peng, 2006a; Amaro de Matos and Fernandes, 2006). It

turns out that such a generalization is not so straightforward as it seems at first glance, requiring

some strengthening conditions on the nonparametric density estimation.

The remainder of this paper ensues as follows. Section 2 introduces the problem of testing

for noncausality in variance within a simple setup. Section 3 discusses our nonparametric testing
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procedure within a more general context. Section 4 then examines whether there are significant

volatility spillovers across international stock markets using data from China, Japan, and US.

Section 5 offers some closing remarks, whereas the Appendix collects all technical proofs.

2 Noncausality in volatility: Setup and issues

In this section, we discuss how to analyze volatility transmission by testing for noncausality in

variance. Although noncausality ultimately relates to a conditional independence restriction, the

typical statistical analyses of volatility spillovers restrict attention to tests of linear dependence

in the volatility processes within a GARCH context. These testing procedures bring about three

drawbacks, however. First, they assume a discrete-time data generating mechanism in which the

conditional variance is a measurable function of past asset returns. Second, they may incur in severe

misspecification risk by specifying a parametric form for the conditional mean and variance. Third,

they do not contemplate any sort of nonlinear volatility transmission channel. In what follows,

we take a different approach in that we assume that asset prices follow continuous-time jump-

diffusion processes with stochastic volatility. As we estimate the latter using realized measures, we

are not prone to misspecification in the conditional mean and variance (see surveys by Barndorff-

Nielsen, Nicolato and Shephard, 2002; Andersen, Bollerslev and Diebold, 2005). Finally, our testing

procedure also entails power against nonlinear channels of volatility transmission given that we

look at the whole distribution of the stochastic volatility rather than restricting attention to linear

measures of dependence.

In financial economics, the norm is to assume that asset prices evolve as diffusion processes,

with possible jump components (Sundaresan, 2000). The continuous-time formulation not only

facilitates the mathematical derivations, but is also more natural given the near-continuous trading

that one observes in the equity and exchange markets. There is also a consensus about the stochastic

nature of the volatility of asset prices and about the presence of leverage effects, which translate

into (negative) correlation between the Brownian motions governing the stochastic volatility and

asset price diffusion processes (Barndorff-Nielsen et al., 2002). Under these circumstances, the

volatility is not a measurable function of asset prices and market are incomplete. Accordingly,

the introduction of financial tools such as variance swap contracts is not surprising in that they

allow for volatility trading (Carr et al., 2005). As the price of a variance swap contract depends on

the likelihood of the realized variance exceeding a given level, valuation requires inference on the
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conditional distribution of the realized variance. This is precisely the route we take, so as to also

account for nonlinear channels of volatility transmission.

We now describe the asset pricing context we consider and then discuss how to tackle non-

causality in variance by verifying whether the conditional distribution of the daily variance of one

asset, say A, depends on the daily volatility of another asset, say B. Under mild assumptions

on preferences, the logarithm of the price of any asset must obey a semimartingale process in a

frictionless arbitrage-free market (Back, 1991). In particular, we will assume that the logarithm of

the true price of asset i, which we denote by p∗i (t), follows a jump-diffusion process given by

dp∗i (t) = µi(t) dt + Ji(t) dNi(t) + σi(t) dWpi(t), i = A,B (1)

where µi(t) is a locally bounded drift process, σi(t) is a stochastic volatility diffusion process driven

by a Brownian motion Wσi(t), dNi(t) is a counting process that takes value one if there is a jump

at time t, zero otherwise, with some (possibly time-varying) jump intensity, and Ji(t) refers to the

(possibly stochastic) size of the corresponding jumps. We account for leverage effects by allowing

for nonzero correlation between dWpi(t) and dWσi(t).

The recent literature however argues that measurement errors due to market microstructure

effects may contaminate the near-continuous record of ultra-high-frequency data. See, for instance,

Aı̈t-Sahalia, Mykland and Zhang (2005), Bandi and Russell (2005), and Hansen and Lunde (2005).

We therefore follow their lead and assume that, instead of observing the true price process, we are

only able to record a total of MT observations, consisting of M intraday observations for T days,

of

pi,t+j/M ≡ p∗i,t+j/M + ei,t+j/M , i = A,B t = 1, . . . , T j = 1, . . . , M

where p∗i,t+j/M are discrete-time realizations of the jump-diffusion process given by (1) and ei,t+j/M

denotes a microstructure noise with mean zero and finite variance.

The aim is to investigate causality in variance without making any assumptions on the drift and

jump functions as well as on the microstructure noise. The first difficulty arises from the fact that we

do not observe the daily (integrated) variance as defined by IVi,t ≡
∫ t
t−1 σ2

i (s) ds. It is nonetheless

possible to estimate IVi,t from the noisy return data {pi,t+j/M ; j = 1, . . . ,M ; t = 1, . . . , T} using

realized measures RMi,t,M . Two well-known examples of realized measures are the realized variance

RM
(V )
i,t,M ≡

M−1∑

j=1

(
pi,t+(j+1)/M − pi,t+j/M

)2
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and the bipower variation

RM
(BP )
i,t,M ≡

M−2∑

j=1

∣∣pi,t+(j+1)/M − pi,t+j/M

∣∣ ∣∣pi,t+j/M − pi,t+(j−1)/M

∣∣ .

The former is robust neither to microstructure noise nor to the presence of jumps. Although the

latter has the advantage of entailing robustness with respect to jumps, it still is sensitive to market-

microstructure noise. Huang and Tauchen (2005) attempt to deal with the simultaneous presence

of microstructure noise and jumps by suggesting the staggered bipower variation:

RM
(SBP )
i,t,M,k ≡

M−(k+2)∑

j=1

∣∣pi,t+(j+1)/M − pi,t+j/M

∣∣ ∣∣pi,t+j−k/M − pi,t+(j−k−1)/M

∣∣ .

The idea is to include additional spacing (k > 0) between adjacent intraday returns so as to alleviate

the impact of microstructure noise. According to the application in mind, one may choose among

the above realized measures to estimate the integrated variance in a robust and consistent manner.

This actually concludes the first step of the statistical analysis of noncausality in variance that we

propose in the next section.

It now remains to illustrate the second step of our testing procedure, whose goal is to check

whether the daily variance of asset B helps predict the future daily variance of asset A. Instead

of restricting attention to the conditional mean of the stochastic volatility process, we take a more

general approach by testing for conditional independence between daily integrated variances. Apart

from the natural interest in volatility trading (Carr et al., 2005), dealing with the whole distribution

of the daily integrated variance also permits enjoying nontrivial power against nonlinear channels

of volatility transmission. We thus formulate a testing procedure that focuses on the density

restrictions implied by conditional independence:

H0 : fY |XZ

(
y

∣∣ Xt, Zt

)
= fY |X

(
y

∣∣Xt

)
, a.s., (2)

where (Yt, Xt, Zt) = (IVA,t+1, IVA,t, IVB,t+k) for k = 0, 1 with fY |XZ

(
y

∣∣Xt, Zt

)
and fY |X

(
y

∣∣Xt

)

denoting the density of IVA,t+1 evaluated at y given (IVA,t, IVB,t+k) and IVA,t, respectively. We

allow for k ∈ {0, 1} so as to control for time differences between the markets under consideration.

As usual, we define the alternative hypothesis as the negation of the null hypothesis.

To implement a nonparametric test for H0, we propose a statistic that gauges the discrepancy

between the nonparametric estimates of the density functions that appear in (2). In particular, our
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test statistic hinges on the following integrated square relative distance:

∫ [
f̂Y |XZ(y|x, z)− f̂Y |X(y|x)

f̃Y |X(y|x)

]2

πY XZ(y, x, z) dy dxdz, (3)

where f̂Y |XZ , f̂Y |X , and f̃Y |X are nonparametric estimates of the conditional density functions

of IVA,t+1 given (IVA,t, IVB,t+k) and IVA,t, respectively. The difference between f̂Y |X and f̃Y |X

rests exclusively on the set of bandwidth parameters. In particular, the bandwidths for the latter

converge to zero at a rate that makes negligible the estimation error in the denominator. We also

employ a weighting scheme πY XZ so as to avoid the lack of precision that afflicts conditional density

estimation in areas of low density of the conditioning variables.

The integrated square distance that we adopt in (3) is convenient because it facilitates the

derivation of the asymptotic theory. Bickel and Rosenblatt (1973), Rosenblatt (1975), Hall (1984),

Fan (1994), Aı̈t-Sahalia (1996), Aı̈t-Sahalia, Bickel and Stoker (2001), Fernandes and Grammig

(2005), Aı̈t-Sahalia et al. (2006a), and Amaro de Matos and Fernandes (2006) use similar squared

distance measures, though one could also employ entropic pseudo-distance measures as in Robinson

(1991) and Hong and White (2004). As for the nonparametric density estimates in (3), our asymp-

totic results also consider the application of local linear smoothing rather than confining attention

to the more usual kernel-based techniques. The motivation resides on the absence of boundary

bias in local linear smoothing. Given the positivity of realized volatility, kernel smoothing would

require either data transformation, boundary bias correction, or the use of an asymmetric kernel.

See Hagmann and Scaillet (2006) for an excellent discussion.

In the next section, we derive the asymptotic properties of a class of test statistics from which

the statistic in (3) belongs to. More specifically, we consider a more general setting for testing

conditional independence between daily integrated variances in that we consider any arbitrary

number of conditioning variables. The motivation lies on the fact that the daily integrated variances

do not necessarily satisfy the Markov property and hence one could think of augmenting the vector of

conditioning variables. It turns out that it is not so straightforward to extend the extant asymptotic

results (see, e.g., Aı̈t-Sahalia et al., 2006a; Amaro de Matos and Fernandes, 2006) to the ambit of

a higher conditioning dimension. As in Corradi et al. (2007), we also show how to account for

the realized volatility estimation error that permeates the first step of our testing procedure in the

asymptotic derivations.
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3 Testing for conditional independence

To consider an arbitrary large conditioning dimension, we restate the null hypothesis of conditional

independence as

H0 : fY |X(p)(y
∣∣ X

(p)
t ) = fY |X(q)(y

∣∣ X
(q)
t ), a.s., (4)

where X
(p)
t = (X1t, . . . , Xpt) and X

(q)
t = (X1t, . . . , Xqt) with p > q. To keep the nonparametric

nature of the testing procedure, we employ local linear smoothing to estimate both the right- and

left-hand sides of (4). The sample analog of the integrated squared relative difference then reads

T∑

t=1


 f̂Y |X(p)(Yt

∣∣X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

π(Yt, X
(p)
t ), (5)

where the conditional density estimates f̂Y |X(p) , f̂Y |X(q) , and f̃Y |X(q) derive from local linear

smoothing using different sets of bandwidths.

In particular, denote by β̂T (y, x(p)) =
(
β̂0T (y, x(p)), β̂1T (y, x(p)), . . . , β̂pT (y, x(p))

)′
, where

x(p) = (x1, . . . , xp), the argument that minimizes

1
T

T∑

t=1

[
Kb(Yt − y)− β0 − β1(X1t − x1)− . . .− βp(Xpt − xp)

]2
p∏

j=1

Whp(Xjt − xj),

where Kb(u) = b−1K(u/b) and Whp(u) = h−1
p W (u/h) are symmetric kernels. The local linear

estimator of the conditional density function fY |X(p) is given by

f̂Y |X(p)(y
∣∣x(p)) = β̂0T (y, x(p)). (6)

The local linear estimators f̂Y |X(q) and f̃Y |X(q) of the lower dimensional conditional density are

analogous for x
(q)
t = (x1, . . . , xq). In particular, f̂Y |X(q)(y

∣∣x(q)) = β̂0T (y, x(q)), where

1
T

T∑

t=1

[
Kb(Yt − y)− β0 − β1(X1t − x1)− . . .− βq(Xqt − xq)

]2
q∏

j=1

Whq(Xjt − xj) (7)

attains its minimum value at β̂T (y, x(q)) =
(
β̂0T (y, x(q)), β̂1T (y, x(q)), . . . , β̂qT (y, x(q))

)′
, whereas

the alternative estimator f̃Y |X(q) ensues by replacing (b, hq) with (b̃, h̃q) in (7).

It thus follow that one may rewrite the local regression coefficient estimates as

β̂T (y, x(p)) =
(H′

x(p)Wx(p)Hx(p)

)−1H′
x(p)Wx(p)Yy (8)

β̂T (y, x(q)) =
(H′

x(q)Wx(q)Hx(q)

)−1H′
x(q)Wx(q)Yy, (9)

β̃T (y, x(q)) =
(
H′

x(q)W̃x(q)Hx(q)

)−1
H′

x(q)W̃x(q)Ỹy, (10)
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where Wx(p) = diag
[∏p

j=1 Whp(Xj1 − xj1), . . . ,
∏p

j=1 Whp(XjT − xjT )
]
,

Hx(p) =




1 X11−x11 · · · Xp1−xp1

...
...

. . .
...

1 X1T−x1T · · · XpT−xpT


 ,

and Yy =
(
Kb(Y1 − y), . . . , Kb(YT − y)

)′
. The definitions of Wx(q) and Hx(q) are analogous as well

as those of Ỹy and W̃x(q) , which only differ because of the alternative set of bandwidths.

We are now ready to derive the asymptotic behavior of the test statistic in (5). In the following

subsections, we first list some mild regularity conditions that our asymptotic theory require and

then state a series of lemmata that help establishing our main asymptotic result.

3.1 Assumptions

The assumptions that we initially require are actually quite standard in the literature on local

linear smoothing (see, e.g., Fan, Yao and Tong, 1996) and hence we only briefly discuss them in

what follows.

Assumption A1: The product kernels W (u) =
∏p

j=1 W (uj) and W̃ (u) =
∏q

j=1 W (uj) rely

on a symmetric, nonnegative, continuous univariate kernel W with bounded support [−∆,∆] for

1 ≤ j ≤ p > q. The kernel W is also at least twice differentiable on the interior of its support and

such that
∫

W (u) du = 1 and
∫

uW (u) du = 0. The symmetric kernel K is of order s ≥ 2 (even

integer) and at least twice differentiable on the interior of its bounded support [−∆,∆].

Assumption A2: The density functions fY |X(p)(y
∣∣x(p)) and fY X(p)(y, x(p)) are r-times, bounded,

continuously differentiable in y and in x1, . . . , xp with r ≥ s. The same condition also holds for the

lower-dimensional density functions fY |X(q)(y
∣∣x(q)) and fY X(q)(y, x(q)).

Assumption A3: The weighting function π
(
y, x(p)

)
is continuous, integrable, with second deriva-

tives in a compact support.

Assumption A4: The stochastic process
(
Yt, X

(p)
t

)
is strictly stationary and β-mixing with

βτ = O (ρτ ), where 0 < ρ < 1.

Assumption A1 rules out higher-order kernels for W because the design matrix H′
x(p)Wx(p)Hx(p)

would otherwise be asymptotically singular. Assumptions A2 and A3 require that the weighting

scheme and the density functions are both well-defined and smooth enough to admit functional

expansions. Assumption A4 restricts the amount of data dependence, requiring that the stochastic
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process is absolutely regular with geometric decay rate. Alternatively, one could assume α−mixing

conditions as in Gao and King (2004), though the conditions under which a diffusion process

satisfies Assumption A4 are quite weak (Aı̈t-Sahalia, 1996). See Chen, Linton and Robinson (2001)

for some advantages of the β−mixing assumption relative to the α−mixing condition in the context

of nonparametric density estimation.

3.2 Preliminary results

In this section, we derive a series of intermediate results that ultimately provide the basis for

the asymptotic justification of our nonparametric test for noncausality in variance. We must first

establish some notation. Let C1(K) ≡ ∫
K(u)2 du and C2(K) ≡ ∫ (∫

K(u)K(u + v) du
)2 dv,

whereas C1(W ) ≡ ∫
W (z)2 dz and C2(W ) ≡ ∫ (∫

W (z1)W (z1 + z2) dz1

)2 dz2. In addition,

C1(W̃ ) and C2(W̃ ) are analogous to the constants C1(W ) and C2(W ) above, though with a lower

dimension. We next let C11(W , W̃ ) ≡ ∫
W (z)W̃ (z) dz and C12(W , W̃ ) ≡ ∫

W (z)W̃ (z)2 dz.

We next introduce consistent estimators for the unknown quantities that determine the asymp-

totic bias and variance of the integrated squared relative difference statistic in (5). Let

µ̂1,T = C1(K) C1(W )
∫

π(y, x(p)) dy dx(p) −
√

bC2(W )
∫

1
T

T∑

t=1

π(Yt, x
(p)) dx(p), (11)

µ̂2,T = C1(K) C1(W̃ )
∫

π(y, x(p)) dy dx(p) −
√

bC2(W̃ )
∫

1
T

T∑

t=1

π(Yt, x
(p)) dx(p), (12)

µ̂3,T = C1(K) C11(W , W̃ )
∫

π(y, x(p)) dy dx(p) −
√

b C12(W, W̃ )
∫

1
T

T∑

t=1

π(Yt, x
(p)) dx(p), (13)

Ω̂2
T = 2C2(K) C2(W )

∫
π2(y, x(p)) dy dx(p). (14)

Finally, define the test statistic as

Λ̂T = Ω̂−1
T





h
p/2
p b1/2

∑T
t=1

[ bf
Y |X(p) (Yt

∣∣X
(p)
t )− bf

Y |X(q) (Yt

∣∣X
(q)
t )ef

Y |X(q) (Yt

∣∣X
(q)
t )

]2

π(Yt, X
(p)
t )

− h
−p/2
p b−1/2 µ̂1,T − h

p/2
p h−q

q b−1/2 µ̂2,T + 2h
−q/2
q b−1/2 µ̂3,T





. (15)

In particular, (11) to (14) provide consistent estimators for the unknown quantities that turn up

in Lemmata 1 to 3, whereas (15) defines the statistic of interest in Theorem 1. To ensure that

(11) to (13) indeed converge in probability at appropriate rates, we impose some conditions on the

rates at which the bandwidths shrink to zero. To avoid unnecessary stringent restrictions, we take

advantage of the fact that f̂Y |X(q) and f̃Y |X(q) are both consistent for fY |X(p) only under the null.
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Lemma 1: Assume that there are at most two conditioning variables in the higher dimensional

density (i.e., p ≤ 2) and that the bandwidth vector (hp, b, h̃q, b̃) is such that: (i) T hp+4
p → 0,

(ii) T (lnT )−1 h2p
p b → ∞, (iii) T h

4+p/2
p b1/2 → 0, (iv) T h

p/2
p b2s+1/2 → 0, (v) h4−p

p b−1 → 0, (vi)

h−p
p b2s−1 → 0, (vii) T h̃q

q b̃
(
h̃4

q + b̃2s
)
→ 0, and (viii) T (lnT )−1 hp

p h̃q
q b b̃ → ∞. It then follows

from Assumptions A1 to A4 that

Ω−1



hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )


 f̂Y |X(p)(Yt

∣∣ X
(p)
t )− fY |X(p)(Yt

∣∣ X
(p)
t )

f̃Y |X(q)(Yt

∣∣ X
(q)
t )




2

− h−p/2
p b−1/2 µ1



 ,

where Ω = plim Ω̂T and

µ1 = C1(K) C1(W )
∫

π(y, x(p)) dy dx(p) −
√

b C2(W )
∫
E

[
π(Y, X(p))

∣∣X(p) = x(p)
]
dx(p), (16)

weakly converges to a standard normal distribution.

Lemma 2: Assume that there are at most one conditioning variable in the lower dimensional

density (i.e., q ≤ 1) and that the bandwidths satisfy: (i) T hd+4
d → 0, (ii) T (lnT )−1 h2d

d b →∞, (iii)

T h
4+d/2
d b1/2 → 0, (iv) T h

d/2
d b2s+1/2 → 0, (v) h4−d

d b−1 → 0, and (vi) h−d
d b2s−1 → 0 for d ∈ {p, q}

as well as (vii) T h̃q
q b̃

(
h̃4

q + b̃2s
)
→ 0 and (viii) T (lnT )−1 h−p

p h2q
q h̃q

q b b̃ →∞. Assumptions A1 to

A4 then ensures that

Ω−1



hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )


 f̂Y |X(q)(Yt

∣∣X
(q)
t )− fY |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣ X
(q)
t )




2

− h−p/2
p h−q

q b−1/2 µ2



 ,

where

µ2 = C1(K) C1(W̃ )
∫

π(y, x(p)) dy dx(p) −
√

b C1(W̃ )
∫
E

[
π(Y, X(p))

∣∣X(p) = x(p)
]
dx(p),

is of order op(1).

Lemma 3: Let the bandwidth conditions (i) to (vi) in Lemma 2 hold. It then follows under

Assumptions A1 to A4 and the null hypothesis H0 given by (4) that

Ω−1


hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )

ε̂Y |X(p)(Yt|X(p)
t ) ε̂Y |X(q)(Yt|X(q)

t )

f̃Y |X(q)(Yt

∣∣ X
(q)
t )

− h−q/2
q b−1/2 µ3


 = op(1),

where ε̂Y |X(·)(Yt|X(·)
t ) ≡ f̂Y |X(·)(Yt|X(·)

t )− fY |X(·)(Yt|X(·)
t ) and

µ3 = C1(K) C11(W , W̃ )
∫

π(y, x(p)) dy dx(p)−
√

bC12(W , W̃ )
∫
E

[
π(Y, X(p))

∣∣X(p) = x(p)
]
dx(p).
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Before establishing the asymptotic distribution of the statistic (15), it is interesting to observe

that the bandwidth conditions in Lemma 2 actually entail a mild dose of undersmoothing. For

instance, if hd = o
(
T−1/md

)
for d ∈ {p, q} and b = b̃ = h̃q = O

(
T−

1
2s+1

)
, conditions (i), (iv), and

(vi) become redundant relative to the more demanding restrictions in (ii) and (iii). In addition,

condition (v) is also redundant if one restricts attention to at most two dimensions (i.e., d ≤ 2),

though it implies a contradiction in the three dimensional case (i.e., d = 3). In view that condition

(vii) requires a kernel of second order, it is easy to appreciate that conditions (ii) and (viii) coincide

for q = 1 and p = 2. To satisfy every bandwidth condition, it suffices to employ hd converging to

zero at a rate 5
2 d < md ≤ 5(d+8)

9 for d ∈ {1, 2}. This means that 5
2 < m1 ≤ 5 and that 5 < m2 ≤ 50

9

for a second-order kernel.

We are now ready to state our main result concerning the asymptotic distribution of the statistic

in (15) that tests for conditional independence using local linear smoothing.

Theorem 1: Let Assumptions A1 to A4 hold as well as the bandwidth conditions (i) to (viii) in

Lemmata 1 and 2. It follows for p = 2 that

(i) Under the null hypothesis H0, Λ̂T
d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−p/2
p b−1/2 | Λ̂T | > ε

)
−→ 1 for any ε > 0.

At this point, it is useful to digress about some peculiarities of the result in Theorem 1. First,

if one restricts attention to the case in which p = 1 and q = 0, the above result follows almost

immediately from Aı̈t-Sahalia et al.’s (2006a) Corollary to Theorem 1. Yet, even in this simple case,

it is necessary to account for the bias component that arises due to the nonparametric estimation

of the lower-dimensional model. Second, there is no rate of growth for the bandwidths that jointly

satisfy the conditions in Lemma 2 for p > 2. Even if one increases the order of the kernel K,

the product kernels W and W̃ must always employ second-order univariate kernels so as to avoid

problems of asymptotic singularity in the design matrix. This means that allowing for higher-order

kernels does not really help as to what concerns the bandwidth rates.

We now deal with the p > 2 case by employing the usual Nadaraya-Watson estimator for

conditional density functions, though with higher-order kernels. More specifically, define

f̄Y |X(p)(y|x(p)) =
f̄Y,X(p)(y, x(p))

f̄X(p)(x(p))
=

1
T hp

p b

∑T
t=1 W̄

(
X

(p)
t −x(p)

hp

)
K̄

(
Yt−y

b

)

1
T hp

p

∑T
t=1 W̄

(
X

(p)
t −x(p)

hp

) (17)
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as well as the other conditional density estimators f̄Y |X(q) and f̄Y X(p−q)|X(q) analogously. Let also

W̄ hp(u) = h−p
p

∏p
j=1 W̄ (uj) and ˜̄W hq(u) = h−q

q
∏q

j=1 W̄ (uj), and then define

µ̄1,T = C1(K̄) C1(W̄ )
1
T

T∑

t=1

π(Yt, X
(p)
t )f̄ 2

Y |X(p)(Yt

∣∣X
(p)
t )

−
√

b C1(W̄ )
1
T

T∑

t=1

π(Yt, X
(p)
t )f̄ 3

Y |X(p)(Yt

∣∣X
(p)
t ), (18)

µ̄2,T = C1(K̄) C1(˜̄W )
1
T

T∑

t=1

π(Yt, X
(p)
t )f̄ 2

Y |X(q)(Yt

∣∣ X
(q)
t )

−
√

b C1(˜̄W )
1
T

T∑

t=1

π(Yt, X
(q)
t )f̄ 3

Y |X(q)(Yt

∣∣X
(q)
t ), (19)

µ̄3,T = C1(K̄) C11(W̄, ˜̄W )
1
T

T∑

i=1

π(Yt,X
(p)
t )f̄Y |X(p)(Yt

∣∣X(p)
t )f̄Y X(p−q)|X(q)(Yt, X

(p−q)
t

∣∣X(q)
t )

−
√

b C12(W̄, ˜̄W )
1
T

T∑

t=1

π(Yt, X
(p)
t )f̄ 2

Y |X(p)(Yt

∣∣X(p)
t )f̄Y X(p−q)|X(q)(Yt, X

(p−q)
t

∣∣X(q)), (20)

Ω̄2
T = 2C2(K̄) C2(W̄ )

1
T

T∑

t=1

π2(Yt,X
(p)
t )f̄ 4

Y |X(p)(Yt

∣∣X
(p)
t ), (21)

so that the kernel-based test statistic becomes

Λ̄T = Ω̄−1
T





h
p/2
p b1/2

∑T
t=1

[
f̄Y |X(p)(Yt

∣∣X
(p)
t )− f̄Y |X(q)(Yt

∣∣X
(q)
t )

]2
π(Yt, X

(p)
t )

− h
−p/2
p b−1/2µ̄1,T − h

p/2
p h−q

q b−1/2µ̄2,T + 2 h
−q/2
q b−1/2 µ̄3,T





. (22)

To establish the asymptotic behavior of the kernel-based test statistic in (22), we must first

slightly change Assumption A1 to accommodate for higher-order kernels in a more general fashion.

Assumption A5: The product kernels W̄ (u) =
∏p

j=1 W̄ (uj) and ˜̄W (u) =
∏q

j=1 W̄ (uj) rely on a

symmetric, nonnegative, continuous univariate kernel W̄ for 1 ≤ j ≤ p > q. The kernel functions

W̄ and K̄ are of order s > 2 (even integer) and at least twice differentiable on the interior of their

bounded support [−∆,∆].

As before, we next establish a series of three lemmata that leads to our main result concerning

the kernel-based test of conditional independence. In particular, (18) to (20) provide consistent

estimators for the unknown bias-related quantities that appear in Lemmata 4 to 6, whereas we

establish in Theorem 2 the asymptotic distribution of the kernel-based test statistic in (22) under

the null hypothesis of conditional independence given by (4). As will become apparent, one main

13



operational difference between the kernel and local linear approaches is that, in stark contrast to

the latter, the former does not require the alternative set of bandwidths (h̃p, h̃q, b̃) to estimate the

bias-related quantities in (22).

Lemma 4: Let Assumptions A2 to A5 hold and the bandwidths (hp, b) satisfy: (i) T h2s+p
p → 0,

(ii) T (lnT )−1 h2p
p b →∞, (iii) T h

2s+p/2
p b1/2 → 0, (iv) T h

p/2
p b2s+1/2 → 0, (v) h2s−p

p b−1 → 0, and

(vi) h−p
p b2s−1 → 0. It then follows that

Ω̄−1

{
hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )

[
f̄Y |X(p)(Yt

∣∣X
(p)
t )− fY |X(p)(Yt

∣∣X
(p)
t )

]2
− h−p/2

p b−1/2 µ̄1

}
,

where Ω̄ = plim Ω̄T and

µ̄1 = C1(K̄) C1(W̄ )
∫

π(y, x(p))f2
Y |X(p)(y|x(p)) dy dx(p)

−
√

b C1(W̄ )
∫

π(y, x(p))f3
Y |X(p)(y|x(p)) dy dx(p),

weakly converges to a standard normal distribution.

Lemma 5: Let Assumptions A2 to A5 hold and the bandwidths (hp, hq, b) satisfy: (i) T h2s+d
d → 0,

(ii) T (lnT )−1 h2d
d b →∞, (iii) T h

2s+d/2
d b1/2 → 0, (iv) T h

d/2
d b2s+1/2 → 0, (v) h2s−d

d b−1 → 0, and

(vi) h−d
d b2s−1 → 0 for d ∈ {p, q}. It then holds that

Ω̄−1

{
hp/2

p b1/2
T∑

t=1

π(Yt,X
(p)
t )

[
f̄Y |X(q)(Yt

∣∣X
(q)
t )− fY |X(q)(Yt

∣∣X
(q)
t )

]2
− hp/2

p h−q
q b−1/2µ̄2

}
= op(1),

where

µ̄2 = C1(K̄) C1(˜̄W )
∫

π(yt,x
(p)
t )f2

Y |X(q)(y|x(q)) dy dx(p)

−
√

b C1(˜̄W )
∫

π(yt,x
(p)
t )f3

Y |X(p)(y|x(p)) dy dx(p).

Lemma 6: Let the bandwidth conditions (i) to (vi) in Lemma 5 hold. It then follows from

Assumptions A2 to A5 and from the null hypothesis H0 given by (4) that

Ω̄−1

[
hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t ) ε̄Y |X(p)(Yt|X(p)

t ) ε̄Y |X(q)(Yt|X(q)
t )− h−q/2

q b−1/2µ̄3

]
= op(1),

where ε̄Y |X(·)(Yt|X(·)
t ) ≡ f̄Y |X(·)(Yt|X(·)

t )− fY |X(·)(Yt|X(·)
t ) and

µ̄3 = C1(K̄) C11(W̄ , ˜̄W )
∫

π(yt, x
(p)
t )fY |X(p)(y|x(p))fY X(p−q)|X(q)(y, x(p−q)|x(q)) dy dx(p)

−
√

b C12(W̄ , ˜̄W )
∫

π(yt, x
(p)
t )f2

Y |X(p)(y|x(p))fY,X(p−q)|X(q)(y, x(p−q)|x(q)) dy dx(p).
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As before, the bandwidth conditions in Lemma 5 implies a bit of undersmoothing. Taking

hd = o
(
T−1/md

)
for d ∈ {p, q} and b = O

(
T−

1
2s+1

)
yields conditions (i), (iv), and (vi) redundant

relative to the more stringent restrictions that (ii) and (iii) impose. In addition, condition (v)

is also redundant if one restricts attention to the two dimensional problem (i.e., d = 2), though

it implies a contradiction for higher dimensions if one does not employ a higher-order kernel. In

particular, redundancy follows as long as the order of the kernel and the conditioning dimension are

such that d < 8 s2+2s−4
5s+1 . To satisfy every bandwidth condition, one must thus choose bandwidths

converging to zero at a rate (2s+1) d
s < md ≤ (2s+1)(d+4s)

4s+1 for d ∈ {p, q}. For instance, this implies

that 9
4 < m1 ≤ 9, 9

2 < m2 ≤ 162
17 , 27

4 < m3 ≤ 171
17 , and 9 < m4 ≤ 180

17 in the ambit of a fourth-order

kernel. It also follows from conditions (ii) and (iii) that, if there are more than four conditioning

variables, one must then employ kernels with order even higher than four.

Theorem 2: Let Assumptions A2 to A5 hold as well as the bandwidth conditions (i) to (iv) in

Lemma 5. It then follows under the null H0 that the kernel-based test statistic Λ̄T in (22) weakly

converges to a standard normal distribution.

Theorem 1 and 2 form the basis for locally strictly unbiased tests for the conditional indepen-

dence null H0 in (4) based on local linear and kernel smoothing, respectively. It suffices to reject

the null at level α when Λ̂T (or Λ̄T in the case of the kernel-based test) is greater or equal to the

(1 − α)-quantile of a standard normal distribution. The conditions under which we derive both

testing procedures also clarify that the kernel-based test works in a more general environment than

the local linear variant. The latter indeed suffers from more stringent limitations with respect to

the dimensionality of the conditioning state vector.

3.3 Accounting for the realized measure estimation

The asymptotic theory so far considers the unfeasible test statistic in (15). In this section, we

show the asymptotic equivalence of the corresponding feasible test statistic that replaces integrated

variances by realized measures. To discuss the impact of estimating the integrated variance in

the first step of our testing procedure, we must first establish some notation that makes explicit

the dependence on the number of intraday observations that we employ to compute the realized

measure. We thus denote the time series of realized measures by Yt,M and X
(d)
t,M , where M is the

number of intraday observations and d ∈ {p, q}.
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Let β̂
(M)

T (y, x(d)) =
(
β̂

(M)
0T (y, x(d)), β̂

(M)
1T (y, x(d)), . . . , β̂

(M)
pT (y, x(d))

)′
denote the argument

that minimizes

1
T

T∑

t=1

[
Kb(Yt,M − y)− β0 − β1(X1t,M − x1)− . . .− βd(Xdt,M − xd)

]2
d∏

j=1

Whd
(Xjt,M − xj).

The local linear estimator of the conditional density is f̂
(M)

Y |X(d)(y
∣∣x(d)) = β̂

(M)
0T (y, x(d)), resulting

from β̂
(M)

T (y, x(d)) =
(
H′

x(d),M
Wx(d),M Hx(d),M

)−1
H′

x(d),M
Wx(d),MYy,M with

Wx(d),M = diag




d∏

j=1

Whd
(Xj1,M − xj), . . . ,

d∏

j=1

Whd
(XjT,M − xj)


 ,

Hx(d),M =




1 X11,M−x1 · · · Xd1,M−xd

...
...

. . .
...

1 X1T,M−x1 · · · XdT,M−xd


 , and Yy,M =

(
Kb(Y1,M − y), . . . , Kb(YT,M − y)

)′
.

Defining analogously f̃
(M)

Y |X(q)(y
∣∣x(q)) for a bandwidth vector (b̃, h̃q) then yields the following feasible

test statistic

Λ̂ (M)
T = Ω−1





h
p/2
p b1/2

∑T
t=1

[ bf (M)

Y |X(p)
(Yt,M

∣∣X
(p)
t,M )− bf (M)

Y |X(q)
(Yt,M

∣∣X
(q)
t,M )ef (M)

Y |X(q)
(Yt,M

∣∣X
(q)
t,M )

]2

π(Yt,M , X
(p)
t,M )

− h
−p/2
p b−1/2 µ̂

(M)
1,T − h

p/2
p h−q

q b−1/2 µ̂
(M)
2,T + 2 h

−q/2
q b−1/2 µ̂

(M)
3,T





. (23)

where for µ̂
(M)
·,T differs from µ̂·,T because it employs realized measures rather than the true integrated

variance. Let N0,t,M = Yt− Yt,M and Nj,t,M = Xj,t−Xj,t,M for j = 1, . . . , p denote the estimation

errors in the first step. To ensure that the first-step estimation error does not affect the asymptotic

distribution of the testing procedure, we must restrict the rate at which the higher-order moments

of the estimation errors converge.

Assumption A6: There exists a sequence aM , with aM →∞ as M →∞, such that

sup
1≤t≤T

E
(
|Nj,t,M |k

)
= O

(
T 1/2 a

−k/2
M

)
, j = 0, . . . , p

for some k ≥ 2.

Theorem 3: Let Assumptions A1 to A4 and A6 hold as well as the bandwidth conditions (i) to

(viii) in Lemmata 1 and 2. Also, let T
2k+5

2(2k−1) a
−1/2
M → 0 as T, M →∞. It follows for p = 2 that

(i) Under the null hypothesis H0, Λ̂ (M)
T

d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−p/2
p b−1/2 | Λ̂ (M)

T | > ε
)
−→ 1 for any ε > 0.
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4 Volatility spillovers across international stock markets

We examine in this section whether there are volatility spillovers between China, Japan, and US

using data from their main stock market indices. In particular, we collect ultra-high-frequency data

for the SSE B Share index, the Topix 100 index, and the S&P 500 index from Reuters, available at

the Securities Industry Research Centre of Asia-Pacific (www.sirca.org.au). The latter consists

of a not-for-profit financial services research organization that involves twenty-six collaborating

universities across Australia and New Zealand.

Before describing the data in details, it is important to justify our index selection by establishing

some background. We adopt the S&P 500 index to measure the movements in the US stock market

because it is not only a bellwether for the US economy, but also serves as benchmark for the hedge

fund industry. It is actually quite straightforward to trade on the performance of the S&P 500

index by means of a wide array of derivatives (e.g., futures and options on the Chicago Mercantile

Exchange, and variance swaps in the over-the-counter market) as well as of exchange-traded funds

on the American Stock Exchange. In addition, the Chicago Board Options Exchange also publishes

a volatility index (VIX) that measures market expectations of the near-term volatility implied by

the S&P 500 index options. This is convenient because it provides an extra control variable to cope

with the persistence in the daily volatility of the S&P 500 index (see Section 4.5).

As for the Topix 100 index, it is a weighted index gauging the performance of the 100 most liquid

stocks with the largest market capitalization on the Tokyo Stock Exchange (TSE). There are two

continuous trading sessions on the TSE, with a call auction-procedure determining their opening

prices. The morning session runs from 9:00 to 11:00, whereas the afternoon session is from 12:30 to

15:00. In view of the time difference, there is no overlapping trading hours between Tokyo and the

US stock markets. The same applies to the Shanghai Stock Exchange (SSE), whose morning and

afternoon consecutive bidding sessions run from 9:30 to 11:30 and from 13:00 to 15:00. One of the

particular features of the Chinese stock market is the relative importance of individual investors

despite the fact they face substantial trading restrictions, e.g., a very stringent short-sale constraint

(Hertz, 1998; Feng and Seasholes, 2003, 2006). In addition, local investors could not own B shares

before March 2001 and, even though they may now purchase them using foreign currency, capital

controls still restrict their ability to do so. See Mei, Scheinkman and Xiong (2005) and Allen, Qian

and Qian (2007) for more details on the institutional background.
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Our motivation to include the SSE B Share index in the analysis is twofold. First, because

pricing of trading for B shares is in US dollars, there is no room for exchange rate movements to

blur any eventual stock market link. Second, albeit its stock market is relatively young, dating

back only to November 1990, China is becoming a major player in the world economy and hence it

would be interesting to understand the role it plays within the context of volatility transmission.

4.1 Data description

The sample spans a time period of six years, running from January 3, 2000 to December 30, 2005.

In particular, there are 1,301 common trading days. To compute the realized measures of daily

integrated variance, we first compute continuously compounded returns over regular time intervals

of 1, 5, 10, 15, and 30 minutes. The sample does not include overnight returns in that the first

intraday return refers to the opening price that ensues from the, if any, pre-sessional auction. The

time-series plots of the index returns do not vary much according to the sampling interval and

hence Figure 1 displays only index returns at the 5-minute and 30-minute frequencies.

Table 1 reports the corresponding descriptive statistics. The average intraday return is slightly

negative for every stock market, though relative lower for Japan and China. This is somewhat

surprising in view that the Topix 100 and, especially, the Shanghai B Share indexes exhibit much

more time-series variation than the S&P500 index. The skewness coefficients are significantly

positive for all index returns at the 5-minute frequency, though it decreases a lot, becoming even

negative for Japan and US, at the 30-minute frequency. As usual, index returns exhibit substantial

excess kurtosis, which seemingly increases with the sampling frequency.

Figure 2 plots the autocorrelation functions of the 5-minute and 30-minute index returns as

well as of the squared returns at the 30-minute frequency. The correlograms for Japan and US are

very similar in that they evince virtually no autocorrelation in the 30-minute returns, but a very

persistent behavior in their second moment with spikes reflecting the usual intraday seasonality.

As expected, sampling returns at the higher frequency of 5 minutes entails some possibly spurious

autocorrelation of first order due to microstructure effects. As for the Shanghai B Share index, there

is already significant autocorrelation in the 30-minute returns, though it obviously increases with

the sampling frequency. This probably reflects the fact that B Shares may suffer from relatively

low liquidity. The correlograms also indicate that there is some strong intraday seasonality both

in level and magnitude in the SSE index. On the other hand, the latter volatility does not seem to
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feature such a persistent behavior as the Topix 100 and S&P 500 indexes.

To alleviate market microstructure issues, we carry out our empirical analysis of the realized

volatility transmission using 30-minute index returns, though our qualitative results seem robust

to changes in the sampling frequency (see Section 4.5). The latter is not surprising in view that the

time-series behavior of the realized variance does not vary much with the frequency as illustrated

by Figure 3. It is also interesting to observe that controlling for market microstructure by means of

the multiple scales realized variance approach (Zhang, Mikland and Aı̈t-Sahalia, 2005; Aı̈t-Sahalia,

Mykland and Zhang, 2006b; Zhang, 2006) does not affect much the integrated variance estimates.

There differences are usually not very significant, with exception perhaps to some few days. These

days coincide with the dates at which there are palpable differences between the realized variance

and bipower variation estimates.1 Although it is not very clear whether we are dealing with jumps

or market microstructure noise, it seems that it suffices to control for only one of them.

4.2 Volatility transmission between China and Japan

4.3 Volatility transmission between China and US

4.4 Volatility transmission between Japan and US

4.5 Robustness analysis

We revisit our empirical findings so as to evaluate their sensitiveness to the realized measure we

employ to estimate the integrated variance as well as to the testing setup. In particular, we carry

out four robustness checks. First, we redo our empirical study using 5-minute (rather than 30-

minute) index returns to see whether changing the sampling frequency has any impact. Second,

we test whether our results are an artifact due to either jumps or microstructure noise. Third, we

assess how pivotal is the assumption that, under the null hypothesis, the past integrated variance

suffices to control for the persistence in the data by also conditioning on the past implied volatility.

Finally, we also examine how fast the volatility transmission occurs by looking at the integrated

variance over shorter periods of time.
1 Although the discrepancy between the realized variance and bipower variation estimates is much more apparent

for the Topix 100 index, there are very few significant jumps at the 95% level of confidence (Andersen, Bollerslev and
Diebold, 2006).
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4.5.1 Sampling frequency

4.5.2 Quadratic variation and jumps

4.5.3 Data persistence

4.5.4 Reaction time

5 Conclusion

This paper develops formal statistical tools for nonparametric tests of noncausality in volatility. Un-

der the assumption that asset prices follow continuous-time jump-diffusion processes with stochastic

volatility, we show how to test whether the transition distribution of the integrated variance of a

given stock market index also depends on the integrated variance of another country’s stock mar-

ket index. Our testing procedure involves two steps. In the first stage, we estimate the integrated

variances using intraday returns data by means of realized measures so as to avoid misspecification

risks. In the second step, we then check whether the conditional independence restriction implied by

noncausality holds for the transition distribution of the integrated variance. Our results contribute

to the literature on nonparametric tests of density restriction. The asymptotic theory we put forth

specifically accounts for the impact of the estimation error in the first step of the testing procedure.

In addition, we also consider a more general setup in which the transition distribution may depend

on a state vector of any dimension. It turns out that such a generalization is not so straightforward

as it seems at first glance, requiring some strengthening conditions on the nonparametric density

estimation.

We contribute not only to the literature on nonparametric tests of density restriction, but also

to the literature on international market links by investigating the realized volatility transmission

across international stock markets using intraday data from China, Japan, and US.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Under the null H0, the higher dimensional conditional density fY |X(p)(y|x(p)) coincides with the

lower dimensional conditional density fY |X(q)(y|x(q)) and hence

Λ̂1,T ≡ Ω−1



hp/2

p b1/2
T∑

t=1

π(Yt,X
(p)
t )


 ε̂Y |X(p)(Yt

∣∣ X
(p)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

− h−p/2
p b−1/2 µ1





= Ω−1



hp/2

p b1/2
T∑

t=1

π(Yt,X
(p)
t )


 ε̂Y |X(p)(Yt

∣∣X
(p)
t )

fY |X(p)(Yt

∣∣X
(q)
t )




2

− h−p/2
p b−1/2 µ1





+
h

p/2
p b1/2

Ω

T∑

t=1

π(Yt, X
(p)
t ) ε̂ 2

Y |X(p)(Yt

∣∣X
(p)
t )


 1

f̃ 2
Y |X(q)(Yt

∣∣X
(q)
t )

− 1

f 2
Y |X(q)(Yt

∣∣X
(q)
t )




= Λ̂11,T + Λ̂12,T ,

where ε̂Y |X(p)(Yt|X(p)
t ) ≡ f̂Y |X(p)(Yt|X(p)

t )−fY |X(p)(Yt|X(p)
t ). In what follows, we first bound Λ̂12,T

and then study the asymptotic behavior of Λ̂11,T .

As Λ̂11,T concerns only to the case of p conditioning variables, we hereafter suppress the super-

script index from the conditioning state vector. Let then β(x, y) =
(
m(x, y), ∂m(x,y)

∂x1
, . . . , ∂m(x,y)

∂xp

)

with m(x, y) = E
[
Kb(Yt − y)

∣∣ Xt = x
]
. It thus follows that

β̂T (x, y)− β(x, y) =
(
H′xWxHx

)−1
H′xWx

(
Yy −Hxβ(x, y)

)

= H−1
x,T

[(
τ0T (x, y), . . . , τpT (x, y)

)
+

(
γ0T (x, y), . . . , γpT (x, y)

)′]
,

where

τ0T (x, y) =
1
T

T∑

t=1

W hp(Xt − x)
(
Kb(Yt − y)−m(Xt, y)

)
,

γ0T (x, y) =
1
T

T∑

t=1

W hp(Xt − x)


m(Xt, y)−m(x, y)−

p∑

j=1

∂m(x, y)
∂xj

(Xjt − xj)


 ,

and Hx,T is a (p + 1)× (p + 1) matrix whose first element is

Hx,T (1, 1) =
1

T hp
p

T∑

t=1

W

(
Xt − x

hp

)
, (24)

whereas the other elements are given by

Hx,T (i + 1, j + 1) =
1

T hp
p

T∑

t=1

(
Xit − xi

hp

)(
Xjt − xj

hp

)
W

(
Xt − x

hp

)
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for 1 ≤ i, j ≤ p and by

Hx,T (1, j + 1) =
1

T hp
p

T∑

t=1

(
Xjt − xj

hp

)
W

(
Xt − x

hp

)
(25)

Hx,T (i + 1, 1) =
1

T hp
p

T∑

t=1

(
Xit − xi

hp

)
W

(
Xt − x

hp

)
. (26)

We start our derivation by decomposing the main quantity of interest

IT = hp/2
p b1/2

T∑

t=1

π(Yt,Xt)

[
f̂Y |X(Yt|Xt)− fY |X(Yt|Xt)

fY |X(Yt|Xt)

]2

into

IT = hp/2
p b1/2





T∑

t=1

πft

(
p∑

i=1

H−1
Xt,T

(i, 1)

)2(
1
T

T∑

τ=1

Whp(Xτ−Xt)
[
Kb(Yτ−Yt)−m(Xt, Yt)

])2

+
T∑

t=1

πft

[
m(Xt, Yt)− fY |X(Yt|Xt)

]2
+

T∑

t=1

πft

(
p∑

i=1

H−1
Xt,T

(i, 1)

)2

× 1
T

T∑

τ=1

W hp(Xτ −Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xjt

(Xjτ −Xjt)




2

+ 2
T∑

t=1

πft

(
p∑

i=1

H−1
Xt,T

(i, 1)

)2
1
T

T∑

τ=1

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

]

× 1
T

T∑

τ=1

W hp(Xτ −Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xjt

(Xjτ −Xjt)




+ 2
T∑

t=1

πft

p∑

i=1

H−1
Xt,T

(i, 1)
(
m(Xt, Yt)− fY |X(Yt|Xt)

)

× 1
T

T∑

τ=1

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

]

+ 2
T∑

t=1

πft

p∑

i=1

H−1
Xt,T

(i, 1)
[
m(Xt, Yt)− fY |X(Yt|Xt)

]

× 1
T

T∑

τ=1

Whp(Xτ−Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xjt

(Xjτ−Xjt)








= I1,T + I2,T + I3,T + I4,T + I5,T + I6,T ,

where πft ≡ π(Yt, Xt)/f 2
Y |X(Yt|Xt) to simplify notation.

We now show that all of the above terms, but the first, are negligible in that they are of order

op(1). The definitions in (24) to (26) ensure that
∑p

j=1 H−1
Xt,T

(j, 1) is bounded. Under Assumptions

A1 and A2, m(Xt, Yt) − fY |X(Yt|Xt) = Op (bs) almost surely, uniformly in t. The bandwidth
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condition (iv) thus implies that I2,T = Op

(
T h

p/2
p b2s+1/2

)
= op(1). Also, it follows from the proof

of Theorem 1 in Fan et al. (1996) that

1
T

T∑

t=1

W hp(Xτ −Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xjt

(Xjτ −Xjt)


 = Op

(
h2

p

)

uniformly in τ . This means that I3,T = Op

(
T h

4+p/2
p b1/2

)
, which is of order op(1) due to the

bandwidth condition (iii). Similarly, the bandwidth conditions (iii) and (iv) also ensure that

I6,T = Op

(
T h

2+p/2
p bs+1/2

)
= op(1). It remains to show that I4,T and I5,T are also of order op(1).

As in the proof of Theorem 1 in Fan et al. (1996), it turns out that HXt,T (1, 1)
p−→ fX(Xt),

whereas HXt,T (i + 1, i + 1)
p−→ fX(Xt)

∫
u2W (u) du for 1 ≤ i ≤ p, and HXt,T (i + 1, j + 1)

p−→ 0

for all 1 ≤ i 6= j ≤ p. Under Assumptions A1, A2 and A4, if the bandwidths satisfy conditions

(i) and (ii), it follows from the general results in Fan and Yao’s (2003) Chapter 5 that, given a

compact set in Rp, say CX ,

sup
x∈CX

∣∣∣∣∣
1

T hp
p

T∑

t=1

W hp(Xt − x)− fX(x)

∣∣∣∣∣ = Op

(
T−1/2 h−p/2

p ln T
)

= op(1)

and that, for all τ ,

(
1
T

T∑

t=1

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

])2

= Op

(
T−1 h−p

p b−1 ln T
)

given conditions (iii) and (iv). This altogether means that

I1,T = hp/2
p b1/2

T∑

t=1

πft

f 2
X(Xt)

(
1
T

T∑

τ=1

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

])2

+ Op

(
T−1/2 h−p/2

p b−1/2 ln T
)

= Ĩ1,T + op(1)

given that condition (ii) guarantees that Op

(
T−1/2 h

−p/2
p b−1/2 ln T

)
= op(1). Similarly,

I4,T = 2
T∑

t=1

{
πft

fX(Xt)

(
1
T

T∑

τ=1

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

])

× 1
T

T∑

t=1

W hp(Xτ −Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xjt

(Xjτ −Xjt)








+ Op

(
h2−p/2

p lnT
)

= Ĩ4,T + op(1)
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in view that p ≤ 2, whereas

I5,T = 2
T∑

i=1

πft
m(Xt,Yτ )−fY |X(Yt|Xt)

fX(Xt)

1
T

T∑

t=1

W hp(Xt −Xτ )
[
Kb(Yt − Yτ )−m(Xt, Yτ )

]

+ Op

(
bs h−p/2

p lnT
)

= Ĩ5,T + op(1)

given the bandwidth condition (vi). It thus yields that IT = Ĩ1,T + Ĩ4,T + Ĩ5,T + op(1).

We next show that Ĩ4,T and Ĩ5,T are both op(1). Letting

Qt =
1
T

T∑

τ=1

W hp(Xτ −Xt)


m(Xτ , Yt)−m(Xt, Yt)−

p∑

j=1

∂m(Xt, Yt)
∂Xtj

(Xjτ −Xjt)




and

N(t, τ) =
1
T

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

]

yields Qt = Op(h2
p) uniformly in t and Nt ≡

∑T
τ=1 N(t, τ) = Op

(
T−1/2 h

−p/2
p b−1/2

)
. It remains to

show that E
(∑T

t=1 Nt Qt

)2
= O

(
h−p

p b−1
)

and hence we consider the expansion

(
T∑

t=1

Nt Qt

)2

=
T∑

t=1

N2
t Q2

t +
T∑

t=1

T∑

k 6=t

Qt Qk

T∑

τ=1

N(t, τ) N(k, τ)

+
T∑

t=1

T∑

k 6=t

Qt Qk

T∑

τ=1

T∑

s6=τ

N(t, τ)N(k, s) (27)

whose first term on the right-hand side is such that

hp
p b E

(
T∑

t=1

N2
t Q2

t

)
= O

(
h4

p

)
= o(1).

As for the second term on the right-hand side of (27), it follows that

hp
p b E




T∑

t=1

T∑

k 6=t

QtQk

T∑

τ=1

N(t, τ)N(k, τ)


 = O

(
T h4+p

p b
)

= o(1)

given the bandwidth condition (iii). As for the third term on the right-hand side of (27), we only

consider the case of higher order, namely, t = τ or k = s, for which

hp
p b E




T∑

t=1

T∑

k 6= t

Qt Qk

T∑

t=1

T∑

s6=t

N(i, t)N(k, s)


 = O

(
h4−p

p b−1
)

= o(1)

due to the bandwidth condition (v). This means that Ĩ4,T = op(1) and, by a similar argument, it

follows from (iv) and (vi) that Ĩ5,T = Op

(
h−p

p b2s−1
)

= op(1).
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We now turn our attention to the behavior of the first term Ĩ1,T by closely following the proof

in Aı̈t-Sahalia et al. (2006a). The main difference is that we consider a generic dimension p rather

than fixing the conditioning dimension to one. Let

φ(t, τ, k) =
1
T 2

π(Yt, Xt)
f2

Y X(Yt, Xt)
W hp(Xτ −Xt)

[
Kb(Yτ − Yt)−m(Xτ , Yt)

]

× W hp(Xk −Xt)
[
Kb(Yk − Yt)−m(Xk, Yt)

]

and φ̄(t, τ, k) = φ(t, τ, k) + φ(t, k, τ) + φ(τ, t, k) + φ(τ, k, t) + φ(k, t, τ) + φ(k, τ, t). It is immediate

to see that

Ĩ1,T = hp/2
p b1/2

T∑

t<τ<k

φ̄(t, τ, k) + hp/2
p b1/2

T∑

t6=τ

[
φ(t, τ, τ) + φ(τ, t, τ) + φ(τ, τ, t)

]

+ hp/2
p b1/2

T∑

t=1

φ(t, t, t)

= Ĩ11,T + Ĩ12,T + Ĩ13,T .

As in Aı̈t-Sahalia et al. (2006a), we must demonstrate that the following statements indeed hold

to conclude this first part of the proof.

(a) Ĩ11,T = (T − 2)h
p/2
p b1/2

∑
t<τ φ̄(t, τ) + op(1), where φ̄(t, τ) =

∫
φ̄(t, τ, k) dF (yk, xk).

(b) Ĩ12,T = 1
2
T (T − 1)h

p/2
p b1/2 φ̃(0) + op(1), where φ̃(0) = E[φ(t)], φ̃(t) =

∫
φ̃(t, τ) dF (yτ , xτ ),

and φ̃(t, τ) = φ(t, t, τ) + φ(t, τ, t) + φ(τ, t, t) + φ(τ, t, τ) + φ(τ, τ, t) + φ(t, τ, τ).

(c) Ĩ13,T = op(1).

(d) It also holds that

1
2
T (T − 1) hp/2

p b1/2φ̃(0) = h−p/2
p b−1/2 C1(K) C1(W )

∫
π(y, x) dy dx

− h−p/2
p b1/2 C1(W )

∫
E

[
π(Y,X)

∣∣X = x
]
dx + o(1) (28)

and that

Ω2 = lim
T→∞

Var

[
(T − 2)hp/2

p b1/2
∑
t<τ

φ̄(t, τ)

]

= 2 C2(K)C2(W )
∫

π2(y, x) dy dx. (29)

(e) (T − 2)h
p/2
p b1/2

∑
t<τ φ̄(t, τ) d→ N(0,Ω2).
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Before deriving the above results, we demonstrate that the conditions (vii) and (viii) suffice to

ensure that Λ̂12,T indeed is of order op(1). As before, it follows that

Ω−1hp/2
p b1/2

T∑

t=1

π(Yt, X
(p)
t )

[
f̂Y |X(p)(Yt

∣∣ X
(q)
t )− fY |X(p)(Yt

∣∣X
(q)
t )

]2
= Op

(
h−p/2

p b−1/2
)

and hence it remains to show only that

h−p/2
p b−1/2

[
f̃Y |X(q)(Yt

∣∣X
(q)
t )− fY |X(q)(Yt

∣∣ X
(q)
t )

]
= op(1).

This indeed holds for conditions (vii) and (viii) ensure that

sup
(y,x(q))∈C

Y X(q)

∣∣∣f̃Y |X(q)(Yt

∣∣X
(q)
t )− fY |X(q)(Yt

∣∣X
(q)
t )

∣∣∣ = Op

(
T−1/2 h̃−q/2

p b̃−1/2 ln T
)

= op(1) (30)

for any compact set CY X(q) as in Fan and Yao’s (2003) Chapter 5.

A.1.1 Proof of statement (a)

It follows from the Hoeffding decomposition that

Ĩ11,T = hp/2
p b1/2

∑

t<τ<k

Φ(t, τ, k) + (T − 2)hp/2
p b1/2

∑
t<τ

φ̄(t, τ), (31)

where Φ(t, τ, k) = φ̄(t, τ, k) − φ̄(t, τ) − φ̄(t, k) − φ̄(τ, k). To show that the first term on the right-

hand side of (31) is of order op(1), it suffices to apply Lemma 5(i) in Aı̈t-Sahalia et al. (2006a) with

δ = 1/3. This results in

E
(
Ĩ 2
11,T

)
= O

(
T−1 h3p/2

p b−3/2
)

,

which is of order o(1) by condition (ii). ¥

A.1.2 Proof of statement (b)

As before, applying the Hoeffding decomposition yields

hp/2
p b1/2 Ĩ12,T = hp/2

p b1/2
∑
t<τ

φ̃(t, τ)

= hp/2
p b1/2

∑
t<τ

[
φ̃(t, τ)− φ̃(t)− φ̃(τ)− φ̃(0)

]

+ (T − 1)hp/2
p b1/2

T∑

t=1

[
φ̃(t)− φ̃(0)

]
+ 1

2
T (T − 1) hp/2

p b1/2 φ̃(0).

Lemma 5(ii) in Aı̈t-Sahalia et al. (2006a) with δ = 1 then dictates that

hp/2
p b1/2

∑
t<τ

[
φ̃(t, τ)− φ̃(t)− φ̃(τ)− φ̃(0)

]
= Op

(
T−1 h−5p/4

p b−5/4
)

,
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which is of order op(1) due to the bandwidth condition (ii). Under Assumption A4, the central

limit for β-mixing processes ensures that

(T − 1)hp/2
p b1/2

T∑

t=1

[
φ̃(t)− φ̃(0)

]
= Op

(
T−1 h−p

p b−1
)

= op(1). ¥

A.1.3 Proof of statement (c)

It is immediate to see that

Ĩ13,T = hp/2
p b1/2

T∑

t=1

φ(t, t, t) = Op

(
T h−3p/2

p b−3/2
)

,

which is of order op(1) by condition (ii). ¥

A.1.4 Proof of statement (d)

As for (28) and (29), the result follows along similar lines of Aı̈t-Sahalia et al.’s (2006a) proof of

claim (d). ¥

A.1.5 Proof of statement (e)

Applying Fan and Li’s (1999) central limit theorem for degenerate U-statistics of absolutely regular

processes for U−statistics suffices to obtain the desired result (see Amaro de Matos and Fernandes,

2006). See also Gao and King (2004) for an alternative central limit theorem that deals with

degenerate U-statistics of α-mixing processes. ¥

A.2 Proof of Lemma 2

Let ψ̄(t, τ) and ψ̃(0) respectively denote the counterparts of φ̄(t, τ) and φ̃(0) once we substitute

ψ(t, τ, k) =
1
T 2

π(Yt, X
(p)
t )

f2
Y X(q)(Y,X

(q)
t )

{
W̃ hq(X

(q)
τ −X

(q)
t )

[
Kb(Yτ − Yt)−m(X(q)

τ , Yt)
]

× W̃ hq(X
(q)
k −X

(q)
t )

[
Kb(Yk − Yt)−m(X(q)

k , Yt)
]}

for φ(t, τ, k). Applying the same argument we put forth in the proof of Lemma 1 then yields

JT = hq/2
q b1/2

T∑

t=1

π(Yt,X
(p)
t )

f2
Y X(q)(Y,X

(q)
t )

[
f̂Y |X(q)(Yt|X(q)

t )− fY |X(q)(Yt|X(q)
t )

]2

= (T − 2)hq/2
q b1/2

∑
t<τ

ψ̄(t, τ) + 1
2
T (T − 1) hq/2 b1/2ψ̃(0) + op(1),
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whose first term on the right-hand side satisfies the central limit theorem for U -statistics. In

addition, as in subsection A.1.4,

1
2
T (T − 1)hq/2

q b1/2ψ̃(0) = h−q/2
q b−1/2 C1(K) C1(W̃ )

∫
π(y, x(p)) dy dx(p)

− h−q/2
q b1/2 C1(W̃ )

∫
E

[
π(Y, X(p))

∣∣X(p) = x(p)
]
dx(p) + o(1)

= h−q/2
q b−1/2µ2 + o(1).

This means that

hq/2
q b1/2

T∑

t=1

π(Yt, X
(p)
t )

f2
Y X(q)(Y,X

(q)
t )

[
f̂Y |X(q)(Yt|X(q)

t )− fY |X(q)(Yt|X(q)
t )

]2
− h−q/2

q b−1/2µ2

= (T − 2)hq/2
q b1/2

∑
t<τ

ψ̄(t, τ) + op(1) = Op(1). (32)

Pre-multiplying the left- and right-hand sides of (32) by h
p/2
p h

−q/2
q then results in

hp/2
p b1/2

T∑

t=1

π(Yt, X
(p)
t )

f2
Y X(q)(Y, X

(q)
t )

[
f̂Y |X(q)(Yt|X(q)

t )− fY |X(q)(Yt|X(q)
t )

]2
− hp/2

p h−q
q b−1/2µ2 = op(1),

completing the proof. ¥

A.3 Proof of Lemma 3

Let

ϕ(t, τ, k) =
1
T 2

π(Yt, X
(q)
t )

fY X(p)(Yt,X
(p)
t ) fY X(q)(Yt, X

(q)
t )

W hp(Xτ −Xt)
[
Kb(Yτ − Yt)−m(X(p)

τ , Yt)
]

× W̃ hq(Xk −Xt)
[
Kb(Yk − Yt)−m(X(q)

k , Yt)
]
,

and note that m(X(p)
k , Yt) = m(X(q)

k , Yt) under H0. Proceeding along the same line as in the proof

of Lemma 1 then yields

hp/2
p b1/2

T∑

t=1

π(Yt, X
(p)
t ) ε̂Y |X(p)(Yt|X(p)

t ) ε̂Y |X(q)(Yt|X(q)
t ) = (T − 2)hp/2

p b1/2
∑
t<τ

ϕ̄(t, τ)

+ 1
2
T (T−1)hp/2

p b1/2 ϕ̃(0) + op(1),

where

ϕ̄(t, τ) =
∫ [

ϕ(k, t, τ) + ϕ(k, τ, t)
]
dF (yk, x

(p)
k ).

It thus follows that

Var

(
(T − 2)hp/2

p b1/2
∑
t<τ

ϕ̄(t, τ)

)
= (T − 2)2 hp

p b

∫
ϕ̄(t, τ)2 dF (yt, x

(p)
t ) dF (yτ ,x

(p)
τ )

= O
(
hp/2

p h−q/2
q

)
= o(1),
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as in Aı̈t-Sahalia et al.’s (2006a) proof of claim (d), and so

hp/2
p b1/2

T∑

t=1

π(Yt, X
(p)
t ) ε̂Y |X(p)(Yt|X(p)

t ) ε̂Y |X(q)(Yt|X(q)
t ) = 1

2
T (T−1)hp/2

p b1/2 ϕ̃(0) + op(1).

To complete the proof, it then suffices to appreciate that

ϕ̃(0) =
2
T 2

∫
π(yt, x

(p)
t )

fX(p)(x(p)
t ) fX(q)(x(q)

t )
W hp(x

(p)
τ − x

(p)
t )W̃ hq(x

(q)
τ − x

(q)
t )

× K2
b (yτ − yt) dF (yt, x

(p)
t ) dF (yτ , x

(q)
τ )

− 2
T 2

∫
π(yt, x

(p)
t )

fX(p)(x(p)
t ) fX(q)(x(q)

t )
W hp(x

(p)
τ − x

(p)
t )W̃ hq(x

(q)
τ − x

(q)
t )

× Kb(yτ − yt) m(x(p)
τ , yt) dF (yt, x

(p)
t ) dF (yτ , x

(q)
τ )

− 2
T 2

∫
π(yt, x

(p)
t )

fX(p)(x(p)
t ) fX(q)(x(q)

t )
W hp(x

(p)
τ − x

(p)
t )W̃ hq(x

(q)
τ − x

(q)
t )

× Kb(yτ − yt) m(x(q)
τ , yt) dF (yt,x

(p)
t ) dF (yτ ,x

(q)
τ )

+
2
T 2

∫
π(yt, x

(p)
t )

fX(p)(x(p)
t ) fX(q)(x(q)

t )
W hp(x

(p)
τ − x

(p)
t )W̃ hq(x

(q)
τ − x

(q)
t )

× m(x(p)
τ , yt) m(x(q)

τ , yt) dF (yt, x
(p)
t ) dF (yτ ,x

(p)
τ )

and hence

ϕ̃(0) = 2T−2 h−p/2
p h−q/2

q b−1 C1(K)C11(W , W̃ )
∫

π(yt, x
(p)
t ) dy dx(p)

−2T−2 h−p/2
p h−q/2

q C12(W , W̃ )
∫
E

[
π(Y,X(p))

∣∣ X(p) = x(p)
]
dx(p) + o(1),

so that 1
2 T (T − 1)h

p/2
p b1/2ϕ̃(0)− h

−q/2
q b−1/2 µ3 = o(1). ¥

A.4 Proof of Theorem 1

(i) Consider the following variant of Λ̂T with a known standardization quantity Ω

ΛT = Ω−1





h
p/2
p b1/2

∑T
t=1

[ bf
Y |X(p) (Yt

∣∣X
(p)
t )− bf

Y |X(q) (Yt

∣∣X
(q)
t )ef

Y |X(q) (Yt

∣∣X
(q)
t )

]2

π(Yt, X
(p)
t )

− h
−p/2
p b−1/2 µ̂1,T − h

p/2
p h−q

q b−1/2 µ̂2,T + 2h
−q/2
q b−1/2 µ̂3,T





. (33)

We next study the asymptotic behavior of ΛT for it is equivalent to that of Λ̂T as Ω̂T is a con-

sistent estimator of Ω. We begin by expanding (33) under the null that fY |X(p)(Yt

∣∣X
(p)
t ) and
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fY |X(q)(Yt

∣∣X
(q)
t ) coincide, viz.

ΛT = Ω−1


hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )

f2
Y |X(p)(Yt, X

(p)
t )

ε̂ 2
Y |X(p)(Yt|X(p)

t )− h−p/2
p b−1/2 µ1




+ Ω−1


hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )

f2
Y |X(q)(Yt, X

(q)
t )

ε̂ 2
Y |X(q)(Yt|X(q)

t )− hp/2
p h−q

q b−1/2 µ2




− 2Ω−1


hp/2

p b1/2
T∑

t=1

π(Yt, X
(p)
t )

f2
Y |X(p)(Yt, X

(p)
t )

ε̂Y |X(p)(Yt|X(p)
t ) ε̂Y |X(q)(Yt|X(q)

t )− h−q/2
q b−1/2 µ3




+ Ω−1 hp/2
p b1/2

T∑

t=1

π(Yt, X
(p)
t )

[
ε̂Y |X(p)(Yt|X(p)

t )− ε̂Y |X(p)(Yt|X(p)
t )

]2

×

 1

f̃ 2
Y |X(q)(Yt

∣∣X
(q)
t )

− 1

f 2
Y |X(q)(Yt

∣∣X
(q)
t )


 (34)

− Ω−1
[
h−p/2

p b−1/2 (µ̂1,T − µ1)− hp/2
p h−q

q b−1/2 (µ̂2,T − µ2) + 2h−q/2
q b−1/2 (µ̂3,T − µ3)

]

= Λ(0)
1,T + Λ(0)

2,T + Λ(0)
3,T + Λ(0)

4,T + Λ(0)
5,T (35)

where ε̂Y |X(·) = f̂Y |X(·) − fY |X(·) as before. In what follows, we show that Λ(0)
1,T is asymptotically

standard normal under the null, whereas the other terms are all of order op(1).

The first part follows directly from Lemma 1, whereas Lemmata 2 and 3 ensure that Λ(0)
2,T , Λ(0)

3,T ,

and Λ(0)
4,T are of order op(1) under the null. Finally, it suffices to appreciate that

|µ̂j,T − µj | ≤ C
√

b

∫ ∣∣∣∣∣
1
T

T∑

t=1

π(Yt,x
(p))− E

[
π(Y, X(p))

∣∣X(p) = x(p)
]∣∣∣∣∣ dx(p)

= op

(
hp/2

p b1/2
)

for any j ∈ {1, 2, 3}, and so Λ(0)
5,T is also of order op(1) under the null.

(ii) Consider the following expansion

ΛT = Ω−1

[
hp/2

p b1/2
T∑

t=1

πf̃ t ε̂ 2
Y |X(p)(Yt|X(p)

t )− h−p/2
p b−1/2 µ̂1,T

]

+ Ω−1

[
hp/2

p b1/2
T∑

t=1

πf̃ t ε̂ 2
Y |X(q)(Yt|X(q)

t )− hp/2
p h−q

q b−1/2 µ̂2,T

]

− 2Ω−1

[
hp/2

p b1/2
T∑

t=1

πf̃ t ε̂Y |X(p)(Yt|X(p)
t ) ε̂Y |X(q)(Yt|X(q)

t )− h−q/2
q b−1/2 µ̂3,T

]

+ Ω−1 hp/2
p b1/2

T∑

t=1

πf̃ t

[
fY |X(p)(Yt

∣∣ X
(p)
t )− fY |X(q)(Yt

∣∣X
(q)
t )

]2

= Λ(1)
1,T + Λ(1)

2,T + Λ(1)
3,T + Λ(1)

4,T . (36)
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where πf̃ t ≡ π(Yt, X
(p)
t )/f̃ 2

Y |X(q)(Yt,X
(q)
t ). Now, even though (30) still holds under the alternative,

fY |X(p)(Yt

∣∣ X
(p)
t ) 6= fY |X(q)(Yt

∣∣ X
(q)
t ) almost surely. This means that the first and third bias-related

terms will no longer coincide with µ1 and µ3, and hence Λ(1)
1,T + Λ(1)

2,T + Λ(1)
3,T = Op

(
h
−p/2
p b−1/2

)
. It

nonetheless follows that Λ(1)
4,T becomes of order Op

(
T h

p/2
p b1/2

)
, thus ensuring a unit asymptotic

power.

A.5 Proof of Lemma 4

As in the proof of Lemma 1, we suppress the superscript index from the conditioning state vector

and let πt = π(Yt, Xt) for notational simplicity. Consider then

ĪT = hp/2
p b1/2

T∑

t=1

πt

(
f̄Y |X(Yt|Xt)− fY |X(p)(Yt|Xt)

)2

= hp/2
p b1/2




T∑

t=1

πt

f̄ 2
X(Xt)

(
1
T

T∑

τ=1

W̄ h−p(Xτ −Xt)
(
K̄b(Yτ − Yt)− m̄(Xt, Yt)

))2



+ hp/2
p b1/2

T∑

t=1

πt

(
m̄(Xt, Yt)− fY |X(Yt|Xt)

)2

− 2hp/2
p b1/2

T∑

t=1

πt

f̄X(Xt)

(
m̄(Xt, Yt)− fY |X(Yt|Xt)

)

× 1
T

T∑

τ=1

W̄ hp(Xτ −Xt)
(
K̄b(Yτ − Yt)− m̄(Xt, Yt)

)

= Ī1,T + Ī2,T + Ī3,T ,

where m̄(x, y) = E
(
K̄b(Yt − y)

∣∣Xt = x
)
. It then follows from the bandwidth condition (iii) that

Ī2,T = O
(
T h

2s+p/2
p b1/2

)
= o(1). If one accounts for the fact that W̄ and K̄ are both of order

s > 2, a similar argument as in the proof of Lemma 1 then gives way to

Ī1,T = hp/2
p b1/2

T∑

t=1

πt

f2
X(Xt)

(
1
T

T∑

τ=1

W̄ h(Xτ −Xt)
(
K̄b(Yτ − Yt)− m̄(Xt, Yt)

))2

+ Op

(
T−1 h−2p

p b−1 ln T
)

+ Op

(
hs−p/2

p b−1/2
)

= ˜̄I1,T + op(1)
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given that conditions (ii) and (v) hold. In addition, it also turns out that

Ī3,T = −2hp/2
p b1/2

T∑

t=1

πt

fX(Xt)

(
m̄(Xt, Yt)− fY |X(Yt|Xt)

)

× 1
T

T∑

τ=1

W̄ hp(Xτ −Xt)
(
K̄b(Yτ − Yt)− m̄(Xt, Yt)

)
+ Op

(
h−p/2

p bs ln T
)

= ˜̄I3,T + op(1)

in view of condition (vi). To complete the proof, it now suffices to develop a similar argument as

in the proof of Lemma 1 accounting for the fact that both kernels are of order s. ¥

A.6 Proofs of Lemmata 5 and 6

We omit the proofs because they are almost exactly the same as the proofs of Lemmata 2 and 3.

It indeed suffices to apply the same line of reasoning to derive in a straightforward manner the

results. ¥

A.7 Proof of Theorem 2

As in the proof of Theorem 1, we consider a variant of Λ̄T with a known standardization quantity

Ω̄, namely,

Λ†T = Ω̄−1





h
p/2
p b1/2

∑T
t=1

[
f̄Y |X(p)(Yt

∣∣X
(p)
t )− f̄Y |X(q)(Yt

∣∣X
(q)
t )

]2
π(Yt, X

(p)
t )

− h
−p/2
p b−1/2µ̄1,T − hp/2−q b−1/2µ̄2,T + 2 hp/2−q b−1/2 µ̄3,T





. (37)

We next study the asymptotic behavior of Λ†T in view that it is equivalent to that of Λ̄T as Ω̄T is

a consistent estimator of Ω̄. We begin by expanding (37) as follows

Λ†T = Ω̄−1

(
hp/2 b1/2

T∑

t=1

π(Yt, X
(p)
t ) ε̄ 2

Y |X(p)(Yt|X(p)
t )− h−p/2 b−1/2µ̄1

)

+ Ω̄−1

(
hp/2 b1/2

T∑

t=1

π(Yt, X
(p)
t ) ε̄ 2

Y |X(q)(Yt|X(q)
t )− h−p/2+q b−1/2 µ̄2

)

−2 Ω̄−1

(
hp/2 b1/2

T∑

t=1

π(Yt, X
(p)
t ) ε̄Y |X(p)(Yt|X(p)

t ) ε̄Y |X(q)(Yt|X(q)
t )− h−p/2+q b−1/2 µ̄3

)

− Ω̄−1
[
h−p/2 b−1/2 (µ̄1,T − µ1)− h−p/2+q b−1/2 (µ̄2,T − µ2) + 2h−p/2+q b−1/2 (µ̄3,T − µ3)

]

= Λ†1,T + Λ†2,T + Λ†3,T + Λ†4,T (38)

where ε̄Y |X(·) = f̄Y |X(·) − fY |X(·) as before. The bandwidth conditions (i) to (vi) in Lemma 5 then

ensures that Λ†1,T is asymptotically standard normal, whereas the other terms are all of order op(1).
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We now turn to the second part concerning the remaining terms on the right-hand side of (35).

Lemmata 5 and 6 ensures that Λ†2,T and Λ†3,T are of order op(1), respectively. It now remains to

show that

(µ̄1,T − µ1) = op

(
hp/2 b1/2

)
(39)

(µ̄2,T − µ2) = op

(
h−p/2+q b−1/2

)
(40)

(µ̄3,T − µ3) = op

(
h−p/2+q b−1/2

)
, (41)

so as to deal with Λ†4,T . We begin by noting that

|µ̄1,T − µ1| ≤ sup
(y,x)∈CY X

∣∣∣f̄ 2
Y |X(y|x)− f2

Y |X(y|x)
∣∣∣C1(K) C1(W )

∫
π(y, x(p)) dy dx(p)

+ sup
(y,x)∈CY X

∣∣∣f̄ 3
Y |X(y|x)− f3

Y |X(y|x)
∣∣∣
√

b C1(W )
∫

π(y, x(p)) dy dx(p),

It now follows from the results in Fan and Yao’s (2003) Chapter 5 that

sup
(y,x)∈CY X

∣∣f̄Y |X(y|x)− fY |X(y|x)
∣∣ = Op

(
T−1/2 h−p/2 b−1/2 lnT

)
+ O (hs + bs)

= op

(
hp/2 b1/2

)

This means that (39) thus holds as long as the bandwidth conditions (i) to (vi) in Lemma 5 hold.

The results in (40) and (41) also follow by the same argument, thereof completing the proof. ¥

A.8 Proof of Theorem 3

(i) Apart from the sampling error due to the local linear estimation of the conditional density,

there is another due to the estimation of the integrated variance by a realized measure. The latter

results from

β̂
(M)

T (y, x(p)) = β̂T (y, x(p)) +
(H′

x(p)Wx(p)Hx(p)

)−1
(
H′

x(p),M
Wx(p),MYy,M −H′

x(p)Wx(p)Yy

)

+

[(
1
T
H′

x(p),M
Wx(p),MHx(p),M

)−1

−
(

1
T
H′

x(p)Wx(p)Hx(p)

)−1
]

1
T
H′

x(p)Wx(p)Yy

+

[(
1
T
H′

x(p),M
Wx(p),MHx(p),M

)−1

−
(

1
T
H′

x(p)Wx(p)Hx(p)

)−1
]

×
(

1
T
H′

x(p),M
Wx(p),MYy,M − 1

T
H′

x(p)Wx(p)Yy

)
,
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where 1
T H′x(p),M

Wx(p),MYy,M − 1
TH′x(p)Wx(p)Yy is the column vector




1
T

PT
t=1

Qp
j=1

h
Whp(Xjt,M − xj)Kb(Yt,M − y)−Whp(Xjt − xj)Kb(Yt − y)

i
1
T

PT
t=1

Qp
j=1

h
Whp(Xjt,M − xj)Kb(Yt,M − y)(X1t,M − x1)−Whp(Xjt − xj)Kb(Yt − y)(X1t − x1)

i
...

1
T

PT
t=1

Qp
j=1

h
Whp(Xjt,M − xj)Kb(Yt,M − y)(Xpt,M − xp)−Whp(Xjt − xj)Kb(Yt − y)(Xpt − xp)

i



. (42)

We start by bounding the term that appears in the first row of (42):

sup
C

Y X(p)

∣∣∣∣∣∣
1
T

T∑

t=1

p∏

j=1

[
Whp(Xjt,M − xj)Kb(Yt,M − y)−Whp(Xjt − xj)Kb(Yt − y)

]
∣∣∣∣∣∣

≤ sup
C

Y X(p)

1
T

T∑

t=1

∣∣∣∣∣∣

p∑

i=1

p∏

j=1

1
hp+1

p b
W ′

hp

(
X̃jt,M − xj

hp

)
K

(
Ỹt,M − y

b

)
Ni,t,M

∣∣∣∣∣∣

+ sup
C

Y X(p)

1
T

T∑

t=1

∣∣∣∣∣∣

p∏

j=1

1
hp

p b2
Whp

(
X̃jt,M − xj

hp

)
K ′

(
Ỹt,M − y

b

)
N0,t,M

∣∣∣∣∣∣

+ sup
C

Y X(p)

1
T

T∑

t=1

∣∣∣∣∣∣

p∑

i=1

p∏

j=1

1
hp+1

p b2
W ′

hp

(
X̃jt,M − xj

hp

)
K ′

(
Ỹt,M − y

b

)
N0,t,M Ni,t,M

∣∣∣∣∣∣
, (43)

where X̃jt,M ∈ (Xjt,M , Xjt). As for the first term on the right-hand side of (43), it turns out that

sup
C

Y X(p)

1
T

T∑

t=1

∣∣∣∣∣∣

p∑

i=1

p∏

j=1

1
hp+1

p b
W ′

hp

(
X̃jt,M − xj

hp

)
K

(
Ỹt,M − y

b

)
Ni,t,M

∣∣∣∣∣∣

≤ sup
i

sup
t

Ni,t,M sup
C

Y X(p)

1
T

T∑

t=1

∣∣∣∣∣∣

p∑

i=1

p∏

j=1

1
hp+1

p b
W ′

hp

(
X̃jt,M − xj

hp

)
K

(
Ỹt,M − y

b

)∣∣∣∣∣∣

= sup
i

sup
t

Ni,t,M Op(1) = Op

(
T

3
2k−1 a

−1/2
M

)
.

The last equality follows immediately from the proof of Theorem 1 in Corradi et al. (2007), which

shows that Assumption A6 ensures that supi supt Ni,t,M = Op

(
T

3
2k−1 a

−1/2
M

)
. It is straightforward

to show using a similar argument that the second and third terms on the right-hand side of (43), as

well as
(

1
TH′x(p),M

Wx(p),MHx(p),M

)−1
−

(
1
TH′x(p)Wx(p)Hx(p)

)−1
, are also of order Op

(
T

3
2k−1 a

−1/2
M

)
,

uniformly on the compact set CY X(p) of Rp+1. In view that f̂
(M)

Y |X(d)(y
∣∣x(d)) = β̂

(M)
0T (y, x(d)) with

d ∈ {p, q} and f̃
(M)

Y |X(q)(y
∣∣x(q)) = β̃

(M)
0T (y, x(q)), this means that

sup
C

Y X(p)

∣∣∣f̂ (M)

Y |X(p)(y
∣∣x(p))− f̂Y |X(p)(y

∣∣ x(p))
∣∣∣ = Op

(
T

3
2k−1 a

−1/2
M

)
(44)

sup
C

Y X(p)

∣∣∣f̂ (M)

Y |X(q)(y
∣∣x(q))− f̂Y |X(q)(y

∣∣x(q))
∣∣∣ = Op

(
T

3
2k−1 a

−1/2
M

)
(45)

sup
C

Y X(p)

∣∣∣f̃ (M)

Y |X(q)(y
∣∣x(q))− f̃Y |X(q)(y

∣∣x(q))
∣∣∣ = Op

(
T

3
2k−1 a

−1/2
M

)
(46)
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We now turn our attention to the bias terms that we must estimate to compute the test statistic:
∣∣∣µ̂ (M)

i,T − µ̂i,T

∣∣∣ =

∣∣∣∣∣
√

bC(i)
µ

∫
1
T

T∑

t=1

(
π(Yt,M , x(p))− π(Yt, x

(p))
)

dx(p)

∣∣∣∣∣

≤
√

b sup
t
|N0,t,M |

∣∣∣∣∣ C(i)
µ

∫
1
T

T∑

t=1

π′(Ỹt,M ,x(p)) dx(p)

∣∣∣∣∣

= Op

(
b1/2 T

3
2k−1 a

−1/2
M

)
, (47)

where C
(1)
µ = C2(W ), C

(2)
µ = C2(W̃ ), and C

(3)
µ = C12(W, W̃ ) to simplify notation. It then follows

from (44) to (47) that

Ω
(
Λ̂ (M)

T − Λ̂T

)
= hp/2

p b1/2
T∑

t=1







f̂
(M)

Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂

(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

π(Yt,M , X
(p)
t,M )

−

 f̂Y |X(p)(Yt

∣∣X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

π(Yt, X
(p)
t )




+ hp/2
p b1/2

T∑

t=1




f̃Y |X(q)(Yt

∣∣X
(q)
t )− f̃

(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )f̃Y |X(q),M (Yt

∣∣ X
(q)
t,M )




×
(
f̂

(M)

Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂

(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )

)2
π(Yt,M , X

(p)
t,M )(48)

+ Op

(
b1/2 T

3
2k−1 a

−1/2
M

)

= AT,M + BT,M + Op

(
b1/2T

3
2k−1 a

−1/2
M

)
, (49)

with the last term capturing the contribution of the bias terms. It is straightforward to show after

some tedious manipulation that the following decomposition holds

AT,M = A
(1)
T,M + A

(2)
T,M + A

(3)
T,M + A

(4)
T,M + A

(5)
T,M + A

(6)
T,M + A

(7)
T,M ,

where

A
(1)
T,M = hp/2

p b1/2
T∑

t=1


 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

(πt,M − πt)

A
(2)
T,M = hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

−

 f̂Y |X(p)(Yt

∣∣ X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2
πt

A
(3)
T,M = hp/2

p b1/2
T∑

t=1




f̂
(M)

Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt,M

∣∣ X
(p)
t,M )

f̃Y |X(q)(Yt

∣∣ X
(q)
t )




2

πt,M
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A
(4)
T,M = hp/2

p b1/2
T∑

t=1




f̂
(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt,M

A
(5)
T,M = −2hp/2

p b1/2
T∑

t=1







f̂
(M)

Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×



f̂
(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt,M

∣∣ X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt,M




A
(6)
T,M = 2 hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×



f̂
(M)

Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )


πt,M




A
(7)
T,M = −2hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(q)(Yt,M

∣∣ X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×



f̂
(M)

Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )


πt,M


 .

with πt ≡ π(Yt, X
(p)
t ) and πt,M ≡ π(Yt,M , X

(p)
t,M ) to simplify notation. Given Assumption A6 and

the results in Lemma 1, the first term of the above decomposition satisfies

A
(1)
T,M ≤

(
sup
C

Y X(p)

p∑

i=0

∂iπt,M

)
sup

t
sup

0≤i≤p
|Ni,t,M |

× hp/2
p b1/2

T∑

t=1


 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

= Op

(
T

3
2k−1 a

−1/2
M

)
× Op

(
h−p/2

p b−1/2
)

= Op

(
h−p/2

p b−1/2T
3

2k−1 a
−1/2
M

)
,

where ∂iπt,M denotes the first derivative of the trimming function π(Yt,M , X
(p)
t,M ) with respect to the

(i+1)th argument (i = 0, . . . , p). To deal with the second term, we employ a further decomposition

A
(2)
T,M = A

(21)
T,M + A

(22)
T,M + A

(23)
T,M + A

(24)
T,M + A

(25)
T,M

where

A
(21)
T,M = hp/2

p b1/2
T∑

t=1


 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt

∣∣ X
(p)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt

A
(22)
T,M = hp/2

p b1/2
T∑

t=1


 f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt
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A
(23)
T,M = 2 hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt

∣∣X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×

 f̂Y |X(p)(Yt,M

∣∣ X
(p)
t,M )− f̂Y |X(p)(Yt

∣∣X
(p)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )


πt




A
(24)
T,M = −2hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt

∣∣ X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×

 f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )


πt




A
(25)
T,M = −2hp/2

p b1/2
T∑

t=1





 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt

∣∣X
(p)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




×

 f̂Y |X(q)(Yt,M

∣∣X
(q)
t,M )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )


πt




Because

f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt

∣∣X
(p)
t ) = β̂0T (Yt,M

∣∣X
(p)
t,M )− β̂0T (Yt

∣∣X
(p)
t )

=
(
H′

X
(p)
t,M

W
X

(p)
t,M

H
X

(p)
t,M

)−1

H′
X

(p)
t,M

W
X

(p)
t,M

YYt,M

−
(
H′

X
(p)
t

W
X

(p)
t
H

X
(p)
t

)−1

H′
X

(p)
t

W
X

(p)
t
YYt ,

a mean value expansion yields that

A
(21)
T,M = hp/2

p b1/2
T∑

t=1




∑p
i=0 ∂iβ̂0T (Ỹt,M

∣∣ X̃
(p)

t,M ) Ni,t,M

f̃Y |X(q)(Yt

∣∣ X
(q)
t )




2

πt

≤ sup
t

sup
0≤i≤p

N2
i,t,M hp/2

p b1/2
T∑

t=1




∑p
i=0 ∂iβ̂0T (Ỹt,M

∣∣ X̃
(p)

t,M )

f̃Y |X(q)(Yt

∣∣ X
(q)
t )




2

πt

= Op

(
T

6
2k−1 a−1

M

)
× Op

(
T hp/2

p b1/2
)

= Op

(
T

2k+5
2k−1 hp/2

p b1/2 a−1
M

)

under Assumptions A1 and A6. Similar treatment gives way to A
(22)
T,M = Op

(
T

2k+5
2k−1 h

p/2
p b1/2 a−1

M

)
,

whereas the Chauchy-Schwartz inequality leads to

A
(23)
T,M ≤ 2hp/2

p b1/2




T∑

t=1


 f̂Y |X(p)(Yt

∣∣X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt




1/2

×



T∑

t=1


 f̂Y |X(p)(Yt,M

∣∣X
(p)
t,M )− f̂Y |X(p)(Yt

∣∣ X
(p)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt




1/2

,
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which is of order Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
in view that, by Lemma 1,

T∑

t=1


 f̂Y |X(p)(Yt

∣∣ X
(p)
t )− f̂Y |X(q)(Yt

∣∣X
(q)
t )

f̃Y |X(q)(Yt

∣∣X
(q)
t )




2

πt = Op

(
h−p

p b−1
)
.

Similarly, it turns out that A
(24)
T,M = Op

(
h

p/2
p h−q

q T
2k+2

2(2k+1) a
−1/2
M

)
= op

(
T

2k+2
2(2k+1) a

−1/2
M

)
and that

A
(25)
T,M is of the same probability order as A

(21)
T,M and A

(22)
T,M . Altogether, the above results imply that

A
(2)
T,M = Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
. The probability orders in (44) and (45) also ensure that A

(3)
T,M , A

(4)
T,M ,

and A
(5)
T,M are of order Op

(
T

2k+5
2k−1 h

p/2
p b1/2 a−1

M

)
. Using the same argument we put forth in the study

of A
(23)
T,M , it is possible to demonstrate that A

(6)
T,M and A

(7)
T,M are both of order Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
,

and hence AT,M = Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
. We next deal with the second term in (49), which satisfies

BT,M ≤ hp/2
p b1/2

T∑

t=1

∣∣∣∣∣∣
f̃Y |X(q)(Yt

∣∣X
(q)
t )− f̃

(M)

Y |X(q)(Yt,M

∣∣ X
(q)
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f̃Y |X(q)(Yt

∣∣X
(q)
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(q)
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(p)
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(M)
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(q)
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t=1

∣∣∣∣∣
ef
Y |X(q) (Yt
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t,M )ef

Y |X(q) (Yt

∣∣X
(q)
t ) ef (M)

Y |X(q)
(Yt

∣∣X
(q)
t,M )

∣∣∣∣∣

∣∣∣∣∣
ef
Y |X(q) (Yt,M

∣∣X
(q)
t,M )− ef (M)
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M
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M
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by (46). This means that for h−p/2 b−1/2 = o(T 1/2), BT,M = op

(
T

2k+2
2(2k+1) a

−1/2
M

)
and thereof

AT,M + BT,M = Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
= op(1). To complete the proof of (i), it suffices to follow the

same steps as in the proof of Theorem 1(i).

(ii) Under the alternative HA, fY |X(p)(Yt

∣∣X
(p)
t ) and fY |X(q)(Yt

∣∣X
(q)
t ) differ almost surely and so

hp/2
p b1/2
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2
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(
T hp/2
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)

.

Accordingly, under the alternative, A
(1)
T,M , A

(23)
T,M , A

(24)
T,M , A

(6)
T,M , and A

(7)
T,M are of probability order

Op

(
T hp/2

p b1/2
)
× Op

(
T

2k+2
2(2k+1) a

−1/2
M

)
= op

(
T hp/2

p b1/2
)

,

whereas the remaining terms are of the same probability order under both hypotheses. This means

that Λ̂ (M)
T will diverge under HA at rate T h

p/2
p b1/2, which completes the proof. ¥
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Figure 1
Index returns at the 5-minute and 30-minute frequencies

The first and second columns respectively display continuously compounded returns over regular

time intervals of 5 and 30 minutes on the SSE B Share index, TOPIX 100 index, S&P 500 index

from January 3, 2000 to December 30, 2005. The sample does not include overnight returns, so

that the first intraday return refers to the opening price that ensues from the pre-sessional auction.
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Figure 2
Correlograms at the 5-minute and 30-minute frequencies

The first and second columns respectively exhibit the correlograms for continuously compounded

5-minute and 30-minute returns on the SSE B Share index, TOPIX 100 index, S&P 500 index from

January 3, 2000 to December 30, 2005. In addition, the third column displays the correlogram for

the squared 30-minute index returns.
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Figure 3
Realized measures of the daily integrated variance for the index returns

The first column plots the realized variance (in red) and the multiple scale realized variance (in

blue) estimates at the five-minute frequency, whereas the second and third columns depict both

the realized variance (in red) and bipower variation (in blue) for the 5-minute and 30-minute index

returns, respectively. The latter are continuously compounded returns on the SSE B Share index,

TOPIX 100 index, S&P 500 index from January 3, 2000 to December 30, 2005.
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Table 1
Descriptive statistics for index returns

We collect transactions data for the Shaghai Share B index, the TOPIX 100 index,

and the S&P 500 index from Reuters, available at the Securities Industry Research

Centre of Asia-Pacific. The sample spans the period ranging from January 3, 2000

to December 30, 2005. We document the main descriptive statistics for the index

percentage returns with continuously compounding at regular sampling intervals of

5 and 30 minutes. The sample does not include overnight returns, so that the first

intraday return refers to the opening price that ensues from the pre-sessional auction.

S&P 500 TOPIX 100 SSE B Share

sampling frequency: 5 minutes

mean −0.0002 −0.0004 −0.0014

standard deviation 0.104 0.158 0.187

minimum −1.902 −3.883 −3.406

maximum 2.081 3.406 5.853

skewness 0.105 0.059 1.068

kurtosis 18.107 33.864 51.431

sampling frequency: 30 minutes

mean −0.0009 −0.0024 −0.0078

standard deviation 0.262 0.419 0.563

minimum −4.333 −6.237 −6.478

maximum 3.957 4.170 6.259

skewness −0.001 −0.258 0.096

kurtosis 15.963 19.309 16.703
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