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Abstract

This paper reviews the di¤erences between the so-called type I and type II models of
fractional Brownian motion, corresponding to the cases in which pre-sample shocks are either
included in the lag structure, or suppressed. It is noted that there can be substantial di¤er-
ences between the distributions of these two processes, and of functionals derived from them,
so that it becomes an important issue to decide which model to use as a basis for approximate
inference based on Monte Carlo simulation. The main problem addressed is that of simulating
the type I case. For models close to the nonstationarity boundary, the number of in�uential
lags becomes very large, and truncating the sums to a computationally feasible number of
terms results in signi�cant distortions of the distribution. A simple method of overcoming
this problem is implemented. The distributions of representative statistics for the type I and
type II models are compared in Monte Carlo experiments. Also considered is the estimation
of type I ARFIMA models, with the annual Nile minima series used for illustration.
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1 Introduction

The literature on long memory processes in econometrics has adopted two distinct models as a
basis for the asymptotic analysis, the limit processes speci�ed being known respectively as type
I and type II fractional Brownian motion (fBM). These processes have been carefully examined
and contrasted by Marinucci and Robinson (1999). When considered as real continuous processes
on the unit interval, they can be de�ned respectively by

X(r) =
1

�(d+ 1)

Z r

0
(r � s)ddB(s) + 1

�(d+ 1)

Z 0

�1
[(r � s)d � (�s)d]dB(s) (1.1)

and

X�(r) =
1

�(d+ 1)

Z r

0
(r � s)ddB(s) (1.2)

where �1
2 < d <

1
2 and B denotes regular Brownian motion. In other words, in the type II case

the second term in (1.1) is omitted. It will be convenient to write the decomposition

X = X� +X�� (1.3)

where X��(r) is de�ned as the second of the two terms in (1.1). The processes X� and X�� are
Gaussian, and independent of each other, so we know that the variance of (1.1) will exceed that
of (1.2). As shown by Marinucci and Robinson (1999), the increments of (1.1) are stationary,
whereas those of (1.2) are not.

These processes are commonly motivated by postulating realizations of size n of discrete
processes and considering the weak limits of normalized partial sums, as n!1: De�ne

xt = (1� L)�dut (1.4)

where we assume for the sake of exposition that futg1�1 is an i.i.d. process with mean 0 and
variance �2, and

(1� L)�d =
1X
j=1

bjL
j (1.5)

where, letting �(�) denote the gamma function,

bj =
�(d+ j)

�(d)�(1 + j)
: (1.6)

De�ning the partial sum process

Xn(r) =
1

�n1=2+d

[nr]X
t=1

xt (1.7)

it is known that Xn
d! X, where d! denotes weak convergence in the space of measures on D[0;1],

the space of cadlag functions of the unit interval equipped with the Skorokhod topology. (See for
example Davidson and de Jong 2000). On the other hand, de�ning

u�t = 1(t > 0)ut (1.8)

and x�t as the case corresponding to xt in (1.4) when u
�
t replaces ut, and then de�ning X

�
n like

(1.7) with x�t replacing xt, it is known that X
�
n
d! X� (Marinucci and Robinson 2000).
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The model in (1.8) is one that is often used in simulation exercises to generate fractionally
integrated processes, as an alternative to the procedure of setting a �xed, �nite truncation of the
lag distribution in (1.4), common to every t. However, from the point of view of modelling real
economic or �nancial time series, model (1.8) is obviously problematic. There is, in most cases,
nothing about the date when we start to observe a series which suggests that we ought to set all
shocks preceding it to 0. Such truncation procedures are common in time series modelling, but
are usually justi�ed by the assumption that the e¤ect is asymptotically negligible. In this case,
however, where the e¤ect is manifestly not negligible in the limit, the choice of model becomes a
critical issue.

The setting for this choice is the case where a Monte Carlo simulation is to be used to construct
the null distribution of a test statistic postulated to be a functional of fBM. If model (1.8) is
used to generate the arti�cial data, then the distribution so simulated will be the Type II case.
However, if the observed data ought to be treated as drawn from (1.4), then the estimated critical
values will be incorrect even in large samples. It then becomes of importance to know how large
this error is.

Section 2 of the paper reviews and contrasts the main properties of these models. A leading
di¢ culty in working with the type I model is to simulate it e¤ectively, and as we show in Section
3, the �xed lag truncation strategy is not generally e¤ective, except by expending a dramatically
large amount of computing resources. Since type I fBM has a harmonizable representation,
another suggestion has been to use this to simulate the model, and then use a fast Fourier
transform to recover the data in the time domain. However, we also show that this method
cannot function e¤ectively without large resources. Methods for generating type I processes
do exist, for example circulant embedding and wavelet aproximations, but these are relatively
di¢ cult to implement in an econometric context. In Section 4 we suggest a new simulation
method for type I processes, whose computational demands are trivial, and being implemented
in the time domain adapts naturally to econometric modelling applications. The method is highly
accurate when the data are Gaussian, and is always asymptotically valid. We use this procedure
in Section 5 to simulate the critical values of a selection of fractional Brownian functionals under
the two de�nitions.

Finally, we point out in Section 6 how the same approximation technique can be used to
estimate ARFIMA time series models under the assumption that the true processes are of type I.
This is in contrast to the usual time domain estimation by least squares, or conditional maximum
likelihood, where the necessity of truncating lag distributions to match the observed data series
implicitly (and perhaps inappropriately) imposes restrictions appropriate to the type II case.
The method entails �tting some constructed regressors, whose omission will potentially bias the
estimates in �nite samples. The technique is illustrated with an application to the well-known
series of annual Nile minima.

The computations in this paper were carried out using the Time Series Modelling 4.19 package
(Davidson 2007) which runs under the Ox 4 matrix programming system (Doornik 2006).

2 Properties of Fractional Brownian Motions

Our �rst task is to identify and contrast the distributions represented by (1.1) and (1.2). Since
these are Gaussian with means of zero, this is simply a matter of determining variances and
covariances of increments, and since

X(r1)X(r2) =
1
2

�
X(r1)

2 +X(r2)
2 � (X(r2)�X(r1))2

�
a formula for the variance of an increment X(r2) � X(r1) is su¢ cient to identify the complete
covariance structure. It will further su¢ ce, to motivate our discussion, to consider just the cases
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Figure 1: Plots of V (solid line) and V � (dashed line) over (�0:5; 0:5)

r1 = 0 and r2 = r 2 (0; 1]. The formula

EX(r)2 = V (d)r2d+1

where

V (d) =
1

�(d+ 1)2

�
1

2d+ 1
+

Z 1

0
((1 + �)d � �d)2d�

�
(2.1)

is given by Mandelbrot and Van Ness (1968). However, for this formula to be operational a closed
form for the integral in the second term is necessary. As we remark in the sequel, conventional
numerical evaluations may su¤er major inaccuracies. A proof of the closed-form representation

V (d) =
�(1� 2d)

(2d+ 1)�(1 + d)�(1� d) (2.2)

is given in Davidson and Hashimzade (2007). By contrast, the variance in the type II case is
found by elementary arguments as

EX�(r)2 = V �(d)r2d+1

where
V �(d) =

1

(2d+ 1)�(d+ 1)2
:

Plotting these formulae as functions of d (Figure 1) is the easiest way to see their relationship,
and it is clear that, particularly for values of d close to 0.5, the di¤erences can be substantial.
While V diverges as d ! 0:5, V � is declining monotonically over the same range, so that the
second term in (1.1) comes to dominate the �rst term to an arbitrary degree.

It is easy to see how the distributions of functionals such as
R 1
0 Xdr and

R 1
0 X

2dr will di¤er
correspondingly for these two models. The other important random variables arising in the
asymptotic theory of estimators are stochastic integrals. Expressions of the form

R 1
0 X1dX2 arise

in the limit distributions of regression errors-of-estimate in models involving nonstationary series
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Figure 2: E
R 1
0 X1dX2 (solid line) and E

R 1
0 X

�
1dX

�
2 (dashed line) as functions of d2, with �12 = 1,

d1 = 0:4

and possible long-memory error terms. The location parameter of this random variable is an
important contributor to the degree of bias in the regression. For type I processes X1 (integrand)
and X2 (integrator), the expected value is given by Davidson and Hashimzade (2007, Proposition
4.1) as

E

Z 1

0
X1dX2 = �12

�(1� d1 � d2) sin�d2
�(d1 + d2)(1 + d1 + d2)

:

where �12 = E(X1(1)X2(1)). On the other hand, by constructing the expectation as the limit of
the normalized �nite sum, we can quite easily show the following for type II processes X�

1 and
X�
2 ; where �12 is de�ned analogously.

Proposition 2.1 E
R 1
0 X

�
1dX

�
2 =

�12d2
(1 + d1 + d2)(d1 + d2)�(1 + d1)�(1 + d2)

In Figure 2 we show plots of these expressions, as d2 varies over the interval [0; 12), for �12 = 1
and �xed d1 = 0:4:

These large discrepancies clearly pose a very important issue - which of these models is the
more appropriate for use in econometric inference? Marinucci and Robinson (1999) remark:

�It is of some interest to note that [type II fBM] is taken for granted as the proper
de�nition of fractional Brownian motion in the bulk of the econometric time series
literature, whereas the probabilistic literature focuses on [type I fBM] This dichotomy
mirrors di¤ering de�nitions of nonstationary fractionally integrated processes...�

The feature of the type II model this last remark evidently refers to is that it incorporates the
conventional integer integration models (I(1), I(2), etc.) neatly into a general framework. Letting
d increase from 0 up to 1, and then 2 and beyond, yields a continuum of models, all nonstationary,
but with continuously increasing �memory�. An I(1) model cannot be allowed to have an in�nitely
remote starting date, but must be conceived as a cumulation of increments initiated at date t = 1,
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with an initial condition x0 that must be generated by a di¤erent mechanism. The view that
this construction should apply seamlessly to the whole class of I(d) models leads naturally to the
type II framework. By contrast, the type I framework requires us to keep cumulation (integer
integration) and stationary long memory in conceptually separate compartments. In this view,
a cumulation process must be assigned a �nite start date, but its stationary increments can have
a high degree of persistence and be dependent on the remote past.

Of course, this distinction is fundamentally arti�cial �a construct that investigators place on
a rather simple mathematical model, not necessarily connected to the way that �nature�chooses
to create sequences of data. The purpose of constructing a model is, after all, to account for the
joint distribution of a �nite set of dependent observations. To achieve this, it is very convenient to
tell a story about an unobserved collection of �identically and independently distributed shocks�,
which combine to create the observed distribution. This story receives powerful support from the
fact that it is always possible to construct functions of the observed data �residuals �that possess
at least some of the supposed characteristics of these shocks. However, we should not thereby
lose sight of the fact that they are really �ctional. Some stationary sequences (autoregressions
for example) can be constructed in terms of independent shocks only by postulating an in�nitely
remote starting point. A �nite starting point (say t = 0, without loss of generality) can be
speci�ed only by requiring a �nite set of initial conditions (say, x0; : : : ; x�p) to be generated by a
di¤erent mechanism. Thus, for stationarity these components must be jointly distributed so as to
match the stationary distribution. They cannot, in particular, be generated in the same manner
as x1; x2; x3; : : :, since this would involve us in an in�nite regress. As noted, the same problem
arises in a more acute form in the case of unit root processes, because permitting the in�nite
regress would specify a non-tight distribution for x0; : : : ; x�p. However, we undoubtedly observe
(�nite realizations of) processes which are very well described by stationary autoregressive models
on the one hand, and by unit root models on the other hand. We can avoid the paradoxes which
these models threaten only if we accept that the constructions based on �i.i.d.� components are
convenient �ctions.

These issues have particular resonance in the case of fractional processes. For example, the
nonstationary fractional process having 1

2 � d < 1 can be rationalized in the type I framework
as the cumulation from date t = 0 of a sequence of stationary negatively correlated increments,
the fractional process with parameter d � 1. This construction appears notably arti�cial, and
we should not believe literally in it as a generation mechanism for the data, as opposed to a
convenient description. However, it confers the large advantage that we can treat the increments
of the process as a stationary sequence whose joint distribution is not governed by the date of
the initial observation.

By contrast, the type II model requires us to postulate a sequence of shocks which are all
zero at dates preceding the initial observation. Not only does this make no sense as a data
generation mechanism, but it gives rise to a di¤erent and much less appealing data description.
All realizations of the process would have to be found at, or very close to, the unconditional mean
of the process (i.e., 0) whenever we start to observe them. The obvious counterfactual is provided
by discarding some initial observations from any process so generated which, obviously, produces
a process requiring a di¤erent description. In practice there are plenty of nonlinear mechanisms
that might generate fractional processes well described by models of the ARFIMA class, of which
the leading examples all involve some type of aggregation across units/agents. See for example
Davidson and Sibbertsen (2004), Granger (1981), and also Byers, Davidson and Peel (1996, 2001)
for an application.

The considerations we discuss here are a universal feature of time series modelling, but it has
generally been possible to neglect them because the e¤ects are of small order relative to sample
size. This is true both in weakly dependent processes and in simple integrated processes. Long
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memory models are di¤erent, since choosing the wrong descriptive framework has asymptotic
consequences, and exposes us to the hazard of incorrect inferences even in large samples. The
practical value of asymptotic theory for fractionally integrated processes can only be to derive test
statistics that must, in practice, be tabulated by simulation. This e¤ort is of course compromised
if the distributions we tabulate are di¤erent from those generated by �nature�. If it is believed
that the latter should realistically be treated as of type I, a suitable simulation algorithm becomes
an essential prerequisite of useful research in this area. In the next section we review existing
simulation methods, considering in particular the type of processes that they generate, and then
go on to propose a new strategy which is simple to implement and appears very e¤ective in
practice.

3 Simulation Strategies For Type I Processes

Beran (1994) o¤ers a number of suggestions for simulating long memory processes, in such a way
as to reproduce the correct autocorrelation structure. However, he does not address the issues
of stationarity and the role of presample in�uences. We can set the scene for our discussion of
these questions with reference to the related issue of computing moments.

3.1 Using Presample Lags

A general procedure for generating a fractionally integrated series of length n is to apply, for
t = 1; : : : ; n and some �xed m, the formula

xt =

m+t�1X
j=0

bjut�j (3.1)

where fu�m; : : : ; ung is a random sequence of suitable type, and fbj ; j = 0; : : : ;mg is de�ned
by (1.6). In the experiments reported in this paper, futg is always i.i.d. standard Gaussian.
Choosing m = 0 and taking the formula in (1.7) to the limit will yield a type II process, as
noted above. On the other hand, by choosing m large enough we should be able to approximate
the type I process to any desired degree of accuracy. Note that the �xed lag length strategy of
replacing m + t � 1 by m as the upper limit in (3.1) yields a stationary process, which might
be viewed as desirable when attempting to approximate the true case m = 1: However, it is
clear that when m is large enough to achieve a good approximation, it is also large enough that
the di¤erence between the two cases is negligible. Therefore we do not consider this latter case
explicitly.

m 0 1000 3000 6000 9000
SD 0.843 0.996 1.036 1.108 1.137

Table 1: SDs of Terminal Values: Extended Lag Representation

Table 1 shows the standard deviations in 10,000 replications of the terminal points Xn(1) of
the process in (1.7) where xt is generated by the model in (3.1) where d = 0:4, and n = 1000.
For comparison, note the theoretical values:

p
V (0:4) = 1: 389 and

p
V �(0:4) = 0:8401. The

coe¢ cients converge so slowly, for values of d in this region, that the length of the presample
needed for a close approximation to the type I process is infeasibly large.
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3.2 Harmonic Representation

When ut is i.i.d. Gaussian, the process xt de�ned by (1.4) has the harmonic representation

xt =
�p
2�

Z �

��
ei�t

�
1� e�i�

��d
W (d�) (3.2)

where i is the imaginary unit and W is a complex-valued Gaussian random measure with the
properties

W (�d�) =W (d�)
E(W (d�)) = 0

E(W (d�)W (d�)) =

�
d�; � = �
0; otherwise

This process is stationary by construction. It is also shown in Davidson and Hashimzade (2007,
Theorem 2.2) that the weak limit de�ned by (1.7) applied to the process (3.2) is type I fractional
Brownian motion.

Therefore, we investigate a discrete form of (3.2) as a framework for simulation. Letting

g(�) =
�
1� e�i�

��d
(3.4)

denote the transfer (frequency response) function of the process, de�ne a sequence gk by evaluating
g at �k = �k=m , where m � n is a suitably chosen power of 2. In principle, we can use the fast
Fourier transform (FFT) to evaluate

xt =
�p
2�m

m�1X
k=1�m

ei�ktgkWk; t = 0; : : : ;m� 1 (3.5)

after setting

Wk =

�
Uk + iVk; k � 0
Uk � iVk; k < 0

where (Uk; Vk; k = 0; : : : ;m � 1) are independent standard Gaussian pairs. Then take xt for
t = m� n; : : : ;m� 1 to provide the generated sample of length n. Note that the model is easily
generalized to include (e.g.) ARMA components, by simply augmenting g with multiplicative
factors. While the sequence gk from (3.4) can be evaluated in closed form as

gk =

�
2 sin

�k
2

��d �
cos

�
(� � �k)d

2

�
� i sin

�
(� � �k)d

2

��
(3.6)

for jkj > 0, there is an evident di¢ culty due to the singularity at zero. A natural way to achieve
a discrete approximation is to replace (3.4) with its series expansion

g(�) =
1X
j=0

bje
�i�j

where bj is de�ned by (1.6). Evaluating (3.5) by replacing this in�nite sum with the sum truncated
at m terms will approach the limit (3.2) in just the right way, and the FFT can be used here
too, for speedy evaluation. By taking m large enough we should, in principle, be able to compute
type I fBM to any desired degree of accuracy.

However, Table 2 shows the standard deviation of Xn(1) in 10,000 replications of this simu-
lation method for the case d = 0:4, also setting �2 = 1 and n = 1000. As before, we �nd that
the increase in the SD as m is increased is extremely slow, and remains a long way from the type
1 SD of 1:389, even with infeasibly large m. This method evidently su¤ers from an essentially
similar problem to the time domain moving average method.
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m 1000 5000 10,000 20,000
SD 1.106 1.128 1.166 1.200

Table 2: SDs of Terminal Values, Harmonic Representation

3.3 Choleski Method and Circulant Embedding

Another approach is to base the simulation on reproducing the known autocorrelation structure
of the increments. Let 
n denote the covariance matrix of the vector xn = (x1; : : : xn)0. Given
formulae for (k) = E(xtxt�k) for k = 0; :::; n � 1, 
n is easily constructed as the Toeplitz
matrix with kth diagonals set to (k). If Kn represents the Choleski decomposition, such that

n = KnK

0
n, and zn = (z1; : : : zn)

0 is a standard normal vector, then Knzn is a stationary
sequence having the same distribution as xn (exactly) in the case that ut is Gaussian. The
process (1.7) must therefore converge to type I fBM.

For the case where xt is generated by (1.4) where ut is i.i.d(0; �2), we have the well-known
formula:

(k) = �2
� (1� 2d) � (k + d)
� (k + 1� d)

sin (�d)

�
: (3.7)

see e.g. Granger and Joyeux (1980), Sowell (1992). It is straightforward to extend this calculation
to the ARFIMA(p; d; q) case using the formulae given by Sowell (1992). It could even be extended
to the multivariate case by computing the block-Toeplitz matrix of the cross-autocorrelations,
but for large samples this procedure would be computationally challenging.

An alternative way to base the simulation on the covariances is by the circulant embedding
method, as described in Davies and Harte (1987) for example. Let v (2n + 1 � 1) denote the
discrete Fourier transform (DFT) of the sequence

(0); : : : ; (n� 1); (n); (n� 1); : : : ; (1):

The generated data are the taken as the �rst n elements of the inverse DFT of the vector generated
as diag(v)z, where z is a complex-valued Gaussian vector, scaled by n1=2 �see Davies and Harte
(1987) or Beran (1994) for the complete details of the algorithm.1 By use of the fast Fourier
transform, this method is substantially more economical of time and memory than the Choleski
method, and once again it yields type I fBM in the limit. We have checked the properties of both
of these algorithms by simulation of the (1.4) model, (n = 1000, and 10,000 replications). For
comparison with the theoretical value (1.389, from above) the standard deviation obtained for
the Choleski replicates in these experiments was 1.394, and for the circulant embedding method,
1.396.

It is striking that these successful methods of simulating type I work by reproducing the
characteristics of the observed data directly, not by invoking the linear representation as is done
explicitly in 3.1 and implicitly in 3.2. However, while they can be generalized to any stationary
process whose covariance sequence is known, such as the ARFIMA class, or fractional Gaussian
noise, and can in principle be generalized to the multivariate case, they will have di¢ culty
in accommodating non-Gaussianity, nonlinear short-run dependence and other important data
features. They are generally too in�exible for implementation in econometric models, which tend
to rely heavily on the �independent shock�paradigm for their construction.

1Davies and Harte simulate the so-called fractional Gaussian noise, which has a di¤erent autocorrelation struc-
ture from (1.4) except in the tail, but the method is easily adapted as described.
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3.4 Wavelets

Simulation of fractional processes using wavelet methods has been quite extensively researched,
see among other references Abry and Sellan (1996), Meyer, Sellan and Taqqu (1999), and Pipiras
(2004, 2005). While many variants of the method are possible, the basic algorithm described by
Meyer, Sellan and Taqqu (1999) is representative. De�ning the Hurst coe¢ cient H = d+ 1

2 , they
show that fractional Brownan motion BH(t); t 2 R can be represented almost surely on compact
intervals in the form

BH(t) =

1X
k=�1

�H(t� k)S(H)k +
1X
j=0

1X
k=�1

2�jH	H(2
jt� k)"jk � b0;

where "jk s iidN(0; 1), b0 is the initial condition to ensure BH(0) = 0, 	H is the chosen wavelet
function, and �H is a described as a biorthogonal scaling function satisfying �H(t) = O(jtj�2�2H).
The key component is S(H)k , a discrete time fractionally integrated Gaussian process such as an
ARFIMA(0;H� 1

2 ; 0), independent of f"jkg, and designed to capture the low frequency variations.
The wavelets �ll in the high frequency �details�, at successively smaller scales as j increases. See
the above-cited references for the details.

On a compact interval such as t 2 [0; 1], replacing the in�nite sums in j and k by �nite sums
is shown to provide a highly accurate approximation to fBM. The sequence S(H)k can of course be
generated by the Choleski or circulant embedding algorithms. Exploiting the self-similarity of the
fractional process allows relatively short realizations to e¤ectively mimic the �large�deviations
in fBM. Therefore, we can view the wavelet method as exploiting the bene�ts of the Choleski
and related methods. In particular, it should reproduce the type I distribution2 at reduced
computational cost. However, it su¤ers the same disadvantages as those methods in having no
straightforward extension to the multivariate framework, and also being di¢ cult to adapt to the
context of econometric modelling in the time domain.

3.5 Simulation by Aggregation

Beran (1994) also suggests using the Granger (1981) aggregation scheme. Summing a large num-
ber of independently generated stable AR(1) processes, whose coe¢ cients are randomly generated
in the interval [0; 1) as

p
�, where � is a drawing from the Beta(a; b) distribution, Granger showed

that the resulting aggregate series xt would possess the attributes of a fractional sequence with
d = 1� b; for example, with d < 1

2 the autocovariances E(xtxt�k) will decrease at the rate k
2d�1.

The �long memory�attribute can be identi�ed with the incidence, in a suitable proportion of the
aggregate, of AR roots close to 1. A related method is proposed by Enriquez (2004), in which
discrete processes are drawn repeatedly from a distribution inducing the required persistence
structure, and aggregated.

These procedures certainly generate processes with the correct autocorrelation structure in
the limit, but this alone is not su¢ cient to ensure that the normalized partial sums converge to
fBM. For a further discussion of related issues see Davidson and Sibbertsen (2004). These authors
prove convergence to type I fBM under a di¤erent aggregation procedure, that of micro-processes
undergoing random regime shifts following a power law. However, in this result the aggregated
micro-series are stationary processes, with implicitly remote starting dates. Although this issue is
not dealt with explicitly in the cited paper, it is a plausible conjecture that aggregating truncated
processes, with presample shocks suppressed, would yield the type II case.

2We have not been able to check this assertion ourselves by direct calculation, but the belief that the method
should inherit the properties of the approximating ARFIMA appears a reasonable one.
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A formal proof of weak convergence to fBM still appears wanting for the Granger aggregation
case. Enriquez (2004) provides a proof that his limit process is Gaussian and a.s. continuous,
and that its increments possesses the requisite correlation structure. However, the issue of type
I versus type II is not addressed, and neither of the formulae (1.1) and (1.2) are cited as limit
processes. We can however plausibly conjecture that, in either case, the limit is of type I or
type II depending on the treatment of the presample shocks. In the Granger aggregation case,
note that for a type I limit the AR series components need to be stationary, an attribute only
attained asymptotically as they advance from their starting points. This approach to stationarity
will be rapid in most cases, but the long memory attribute of the aggregate depends upon the
incidence of components with roots close to 1. These may have low probability, but they are
correspondingly in�uential in the aggregate, and require a large number of steps to attain their
stationary distributions. In other words, the problem that arose in Sections 3.1 and 3.2 recurs
here. An e¤ective type I simulator based on aggregation would require an equivalently long
lead-in, and prove correspondingly infeasible.

4 An Alternative Simulation Strategy

The last section considered a number of methods of generating discrete time series with fractional
characteristics. It is noteworthy that some yield approximations closer to the type I distribution,
and others closer to the type II distribution, but this distinction is not signi�cantly discussed
in the literature we have cited despite its obvious importance in applications. For econometric
modelling, the need to simulate complex and often multivariate processes with possibly nonlinear
features strongly favours the the pre-sample lag method, for its evident �exibility and adaptability.
The question we consider is whether these bene�ts can be reconciled with the need to simulate
the type I model. The method we describe in this section is designed to meet these requirements,
and is also computationally very economical.

4.1 The Univariate Case

Consider the MA(1) representation (i.e. Wold representation) of the linear time series process
xt with weight sequence fbjg, given for example by (1.6) in the case of (1.4). For t = 1; : : : ; n,
write xt = x�t + x

��
t where

x�t =
t�1X
j=1

bjut�j ; x��t =
1X
j=t

bjut�j

In the representation (1.1), X� and X�� are the weak limits of the partial sum processes X�
n and

X��
n derived from x�t and x

��
t respectively. As such, each is Gaussian, and they are independent

of each other. The problem noted is that to approximate X��
n adequately by a �nite sum may

require taking the x��t to an infeasibly large number of terms.
Assume at this point that the ut process is i.i.d. Gaussian. Then, x�t and x

��
t are independent

of one another, and the vector x�� = (x��1 ; : : : ; x
��
n )

0 is Gaussian with a known covariance matrix.
A convenient fact is that the autocovariance formula has the alternative representation

E(x0x�k) = �
2
1X
j=0

bjbj+k: (4.1)

Therefore, for any t; s > 0;

E(x��t x
��
s ) = E

1X
j=0

bj+tu�j

1X
k=0

bk+su�k
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= �2
1X
j=0

bj+tbj+s

= E(x0x�jt�sj))� �2
min(t;s)�1X

j=0

bjbj+jt�sj: (4.2)

Assuming that the sequence fbjg is easily constructed, the n� n covariance matrix

Cn = E(x
��x��0)

can therefore be constructed with minimal computational e¤ort.
This suggests an easy way to simulate the distribution of x��, by simply making an appro-

priate collection of Gaussian drawings. Let x�� by constructed, by any means whatever, to be
independent of x� and Gaussian with the correct covariance structure. If

X��
n (r) =

1

n1=2+d

[nr]X
t=1

x��t :

denotes the corresponding partial sum process, the following result is easily established

Theorem 4.1 X��
n

d! X��:

Thus, let the vector x� = (x�1; : : : ; x
�
n)
0 be computed by the usual moving truncation method so

that, by standard arguments, X�
n
d! X�: It then follows by the continuous mapping theorem that

Xn = X
�
n +X

��
n

d! X, in other words, Type I fBM.
If ut is either not Gaussian, or is weakly dependent but not i.i.d., this simulation strategy will

be inexact in small samples. However, it will still be asymptotically valid under the usual condi-
tions for the invariance principle, noting that the limiting Gaussianity is here induced directly in
the simulation, not by a limit argument. Note, incidentally, that it would be perfectly possible
to simulate the vector x� in the same manner, instead of using (1.4) and (1.8) in conjunction
with the random generation of u1; : : : ; un. This approach would lead us, in a roundabout fashion,
to the Choleski simulation method. The asymptotic distributions would be the same, but there
are of course numerous advantages in terms of modelling �exibility with the dynamic simulation
approach and little is lost, in this case, in terms of computing resources.

It turns out that Cn tends rapidly to singularity as n increases, which is not surprising in view
of the fact that x�� basically combines the common set of random components fut; t < 1g with
changing weights. This means that in practice only a comparative handful of Gaussian drawings
are needed to generate the complete sequence. If n is small enough that Cn can be diagonalized
numerically (in practice, this appears to set n � 150 approximately, using the requisite Ox 3.4
function) then it is a simple matter to obtain the decomposition

Cn = V nV
0
n (4.3)

where V n is a n�s matrix, and s is chosen as the rank of the smallest positive eigenvalue. Then,
it is only necessary to draw an independent standard Gaussian vector z (s � 1), and compute
x�� = V nz. Note that in a Monte Carlo experiment, V n only has to be computed once, and
can then be stored for use in each replication. This means that generating a type I series has
virtually the same computational cost as that of a type II series.

So much is straightforward, but we also need to deal with the case where n is too large to
perform the required diagonalization. In practice, we treat n = 150 as a convenient cut-o¤ point.
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Figure 3: Columns of Vn, n = 150: Actual (solid line); interpolated from p = 50 (dashed line).

To construct a suitable V n matrix for cases with n > 150, we note the fact that the squared
length of its tth row is E(x��2t ), which we can obtain from (4.2) as before. We also have the
fact that the columns of V n are orthogonal and accordingly have a characteristic structure. We
combine these pieces of information by constructing and diagonalizing Cp, where p is chosen as
the largest whole divisor of n not exceeding 150. V n matrices are now constructed as follows:
for t = 1; [n=p]; 2[n=p]; : : : ; p[n=p], set the tth row of V n by taking the [pt=n]th row of V p,
renormalized to have squared norm equal to E(x��2t ). Then, the missing rows are then �lled in
by linear interpolation, followed by renormalization such that v0ntvnt = E(x

��2
t ). This procedure

is fast and ensures that, at least, the variances and covariances are diminishing as t increases at
the correct rate.

To illustrate the performance of the interpolation procedure, Figure 3 plots, for the case
d = 0:4 and n = 150, the �rst 4 columns of V n by exact calculation (solid lines) and also by
interpolation from p = 50 (dashed lines). The di¤erences are apparently negligible. This is
the largest n for which this direct comparison is possible, but our simulation results suggest the
method also works well in cases up to n = 1000. Table 3 shows the theoretical standard deviations
of the random variables X(1) and X�(1), with the same quantities estimated by Monte Carlo
from samples of size n = 1000 for comparison. The table indicates that the proposed simulation
strategy replicates the distribution very accurately, in general. Only for the extreme negative
values of d1 does the approximation prove poor, the approach to the asymptote as n ! 1
appearing to be very slow in this region. However, note that this phenomenon e¤ects the type I
and type II models equally.

Now consider the application of this method to general fractional processes. In the case of
the ARFIMA(0; d; 0), as was used in the construction of Table 3, the autocovariance formula is
taken from (3.7). The sequence fbjg is easily constructed by the recursion bj = bj�1(j + d� 1)=j
for j > 0 with b0 = 0. It would be possible to extend the method directly to the ARFIMA(p; d; q)

�(L)�dxt = �(L)ut; ut s iid(0; �2) (4.4)

by taking the required covariance formulae from Sowell (1992). In practice, however, there is
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Type I Type II
d Theoretical Monte Carlo Theoretical Monte Carlo
0:4 1:389 1:383 0:840 0:842
0:2 0:997 0:993 0:920 0:917
0 1 1:0085 1 1:0085
�0:2 1:176 1:167 1:109 1:104
�0:4 1:877 1:76 1:501 1:41

Table 3: Standard Deviations of Type I and II Processes. Monte Carlo estimates for n=1000,
from 10,000 replications

little need for this elaboration. To see why, note that de�ning zt = �(L)xt we may write

zt = z
�
t + z

��
t

= ��d�(L)ut1(t � 1) + ��d�(L)ut1(t � 0)

The �rst term can be simulated in the usual manner as a partial sum from zero initial values,
whereas the second term is well approximated, by

P1
j=0 bt+jv�j where vt s iid(0; �(1)2�2), and

fbjg is obtained by the recursion just described. The autoregressive component is now easily
added, given initial values z1�p; : : : ; z0, by the recursion

xt = zt �
pX
j=1

�jxt�j :

4.2 The Multivariate Case

To generalize this method to generate vectors of two or more type I processes, say xt = (x1t; : : : ; xmt)
for any m > 1, we need to write the model in �nal (Wold) form as

xt =
1X
j=0

Bjut�j

where the Bj (m�m) are matrices of lag coe¢ cients, and futg (m� 1) is the vector of shocks
with covariance matrix �: The autocovariance matrices accordingly take the form

�(k) = E(x0x
0
0�k) =

1X
j=0

Bj�B
0
j+k:

It easily follows by the preceding arguments that

E(x��t x
��0
s ) =

1X
j=0

Bj+t�B
0
j+s

= �(s� t)�
t�1X
j=0

Bj�B
0
j+s�t

for t � s, and take the transpose of this matrix for the case t � s.
Accordingly, stack the components x��1 ; : : : ;x

��
m into a vector x�� = (x��01 ; : : : ;x

��0
m )

0 (mn� 1)
having covariance matrix

E(x��x��0) =

264 C11;n � � � C1m;n
...

. . .
...

Cm1;n � � � Cmm;n

375 = Cn:
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Letting b0k;j represent the kth row of Bj , note that the cross-covariance matrices Ckh;n for
k; h = 1; : : : ;m have elements of the form

E(x��ktx
��
hs) =

1X
j=0

b0k;j+t�bh;j+s

= kh(s� t)�
t�1X
j=0

b0k;j�bh;j+s�t:

for the cases s � t; and with E(x��ktx��hs) = E(x��ksx��ht) for the cases t � s, such that Ckh;n = C
0
hk;n.

The decomposition (4.3) can now be computed as before, for this stacked matrix, to yield
V n = (V

0
1n; : : : ;V

0
mn)

0. The blocks V jn (n�s) for j = 1; : : : ;m are used to generate replications
of each process, from the formula x��j = V jnz where, in this case, as before, z is a standard normal
drawing of conformable dimension. Given that we are limited by mn � 150, this method has
to be modi�ed by the extrapolation step described above, for cases with n > [150=m]. Hence,
large-dimensional systems potentially entail an additional compromise in terms of approximation
error, relative to the univariate case. However, for the reasons stated above we would not expect
this to be a critical issue for most purposes; thus, the case m = 3 and n = 150 will yield an
approximation comparable to that illustrated in Figure 3.

For the case where Bj = diag(b1j ; : : : ; bmj) and bkj = �(j+dk)=(�(dk)�(j+1)), the following
generalization of (3.7) provides the cross-autocovariances. Without loss of generality, consider
the bivariate case, as follows.

Theorem 4.2 For x1t and x2t de�ned by (1.4) with respect to i.i.d. shock processes u1t and u2t
with covariance E(u1tuh2) = �12,

E(x10x2;�k) = �12
sin�d1
�

� (1� d1 � d2) � (d1 + k)
� (1� d2 + k)

:

Note that this formula yields (3.7) in the case x1t = x2t: Extending the procedure to the
simulation of vector ARFIMA systems is a simple matter of replacing � by �(1)��(1)0 to cope
with a vector moving average contribution �(L) (m�m), and then applying the autoregressive
recursion to the augmented series in the manner described in the previous section.

5 Distributions of Fractional Brownian Functionals

The magnitude of the extra term in type I fBM can evidently be substantial, to the point
of dominating the variance of the process. However, it is not clear how this contributes to
the distributions of the functionals customarily analysed in econometrics, and we present some
evidence on this question in the form of simulation results, based on 100,000 replications. We are
interested in the "worst case", so focus attention on the case d = 0:4:

In what follows, the expression on the left of the �t�symbol is what is evaluated in each case,
and the expression on the right is the random variable whose distribution we seek to estimate.
The model in (1.4) with independent Gaussian(0,1) shocks is used, and for the "type I" case
xt = x�t + x

��
t as de�ned in Section 4. Since X = X� + X��, the corresponding expressions for

the "type II" case are obtained simply by replacing xt with x�t and X with X� throughout. We
do not state these formulae separately.

The �rst model we examine is reported in Table 4, which shows quantiles of the relative
frequency distributions, and Figure 4, where kernel densities are plotted. Letting St =

Pt
s=1 xs,
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the simulated quantities take the forms

n

Pn�1
t=1 Stxt+1Pn�1
t=1 S

2
t

t
R 1
0 XdXR 1
0 X

2ds

and

n

Pn�1
t=1

�
St � �S

�
x+1Pn�1

t=1

�
St � �S

�2 t
R 1
0 XdX �X(1)

R 1
0 XdsR 1

0 X
2ds�

�R 1
0 Xds

�2
where the left-hand side expressions have the interpretations of n�̂ in the regressions of xt+1
onto St; in other words the simple Dickey-Fuller statistics of the �rst type, with and without an
intercept in the regression. In all cases we set n = 1000 and d = 0:4. Note that n�̂ = Op(1) for
d � 0 while the corresponding Dickey-Fuller t statistics diverge at the rate Op(nd) in the same
case (see Davidson 2006). Also be careful to note that we abstract here from any actual testing
situation, and do not take issue with (say) the question whether these are "correct" statistics for
testing for the existence of a unit root. We are curious solely to know how far these representative
fractional Brownian functionals di¤er from each other under the alternative de�nitions.

P (�) 0:01 0:05 0:1 0:9 0:95 0:99

no intercept Type I �0:12 0:04 0:28 2:39 2:88 4:17
Type II �0:24 �0:04 0:16 2:71 3:30 4:68

with intercept Type I �4:51 �2:75 �2:05 1:97 2:67 4:25
Type II �4:02 �2:45 �1:78 2:47 3:15 4:94

Table 4: Quantiles of the "Dickey-Fuller" statistics

The second set of cases reported are based on a bivariate distribution, in which the pair
fx1t; x2tg are fractional noise processes as de�ned by (1.4), where the independent driving processes
fu1t; u2tg are Gaussian(0,1) and contemporaneously correlated with correlation coe¢ cient 0.5.
First, we look at the distributions of stochastic integrals, and so considerPn

t=1 S1tx2t
n1+d1+d2

t
Z 1

0
X1dX2;

and Pn
t=1(S1t � �S1)x2t
n1+d1+d2

t
Z 1

0
X1dX2 �X2(1)

Z 1

0
X1ds;

where S1t =
Pt
s=1 x1s represents the nonstationary integrand process, and x2t the integrator

process. n = 1000 in each case. In the second case, the integrand fBM is �demeaned�. Plots of
these densities are shown in Figure 5, for the cases where X2 is either fBM with d = 0:4 and X1
is a regular Brownian motion (and hence the di¤erence in the distributions depends wholly X2)
or both processes are fBM with the same d of 0:4, making four cases in total.

Next we consider, for the same four cases, what can be thought of as �t statistics� from a
fractionally cointegrating regression with endogenous regressor S1t =

Pt
s=1 x1s. In these expres-

sions, the stochastic integrals above appear in the numerator. The cases, respectively without
and with an intercept, are

n1=2�d2
Pn
t=1 S1tx2tqPn

t=1 S
2
1t

Pn
t=1 x

2
2t � (

Pn
t=1 S1tx2t)

2
t

R 1
0 X1dX2

�2

qR 1
0 X

2
1ds
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and

n1=2�d2
Pn
t=1(S1t � �S1)x2tqPn

t=1(S1t � �S1)2
Pn
t=1 x

2
2t �

�Pn
t=1(S1t � �S1)x2t

�2 t
R 1
0 X1dX2 �X2(1)

R 1
0 X1ds

�2

rR 1
0 X

2
1 �

�R 1
0 X1

�2 :

where �22 = plimn
�1Pn

t=1 x
2
2t, and n = 1000 as before. Notice that all these statistics are nor-

malized to be Op(1), using the facts that
Pn
t=1 S1tx2t = Op(n

1+d1+d2) and
Pn
t=1 S

2
1t = O(n

2+2d1).
The second term in the denominators in the last two cases is actually asymptotically negligible,
but it is nonetheless included in the simulations, in deference to the standard interpretation as a
test statistic. The kernel densities are plotted in Figure 6, and quantiles of the distributions are
shown in Table 5.

P (�) 0:01 0:05 0:1 0:9 0:95 0:99

no intercept d1 = 0 Type I �1:711 �1:135 �0:879 0:977 1:297 1:810
Type II �0:672 �0:322 �0:172 1:125 1:375 1:774

d1 = 0:4 Type I �1:913 �1:353 �1:033 1:206 1:526 2:086
Type II �0:986 �0:643 �0:446 0:977 1:173 1:566

with intercept d1 = 0 Type I �0:868 �0:570 �0:437 0:523 0:689 0:954
Type II �0:381 �0:175 �0:056 0:770 0:888 1:124

d1 = 0:4 Type I �0:885 �0:623 �0:460 0:487 0:650 0:912
Type II �0:778 �0:550 �0:387 0:525 0:655 0:916

Table 5: Quantiles of the cointegrating regression "t statistics"

Again, we observe that the di¤erence between the type I and type II cases can be substantial,
but is also evidently dependent on such factors as the relative values of d1 and d2; and the
inclusion/exclusion of an intercept. In the last case reported in Table 5 the di¤erence is quite
modest, but this may be due more to a chance interaction of di¤erent factors than to a predictable
tendency.

6 Estimation of Type I ARFIMA Models

Compare the fractional noise model

(1� L)dYt = ut, t = 1; : : : ; n (6.1)

where futg1�1 is i.i.d.(0; �2) with its feasible counterpart

(1� L)dY �t = u�t , t = 1; : : : ; n (6.2)

where u�t is de�ned by (1.8) and Y
�
t is de�ned by the equation. In other words, if the sequence

fajg repesents the coe¢ cients in the expansion of (1� L)d,

Y �1 = u1

Y �2 = u2 � a1Y �1
� � �

Y �n = uT � a1Y �t�1 � � � � � an�1Y �1 :

The asymptotics relevant to models (6.1) and (6.2) are those of type I and type II fractional
Brownian motion, respectively. In the standard time domain estimation framework, we will
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normally maximize the likelihood implied by (6.2), although using the data Y1; : : : ; YT ; generated
by (6.1) by hypothesis.

Writing

�t(L; d) =

t�1X
j=0

ajL
j

to represent the truncation of the expansion of (1� L)�d at the tth term, note that

�t(L;�d) = �t(L; d)�1

follows immediately from matching terms in the identity (1�L)d(1�L)�d = 1:With this notation,
we can write the solution of (6.2) as

Y �t = (1� L)du�t = �t(L;�d)ut.

However, notice that the solution of (6.1) has the approximate form

Yt = (1� L)dut
� �t(L;�d)ut + vt(d; �)0z

where vt(d; �)0 is row t of the n� s matrix de�ned by (4.3), and z (s� 1) is a standard normal
vector. Therefore consider the approximate form of (6.1) taking the form

�t(L; d)Yt = �t(L; d)vt(d; �)
0z + ut

= v�t (d; �)
0z + ut (6.3)

where the second equality de�nes v�t . The vectors v
�
t (d; �) can be computed, given values for d

and �, and the elements of z can be treated as s additional unknown parameters. Therefore, the
true model (6.1) can be estimated, in principle, by simply inserting the �regressors�v�t into the
equation and estimating the parameters (d; �; z) jointly, by conditional maximum likelihood. This
is asymptotically equivalent to estimating d by �tting (6.1) as an in�nite order autoregression.

The same technique is straightforwardly extended to estimating the ARFIMA(p; d; q) model,
with the form

�(L)(1� L)d(Yt � �) = �(L)ut, t = 1 +max(p; q); : : : ; n

where � = E(Yt). The approximate model in this case takes the form

�(L)�t(L; d)(Yt � �) = v�t (d; �j�(1)j)0z + �(L)ut, t = 1 +max(p; q); : : : ; n (6.4)

Notice that in this case the variance of the presample shocks must be calculated as �2�(1)2, and
hence the v�t depend additionally on the moving average parameters.

3

Note that this modi�cation of conditional ML is of small order in the limit, and hence ir-
relevant to the asymptotic distribution of the estimator. Under the distribution conditional on

3Be careful to distinguish betwen this model and that of the form

�(L)�t(L; d)Yt = �+ v
�
t (d; �j�(1)j)0z + �(L)ut

having a solution of the form
Yt =

�

�(1)
�t(1;�d) + Y �

t

where Y �
t is a zero-mean ARFIMA and �t(1;�d) = O(td). In other words, this second model contains a deter-

ministic fractional trend.
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622�1284AD 784�1284AD
s = 0 s = 1 s = 2 MLE s = 0 s = 1 s = 2 MLE

ARFIMA d 0:4182
(0:0316)

0:4187
(0:0315)

0:4185
(0:0310)

0:3932
(0:0299)

0:4504
(0:0383)

0:4398
(0:0377)

0:4289
(0:0315)

0:4374
(0:0336)

type I Frac.,Z1 � �0:465
(0:516)

�0:908
(0:679)

� � �0:9841
(0:672)

�0:5301
(0:554)

�

type I Frac., Z2 � � 1:894
(1:771)

� � � �3:485
(1:842)

�

Shock SD 70:547
(2:946)

70:665
(3:004)

70:865
(3:075)

69:90 66:981
(3:757)

66:958
(3:891)

66:542
(3:825)

65:37

Student t DF 2:345
(0:245)

2:314
(0:239)

2:273
(0:234)

� 2:1248
(0:214)

2:088
(0:206)

2:1248
(0:214)

�

Log-likelihood �3738 �3737 �3737 �3757 �2786 �2783 �2782 �2806
Residual Q(12) 7:6426 7:524 7:027 � 5:250 5:686 5:897 �

Table 6: Annual Nile minima: ARFIMA(0,d,0) estimated by Student t conditional ML (robust
standard errors in parentheses) and Sowell (1992) exact ML.

the presample realization of the process, the omission of the terms in z is potential source of
�nite-sample estimation bias, but since v�t ! 0 as t ! 1, estimators of z are not consis-
tent. Including these terms implies a bias-e¢ ciency trade-o¤ in �nite samples, which may well
prove unfavourable. Therefore, whether it is desirable on balance to undertake this re�nement
in ARFIMA estimation is a question needing to be considered in context. The method is best
understood by contrasting the exact maximum likelihood estimator (MLE) with the conditional
MLE. The former estimator was derived by Sowell (1992), while the latter is equivalent to least
squares with presample values set to 0. Both methods are consistent. The question we pose is
whether introducing the extra parameters might allow a �nite sample correction comparable to
that provided by exact ML.

With these issues in mind, we considered the well-known series for annual minima of the
Nile, as studied by Hurst (1951) and reproduced in Beran (1994). This series of 663 annual
observations (622�1284AD) appears as a stationary process, having a sample mean of 1148.16.
The time plot is reproduced (in mean deviation form) in Figure 7.

The natural linear representation of such a process is (6.4) where � represents the uncon-
ditional mean. The fact that the true � is unknown is a complicating factor for our analysis,
which to date has implicity considered zero mean processes. Ideally we should like to �t � econo-
metrically, in the context of the type I model. However, preliminary attempts revealed a very
substantial loss of e¢ ciency. The di¢ culty of �tting the mean of fractional models is a well known
problem, documented for example by Cheung and Diebold (1994). There proves to be too little
information in this sample to allow � and z to be estimated jointly, so for the purposes of the
exercise we subtract o¤ the sample mean at the outset. For the centred series, � is �xed at 0.

A second important question is the choice of s, the number of elements of z to be �tted. The
elements of v�t depend on the magnitude of d but, beyond the �rst element, get very rapidly small
from the outset, even when d is large (see Figure 3). A practical limit for s of at most one or two
emerges from this and other cases examined.

In Table 1, we report estimates for the cases s = 0; 1 and 2, the �rst of these corresponding
to the usual type II model. In view of the leptokurtic shock distribution evident from Figure
7, we also opted to maximize the Student t likelihood, which allows the degrees of freedom of
the distribution to be estimated as an additional parameter. ARFIMA(0,d,0) models are �tted,
and the residual Box-Pierce Q statistics indicate that these models account adequately for the
autocorrelation in the series.

The �rst four columns of the table show the estimates for the complete sample of 633 years.
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It is apparent from the time plot that the initial observations are quite close to the mean of the
series. Presample components happen to cancel out here, and have a small net in�uence on the
initial observations. In other words, the �type II�assumption that the pre-sample shocks are zero
is not too implausible at this date. However, moving forward in time to the late 700s places us
in the middle of a prolonged dry period. Observe that the Nile�s �ow was substantially lower
than average, in every year except one, between 758AD and 806AD. Of course, it is climatic
variations of this type that give rise to the �long memory�characterization of the series. If our
sample had happened to start in (say) the year 784AD, instead of 622AD, the pre-sample shocks
would have been relatively in�uential, and the �type II�assumption correspondingly inadequate
to account for them. The column headed MLE shows for comparison the Sowell (1992) exact
Gaussian maximium likelihood estimator.4 Of course, the available implementation does not
allow for non-Gaussian disturbances, which is one reason why our approximate method might
have independent advantages here.

Columns 4-6 of the table show the results of estimating the model from the observations
from 784AD onwards (marked with the dotted line in Figure 7). Note the substantial di¤erence
between the �type I�and �type II�estimates in this case. If we take as a benchmark the estimate
of the memory parameter d for the whole period (0:418), note that in the shorter sample the
conventional type II model (s = 0) appears to overstate d signi�cantly. Also, �tting the type I
components applies a much more substantial correction than before. The estimate 0:429, while
still a little larger than the full-sample benchmark, is a great deal closer to it than the estimate
0:450 obtained from the �type II�model.

The estimates of the Z1 and Z2 components are evidently ine¢ cient, especially when two are
�tted. Thus, since we know that these coe¢ cients are standard normal drawings, the estimate of
�3:48 is clearly excessive, a result that can be understood as due to a trading-o¤ of two highly
collinear components. However, it is also clear that neglecting the presample shocks can in certain
circumstances induce bias with respect to the conditional distribution. The ability to correct for
these e¤ects is a potentially valuable addition to the modeller�s armoury.

7 Conclusion

In this paper, we have considered the issue of modelling fractionally integrated processes for
econometric applications. Since inference in these models will generally depend on teaming an
invariance principle with a scheme for numerical simulation of the assumed asymptotic distrib-
ution, it is of some importance to make an appropriate choice of data generation process. We
show that simulating the more natural type I representation of fractional Brownian motion can
be achieved with as little computational cost as the type II model often used in practice, although
conventional simulation methods work poorly. Our �rm recommendation to practitioners is to
use type I simulations wherever this di¤erence is likely to be crucial, unless there are particular
reasons for doing otherwise.

We note the existence of important exceptions to this rule, such as the unit root test against
fractional alternatives proposed by Dolado, Gonzalo and Mayoral (2002). Here, the statistic is
computed using the fractional di¤erence of the observed series, where since this is naturally trun-
cated to the observation period, the induced asymptotic distribution is of type II by construction.
Hence the tables reported by these authors for this case of the null hypothesis are correct. How-
ever, they also propose, although do not analyse in any detail, a test for the null hypothesis of a
fractional process with parameter d0 against an alternative d1. For these cases, the tables would
need to be generated according to the assumed type of the observed data, and the test outcomes

4This is the Ox implementation ARFIMA 1.04 due to Doornik and Ooms (2006).
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could depend on this decision in a crucial manner. We would recommend the methods proposed
here in such a case.

A Appendix: Proofs

Proof of Proposition 2.1 We derive this expectation as the limit of the expression

1

n1+d1+d2

n�1X
t=1

tX
s=1

Ex�1sx
�
2;t+1:

where x�pt =
Pt�1
j=0 bpjup;t�j for p = 1; 2, and u1t and u2t are i.i.d. with E(u1tu2s) = �12 if t = s,

and 0 otherwise. Note that
tX
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x�1s =
tX
s=1
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!
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and hence
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x�1sx
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Applying Stirling�s approximation formula, note that

sX
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1

�(d1)

Z s

0
�d1�1d� =

sd1

�(d1 + 1)

where ���denotes that the ratio of the two sides converges to 1 (see Davidson and de Jong 2000,
Lemma 3.1). Hence, by a similar argument
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and the stated result follows directly.

Proof of Theorem 4.1
Note that X��

n (r); 0 � r � 1 is Gaussian with covariance structure converging to that of the limit
process X��, by construction. It therefore remains to show that the sequence is uniformly tight,
which we demonstrate by establishing the criterion of Theorem 15.6 of Billingsley (1968). In the
present case, this is easily shown to be implied by

E(X��
n (r + �)�X��

n (r))
2 � C�2�

for � > 1
2 and all 0 � r � 1� �, and C <1 represents a generic positive constant. However,

X��
n (r + �)�X��

n (r) =
1

n1=2+d

[n(r+�)]X
t=[nr]+1

x��t :

It follows from (4.2) that for k � 0,

E(x��t x
��
t+k) = O(t

2d�1)
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Hence, the proof is completed by noting that

E(X��
n (r + �)�X��

n (r))
2 � C (n�)

2(nr)2d�1

n1+2d

= C�2r2d�1:

Proof of Theorem 4.2
To compute the cross-covariance use the harmonizable representation:
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Denoting the integrand in (A-1) by F (�) observe thatZ �
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where the upper bar denotes complex conjugate. Further, using

1� e�i� = �e�i�=2
�
ei�=2 � e�i�=2

�
= �2ie�i�=2 sin �

2

= 2e�i(���)=2 sin
�

2

and noting that sin(�=2) is non-negative for 0 � � � �, rewrite the integral in (A-2) asZ �
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The integral in (A-3) can be transformed, using the change of variable x = (� � �) =2, intoZ �
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Using Relation 3.631.9 of Gradshteyn and Ryzhik (2000) and the properties of beta and gamma
functions,Z �=2

0
cos�d1�d2x cos (d1 � d2 + 2k)x dx =
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Finally,
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Figure 4: Simulation of unit root autoregression: d = 0.4
1000 observations, 100,000 replications
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Figure 5: Simulations of a bivariate distribution with correlation 0.5.
Integrand has parameter d1, integrator has parameter d2.
1000 observations, 100,000 replications.
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Stochastic Integral, d1 = 0, d2 = 0.4
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Figure 6: Simulations of regression t-value.
Processes as for Figure 5.
1000 observations, 100,000 replications.
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Regression without intercept, d1 = 0, d2 = 0.4
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Figure 7. Annual Nile minima (mean deviations)
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