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Abstract

Suppose we wish to carry out likelihood based inference but we solely have an unbiased simu-
lation based estimator of the likelihood. We note that unbiasedness is enough when the esti-
mated likelihood is used inside a Metropolis-Hastings algorithm. This result has recently been
introduced in statistics literature by Andrieu, Doucet, and Holenstein (2007) and is perhaps
surprising given the celebrated results on maximum simulated likelihood estimation. It can
be widely applied in microeconomics, macroeconomics and financial econometrics. One way of
generating unbiased estimates of the likelihood is by the use of a particle filter. We illustrate
these methods on three problems in econometrics, producing rather generic methods. Taken
together, these methods imply that if we can simulate from an economic model we can carry
out likelihood based inference using its simulations.

Keywords: Particle filter, MCMC, Metropolis-Hastings, likelihood, inference, state-space mod-
els, DSGE, stochastic volatility
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1 Introduction

Inference using maximum simulated likelihood estimation goes back at least to Lerman and Manski

(1981) and Diggle and Gratton (1984). In the simplest applications of this technique simulation is

used to unbiasedly estimate the likelihood using M independent and identically distributed (i.i.d.)

draws. The log of this estimate is then numerically maximised with respect to the parameters.

Based on a sample of size T , for i.i.d. data the theory of this, for example discussed in Gourieroux

and Monfort (1996, Ch. 3), needs that M goes to infinity for this maximum simulation likelihood

estimator to be consistent and
√
T/M → 0 to have the same distribution as the maximum likelihood

estimator.1

An example of this is the very simplest discrete choice model (e.g. Train (2003)) where yt is

binary

Pr(yt = 1|xt, β, ψ) = pt = Pr(x′tβ + εt ≥ 0), εt|xt ∼ Ft(ψ),

where we assume yt|xt are independent over t. Assume we can simulate from Ft(ψ).2 Write these

simulations as ε(1)
t , ..., ε

(M)
t . Then the simplest simulation based estimator of pt is

p̂t =
1
M

M∑
j=1

1
x′tβ+ε

(j)
t ≥0

,

delivering the simulated likelihood function

dF̂ (y|β, ψ) =
T∏
t=1

p̂ yt
t (1− p̂t)1−yt .

It is easy to see that this is an unbiased estimator of the true likelihood

dF (y|β, ψ) =
T∏
t=1

pyt
t (1− pt)1−yt ,

but the score is biased and it is this bias which drives the fact that the maximum simulated

likelihood estimator of θ =
(
β′, ψ′

)′ behaves poorly asymptotically unless M →∞.

Here we suggest that for many economic models the issue of needing M to be large can be

entirely sidestepped — while still insisting on efficiency. We saw this argument first in the context

of dynamic models in a paper in statistical theory by Andrieu, Doucet, and Holenstein (2007,

Theorem 5, Section 5.2). The framework we use is vastly simpler and gets immediately to the heart
1Alternatives to maximum simulated likelihood include simulated scores, the stochastic EM algorithm, indirect

inference, efficient method of moments and Markov chain Monte Carlo. Discussions of these topics can be found
in, for example, Hajivassiliou and McFadden (1998), Chib (2001), Gourieroux, Monfort, and Renault (1993), Smith
(1993), Gallant and Tauchen (1996) and Gourieroux and Monfort (1996).

2It is interesting to note there is no requirement to be able to compute Ft(ψ).
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of the issue. We make our contribution by illustrating these themes on some core econometric

problems.

The basics of this argument can be expressed simply: Suppose we wish to carry out inference

by sampling from

dF (θ|y) ∝ dF (y|θ)dF (θ),

where dF (θ) is a prior. This typically requires us to calculate the likelihood dF (y|θ), but here we

assume that all we have is a simulation based estimator

dF̂u(y|θ),

which is unbiased

Eu
{

dF̂u(y|θ)
}

= dF (y|θ),

where we average over the simulation denoted by the multivariate u. We assume this estimator is

itself a density function. Then we can think of the simulation estimator F̂ as being based on an

auxiliary variable:

dF̂u(y|θ) = dG(y, u|θ),

that is dG is a joint density which, when marginalised over u, delivers dF (y|θ).

This simple insight has massive implications econometrically, because now we can carry out

inference by sampling from

dG(u, θ|y) ∝ dG(y, u|θ)dF (θ),

This simulation based Bayesian method will deliver draws(
u(1), θ(1)

)
,
(
u(2), θ(2)

)
, ...,

(
u(N), θ(N)

)
so throwing away the u samples leaves us with

θ(1), θ(2), ..., θ(N)

which are from dF (θ|y). These samples can be used to approximate the posterior median, which

is an efficient estimator (in the classical sense) of θ by the Bernstein- von Mises Theorem.

The sampling can be carried out using generic Markov chain Monte Carlo (MCMC) algorithms.

Sample θ(i) from a proposal dQ
(
θ(i) | θ(i−1)

)
, draw the uniformly distributed u and compute3

L̂(i) = dF̂ (i)
u (y|θ(i))

3The above algorithm is fundamentally different from common econometric practice, which is to compute F̂ with
common uniform random variables, smoothing out the estimator of the likelihood as θ varies. Here new uniforms are
drawn at each iteration.
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The acceptance probability is given by

q = min

 L̂(i)

L̂(i−1)

dF (θ(i))
dF (θ(i−1))

dQ
(
θ(i−1)|θ(i)

)
dQ
(
θ(i)|θ(i−1)

) , 1
 , V ∼ U(0, 1).

If V > q set(
L̂(i), θ(i)

)
=
(
L̂(i−1), θ(i−1)

)
.

Under very weak conditions (e.g. Chib (2001)) the sequence
{
θ(i)
}

for i = 1, . . . , N converges to

samples from dF (θ|y) as N →∞.

An important practical observation is that M does of course play a role in the algorithm: it can

influence the rejection rate. If M is very small then dF̂ will be a very jittery estimator of dF which

will increase the chance the algorithm gets stuck. Hence increasing M will improve the mixing of

the MCMC chain, so increasing the incremental information in each new θ(i).

The above argument opens up the possibility of carrying out likelihood inference for wide classes

of models in economics. All we need is an unbiased estimator of the likelihood. It turns out that

for dynamic models particle filters deliver such an estimator for rather general state space models.

This is the topic of Andrieu, Doucet, and Holenstein (2007, Theorem 5, Section 5.2). The common

theme of the dynamics of these models is that they can be simulated, which is all we need to

perform inference.

In this paper we will detail three application areas of these methods: individual choice, stochastic

volatility and dynamic stochastic general equilibrium (DSGE) models. Hence the paper covers

problems in microeconomics, financial econometrics and macroeconomics. The method we outline

below can also be applied in other contexts, for example in models whose dynamics are non-

stochastic (e.g. chaotic models or weather models driven by differential equations).

This paper is structured as follows: In section 2 we give an example of a static model. Section

3 treats dynamic models and introduces particle filters as a convenient tool to obtain unbiased

likelihood estimates. In section 4 we provide some examples from macroeconomics and finance to

demonstrate the performance of this algorithm in dynamic models.

2 Static models

Here we illustrate the workings of the algorithm in static models by the example of a binary choice

model. We use the classical data set from Mroz (1987) to study the labour force participation of

T = 753 women. We posit a simple binary choice model and perform inference on its parameters

by using an unbiased estimate of the likelihood inside an MCMC algorithm.
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The binary variable yt takes the value 1 if a woman works and 0 otherwise. We assume that

yt = 0 if y∗t ≤ 0 and yt = 1 if y∗t > 0, where

y∗t = β0 + β1nwifeinct + β2educt + β3expert + β4exper2t + β5aget

+ β6kidslt6t + β7kidsge6t + εt

The explanatory variables are non-wife income, education, experience, experience squared, age,

number of children less than six years old, and number of children between the ages of 6 and 18.

We write

pt = Pr(yt = 1|xt, β, ψ) = Pr
(
x′tβ + εt ≥ 0

)
= Pr

(
−εt ≤ x′tβ

)
= F

(
x′tβ | ψ

)
where

β = (β0, . . . , β7)′

Here we choose the normal distribution for F (x′tβ | ψ). For the simulation based estimator of pt

we draw

ε
(j)
t ∼ i.i.N

(
0, σ2

ε

)
j = 1, . . . ,M

and compute

p̂t =
1
M

M∑
j=1

1
x′tβ+ε

(j)
t ≥0

,

The estimate of the likelihood is given by

dF̂ (y|β, ψ) =
T∏
t=1

p̂yt
t (1− p̂t)1−yt .

We then use this estimator inside an MCMC algorithm as illustrated above in order to make

inference on β.

We recall here that in the usual Probit model the variance has to be normalized. We see that

it is impossible to estimate both β and σ2
ε because

Pr
(
εt ≤ x′tβ

)
= Pr

(
εt
σε
≤ x′tβ

σε

)
In Probit models one usually sets σε = 1 and in Logit models the variance is given by π2

3 . In our

setup the choice of σε can matter for the performance of the algorithm. If we fix σε too small we

can end up with a pair (yt = 1, p̂t = 0) which results in dF̂ (y|β, ψ) = 0. We suggest setting σε = 1
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by default and if this causes problems to tune it such that we just avoid this undesirable outcome.

We assume a Gaussian prior given by β ∼ N (β0, I8) where

β0 = (0.5855,−0.0034, 0.0380, 0.0395,−0.0006,−0.0161,−0.2618, 0.0130)′

We are using the following random walk proposals for the parameters, each applied one at a time:

β0,i = β0,i−1 + 0.1326ν1,i

β1,i = β1,i−1 + 0.0058ν2,i

β2,i = β2,i−1 + 0.0109ν3,i

β3,i = β3,i−1 + 0.0108ν4,i

β4,i = β4,i−1 + 0.0005ν5,i

β5,i = β5,i−1 + 0.0031ν6,i

β6,i = β6,i−1 + 0.2317ν7,i

β7,i = β7,i−1 + 0.0703ν8,i

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 8 and i = 1, . . . , N . The variances in the random walk

proposals were chosen to aim for a 40% acceptance probability for each parameter, see e.g. Gelman,

Carlin, Stern, and Rubin (2003). We loop through the parameters to make a proposal for each one

individually and accept or reject it. Given the Gaussian errors we assumed, we can easily compute

the true likelihood and thus use this exact likelihood model as a benchmark. The proposal variances

were tuned on this exact likelihood model. This will allow us to see how fast the estimated likelihood

comes close to the truth as we increase M . For the algorithm we set M = 1000, 2000, 4000 and

N = 100000.

Tables 1 and 2 show the following statistics for the MCMC algorithm: The arithmetical mean,

the Monte Carlo standard error, the acceptance probability, and the inefficiency.4 We discard the

first half of the sample so that all statistics are based on the second half. The acceptance

exact likelihood M = 1000
mean MC s.e. P(accept) inefficiency mean MC s.e. P(accept) inefficiency

β0 0.295 0.033 0.418 364 0.313 0.039 0.283 593
β1 -0.012 0.000 0.409 31 -0.012 0.000 0.277 57
β2 0.130 0.001 0.413 143 0.130 0.002 0.274 328
β3 0.124 0.001 0.406 149 0.125 0.001 0.272 149
β4 -0.002 0.000 0.413 130 -0.002 0.000 0.276 136
β5 -0.053 0.001 0.414 299 -0.054 0.001 0.278 479
β6 -0.868 0.004 0.427 70 -0.871 0.004 0.286 100
β7 0.035 0.001 0.411 81 0.034 0.002 0.277 125

Table 1: Results from MCMC for labour force participation; exact likelihood and M = 1000
estimated likelihood model with N = 100000.

probabilities increase with M , so that with M = 4000 we have almost the 40% acceptance rate as

the proposal variances were tuned for the exact likelihood model. The inefficiency decreases with

M but not monotonically so. Almost all of the posterior means based on the estimated likelihood
4Inefficiency is defined as 1 + 2

∑500
l=1

(
1− l

500

)
ρl where ρl denotes autocorrelation at lag l.
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M = 2000 M = 4000
mean MC s.e. P(accept) inefficiency mean MC s.e. P(accept) inefficiency

β0 0.349 0.035 0.333 462 0.376 0.030 0.365 420
β1 -0.012 0.000 0.332 35 -0.012 0.000 0.361 42
β2 0.130 0.001 0.330 209 0.126 0.001 0.361 168
β3 0.123 0.001 0.321 160 0.124 0.001 0.355 197
β4 -0.002 0.000 0.332 162 -0.002 0.000 0.362 189
β5 -0.054 0.001 0.334 458 -0.054 0.001 0.366 321
β6 -0.876 0.004 0.338 128 -0.871 0.004 0.374 67
β7 0.032 0.002 0.328 94 0.032 0.001 0.360 77

Table 2: Results from MCMC for labour force participation; N = 100000, M = 2000 andM = 4000.

models are not significantly different from the exact likelihood model. Our results are very close to

those from an ordinary MC estimated Probit regression. All parameter estimates have the expected

sign, except β7.

Tables 3 and 4 show the covariance (lower triangle) and correlation (upper triangle) matrix

of the parameters. For brevity we only report the covariance matrices of the exact likelihood

and the M = 4000 estimated likelihood model. Since the θi are highly correlated we use the

covariance and correlation
β0 55.401 0.367 -0.689 -0.196 0.285 -0.884 -0.723 -0.902
β1 0.074 0.001 -0.558 0.116 -0.049 -0.277 -0.084 -0.216
β2 -1.476 -0.004 0.083 0.017 -0.036 0.325 0.073 0.485
β3 -0.318 0.001 0.001 0.047 -0.986 0.021 0.005 0.171
β4 0.014 0.000 0.000 -0.001 0.000 -0.144 -0.112 -0.233
β5 -0.786 -0.001 0.011 0.001 0.000 0.014 0.923 0.853
β6 -4.480 -0.002 0.017 0.001 -0.001 0.092 0.693 0.773
β7 -2.123 -0.002 0.044 0.012 0.000 0.032 0.203 0.100

Table 3: Results from MCMC for labour force participation; exact likelihood model with N =
100000; covariance (lower triangle) and correlation (upper triangle) matrix.

covariance and correlation
β0 43.974 0.182 -0.494 -0.251 0.326 -0.845 -0.706 -0.867
β1 0.036 0.001 -0.510 0.135 -0.066 -0.081 0.150 0.023
β2 -0.907 -0.004 0.077 0.037 -0.030 0.023 -0.207 0.174
β3 -0.396 0.001 0.002 0.057 -0.988 0.021 0.053 0.205
β4 0.016 0.000 0.000 -0.002 0.000 -0.133 -0.142 -0.264
β5 -0.670 0.000 0.001 0.001 0.000 0.014 0.932 0.850
β6 -4.092 0.004 -0.050 0.011 -0.001 0.097 0.765 0.793
β7 -1.724 0.000 0.014 0.015 -0.001 0.030 0.208 0.090

Table 4: Results from MCMC for labour force participation; N = 100000, M = 4000; covariance
(lower triangle) and correlation (upper triangle) matrix.

Newey-West Heteroskedasticity and Autocorrelation Consistent (HAC) estimator of the variance-

covariance matrix. The choice of the lag length B for this estimator is not obvious. The results

reported are based on a choice of B = 500.

Figure 1 compares the likelihood estimates and the autocorrelation functions (ACFs) for N =
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100000 between the exact likelihood model, and the ones with estimated likelihoods with M = 1000,

M = 2000 and M = 4000. Figures 2 and 3 compare the parameter histograms. We note that the

performance improves as M increases.

3 Dynamic models

We now move on to treat parameter estimation in dynamic models. First, we provide the very

general assumptions on the models we consider here. Then, we describe the MCMC algorithm and

particle filter we will use.

3.1 Assumptions

We assume we have some observations

y = (y1, y2, . . . , yT )

and wish to make Bayesian inference on some unknown parameters θ. We consider an underlying

non-linear and non-Gaussian state-space model of the following type.

Assumption 1 The model:

1. We can compute the measurement density

dF (yt|αt,Ft−1, θ), t = 1, 2, ..., T,

where αt is the unobserved state and Ft−1 = y1, y2, . . . , yt−1 is the natural filtration.

2. We can simulate from the random variable

αt|αt−1,Ft, θ, t = 1, 2, ..., T,

where we assumed that we can also draw from the initial condition α0|F0, θ.

3. We can compute the prior dF (θ).

At no point do we assume we can compute dF (αt+1|αt,Ft, θ). Computing this distribution is

often hard in models encountered in economics and finance, but we can often simulate from it.

We do not assume that such simulations are continuous with respect to θ with common random

numbers (which allows the use of rejection in the simulation). Continuity in θ plays no role at all

in our analysis. We will argue in Section 4 that a large number of intractable econometric models

are of this form. Leading examples are DSGE models, some (continuous time) stochastic volatility

models and some models in industrial organisation.
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Figure 1: Labour force participation model; Likelihoods and ACFs of parameters. Fist column:
L̂
(
θ(i)
)

for i = 1, . . . , N2 ; second column: L̂
(
θ(i)
)

for i = N
2 , . . . , N ; third column: ACF of θ(i).

First row: exact likelihood model; second row: estimated likelihood with M = 1000; third row:
M = 2000; fourth row: M = 4000.
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Figure 2: Labour force participation model histogram of parameters for i = 50000, . . . , 100000.
First row: exact likelihood model; second row: estimated likelihood with M = 1000; third row:
M = 2000; fourth row: M = 4000.
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Figure 3: Labour force participation model histogram of parameters for i = 50000, . . . , 100000.
First row: exact likelihood model; second row: estimated likelihood with M = 1000; third row:
M = 2000; fourth row: M = 4000.
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3.2 Predictive decomposition

For dynamic models we can always decompose the likelihood using the predictive decomposition

dF (y|F0, θ) =
T∏
t=1

dF (yt|Ft−1, θ).

It is key to the success of the Kalman filter and the use of hidden Markov models (e.g. Durbin

and Koopman (2001)), where the predictive distributions dF (yt|Ft−1, θ) can be computed exactly

using recursive formulae.

In more general models the predictive distributions can only be approximated. Here we will

use simulation to unbiasedly estimate dF (yt|Ft−1, θ). This will be carried out using a particle filter,

whose recursive structure will allow us to calculate an unbiased estimator of dF (y|F0, θ). This can

then be used as the basis for inference using an MCMC algorithm analogous to the above strategy.

3.3 Particle filter estimator of the likelihood

The modern statistical literature on particle filters started with Gordon, Salmond, and Smith

(1993), while a book length review is given in Doucet, de Freitas, and Gordon (2001). Kim,

Shephard, and Chib (1998) and Pitt and Shephard (1999) introduced particle filters into economics

and estimated the likelihood function dF (y|θ) as a by-product in order to do model comparison

via marginal likelihoods. They have recently received some attention in macroeconomics due to

the work of, for example, Fernanzed-Villaverde and Rudio-Ramirez (2007) and Aruoba, Fernandez-

Villaverde, and Rubio-Ramirez (2006).

Here we give a very simple particle filter, which can be generically coded and just needs the

ability to evaluate dF (yt|αt,Ft−1, θ) and to simulate from αt+1|αt,Ft, θ.

Particle filter

1. Draw α
(1)
1 , ..., α

(M)
1 from α1|F0, θ. Set t = 1 and l0 = 0.

2. Compute the weights

w
(j)
t = dF (yt|α(j)

t ,Ft−1, θ), j = 1, . . . ,M

and the normalised weights so that

W
(j)
t =

w
(j)
t∑M

k=1w
(k)
t

j = 1, . . . ,M

3. Resample by drawing u ∼ U (0, 1) and let

u(j) =
u

M
+
j − 1
M
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for j = 1, . . . ,M . Find the indices i1, . . . , iM such that

ij−1∑
k=1

W
(k)
t < u(j) ≤

ij∑
k=1

W
(k)
t (1)

4. Sample

α
(j)
t+1 ∼ αt+1|α(ij)

t ,Ft, θ

for j = 1, . . . ,M .

5. Record

lt(θ) = lt−1(θ) + log

 1
M

M∑
j=1

w
(j)
t


Let t = t+ 1 and goto 2.

Then it is relatively easy to show that

exp (lT (θ)) a.s.→ dF (y|θ)

as M →∞ (see for example Del-Moral (2004)), while crucially for us

E [exp(lT (θ))] = dF (y|θ).

A proof of this unbiasedness is provided in the Appendix5.

In order to carry out MCMC we proceed by replacing dF (y|θ) by its particle filter estimate

L̂ (θ) = exp {lT (θ)}

which we are allowed to do as the particle filter indeed provides an unbiased estimate of dF (y | θ).

The resulting algorithm is

MCMC Algorithm with Estimated Likelihood

1. Initialise θ(0), i = 1.
5An important aspect of the convergence is that it is pointwise: particle filters are not continuous with respect

to θ so neither is lT (θ). This is a fundamental property of particle filters and it is caused by the resampling
step (1), which is very hard to overcome unless αt is univariate — see Pitt (2001). Discontinuous estimates of
the likelihood function cause problems for maximum simulated likelihood techniques such as those proposed by
Fernanzed-Villaverde, Rudio-Ramirez, and Santos (2006) and Fernanzed-Villaverde and Rudio-Ramirez (2007). To
our knowledge only Flury and Shephard (2008) offer a smooth particle filter which circumvents this problem.
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2. Propose

θ(i) ∼ dQ
(
θ|θ(i−1)

)
where we can evaluate dQ. Obtain L(i) = L̂(θ(i)).

3. Draw V ∼ U(0, 1) and if

V > min

 L(i)

L(i−1)

dF (θ(i))
dF (θ(i−1))

dQ
(
θ(i−1)|θ(i)

)
dQ
(
θ(i)|θ(i−1)

) , 1
 , (2)

then write θ(i) = θ(i−1), or else retain the proposed θ(i).

4. Set i = i+ 1 and go to 2.

This has the same structure as before, delivering simulations from the posterior distribution.

We now move on to provide some examples in economics to demonstrate the performance of

this algorithm.

4 Examples

This section aims at illustrating the performance of the particle filter in MCMC algorithm. We

start off by analyzing a simple linear Gaussian model where an analytical expression for dF (y | θ)

is readily available from the Kalman filter in order to be able to evaluate the new algorithm. We

then move on to a discrete time Gaussian SV model and finally conclude with the analysis of a

DSGE model.

4.1 Gaussian linear model

It is useful to start the analysis with a model where analytic solutions are available. We consider

the Gaussian, linear model (see e.g. Harvey (1989) and Durbin and Koopman (2001))

yt = µ+ αt + σεεt,
αt+1 = φαt + σηηt,

(
εt
ηt

)
i.i.d.∼ N (0, I) ,

where α0 ∼ N
(
0, σ2

η/
(
1− φ2

))
. In order to guarantee positive variances we parameterise the log

of the variances, while we impose that φ ∈ (−1, 1) by allowing no prior probability outside that

region. We take θ = (µ, log σε, φ, log ση)
′, where µ controls the unconditional mean of yt, φ the

autocorrelation and σ2
η the variance of the latent process. The likelihood can be computed using

the Kalman filter and this will serve us as a benchmark. For our simulation study we generate

T = 1, 000 observations from this DGP with parametrization θ∗ = (0.5, log 1, 0.825, log 0.75)′. We

assume a Gaussian prior given by θ ∼ N (θ0, I4) where θ0 = (0.25, log 1.5,0.475, log 0.475)′.

13



Any proposals for φ 6∈ (−1, 1) are automatically rejected. We are using the following four

random walk proposals for the transformed parameters, each applied one at a time:

µi = µi−1 + 0.3298ν1,i

log σε,i = log σε,i−1 + 0.1866ν2,i

φi = φi−1 + 0.0671ν3,i

log ση,i = log ση,i−1 + 0.2676ν4,i

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 4 and i = 1, . . . , N . The variances in the random walk

proposals were chosen to aim for a 40% acceptance probability for each parameter. We loop through

the parameters to make a proposal for each one individually and accept or reject it. Generally we

run the MCMC algorithm with N iterations and allow for a burn-in period of N
2 , such that all of

the below statistics are computed with the second half of the draws.

We start by presenting the results obtained from using the Kalman filter. Figure 5 shows the

Markov chain for the parameters where N = 100000 and the histograms, which are based on the

second half of the chains. Figure 4 depicts the likelihood and the autocorrelation functions (ACFs)

of the parameters for N = 100000. We do not report it here but for the Kalman filter the Markov

chain seems to have stabilized already with only N = 10000 iterations.

Figures 6 and 7 depict the same for the particle filter run at M = 100 particles. Using only

M = 100 particles appears to be insufficient for the lengths of the chain considered here. The chain

gets stuck on specific parameter values for a considerable time.

To see what happens in the very long run we let the MCMC algorithm run up to N = 1000000

and figures 8 and 9 show the same for this scenario. We see that even though the number of

particles is too small at M = 100, we can make up for it by having the Markov chain run longer.

The chain still gets stuck but the histograms start to look better.

We now look at the impact of increasing the number of particles from only M = 100 to M =

1000. Figures 10 and 11 show the drastic improvement in the performance of the algorithm from

this increase.

Table 5 shows the following statistics for the MCMC algorithm with the Kalman Filter: The

arithmetical mean, the Monte Carlo standard error, the acceptance probability, the covariance

(lower triangle) and correlation (upper triangle) matrix, and the inefficiency.

Tables 6 and 8 show the MCMC statistics for M = 100 and M = 1000 particles, and table

7 shows the statistics for the N = 1000000 chain with M = 100. We see how the acceptance

probabilities improve with M . We do not report it here for brevity, but with M = 2000 we achieve

an acceptance probability of 30%. To see that effect more clearly figure 12 compares the evolution
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Figure 4: Random walk with noise model; Kalman filter: Likelihood and ACFs of parameters. Top:
L̂
(
θ(i)
)

for i = 1, . . . , N2 ; middle: L̂
(
θ(i)
)

for i = N
2 , . . . , N ; bottom: ACF of θ(i).
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Figure 5: Random walk with noise model; Kalman filter: θ(i) for i = 1, . . . , 100000 and histogram
of parameters for i = 50000, . . . , 100000.
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Figure 6: Random walk with noise model; particle filter with M = 100: Likelihood and ACFs of
parameters. Top: L̂

(
θ(i)
)

for i = 1, . . . , N2 ; middle: L̂
(
θ(i)
)

for i = N
2 , . . . , N ; bottom: ACF of

θ(i).
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Figure 7: Random walk with noise model; particle filter with M = 100: θ(i) for i = 1, . . . , 100000
and histogram of parameters for i = 50000, . . . , 100000.
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Figure 8: Random walk with noise model; particle filter with M = 100: Likelihood and ACFs of
parameters. Top: L̂

(
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)

for i = 1, . . . , N2 ; middle: L̂
(
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)

for i = N
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Figure 9: Random walk with noise model; particle filter with M = 100: θ(i) for i = 1, . . . , 1000000
and histogram of parameters for i = 500000, . . . , 1000000.
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Figure 10: Random walk with noise model; particle filter with M = 1000: Likelihood and ACFs
of parameters. Top L̂

(
θ(i)
)

for i = 1, . . . , N2 ; middle: L̂
(
θ(i)
)

for i = N
2 , . . . , N ; bottom: ACF of

θ(i).
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Figure 11: Random walk with noise model; particle filter with M = 1000: θ(i) for i = 1, . . . , 100000
and histogram of parameters for i = 50000, . . . , 100000.
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of the ACFs and likelihoods as we increase M = 100, 500, 1000, 2000 with the Kalman filter output,

for N = 100000. Figure 13 compares the corresponding histograms.

mean MC s.e. P(accept) covariance and correlation inefficiency
µ 0.562 0.001 0.398 0.071 -0.092 -0.069 0.103 7.2
σε 1.030 0.003 0.399 -0.016 0.416 0.958 -0.983 39
ρ 0.783 0.001 0.391 -0.004 0.136 0.049 -0.978 37
ση 0.621 0.004 0.400 0.023 -0.498 -0.169 0.616 48

Table 5: Results from MCMC with Kalman filter; N = 100000.

mean MC s.e. P(accept) covariance and correlation inefficiency
µ 0.531 0.006 0.021 1.816 -0.052 -0.126 0.154 288
σε 1.041 0.008 0.021 -0.127 3.258 0.896 -0.942 852
ρ 0.780 0.003 0.020 -0.130 1.238 0.586 -0.944 981
ση 0.611 0.010 0.022 0.478 -3.916 -1.664 5.305 919

Table 6: Results from MCMC with particle filter; N = 100000, M = 100.

mean MC s.e. P(accept) covariance and correlation inefficiency
µ 0.553 0.002 0.018 2.615 0.016 0.015 0.002 532
σε 1.033 0.003 0.018 0.045 3.134 0.722 -0.790 855
ρ 0.785 0.001 0.018 0.014 0.752 0.346 -0.838 776
ση 0.607 0.003 0.019 0.007 -2.622 -0.923 3.512 785

Table 7: Results from MCMC with particle filter; N = 1000000, M = 100.

As a final note we would like to comment on how we suggest choosing M and the variances of

the random-walk proposals. We find that a good indication whether one has reached a sufficient

number of particles – sufficient in the sense of achieving a likelihood estimate that is not too jittery –

is when the speed with which the acceptance probabilities increase with M starts to slow down and

improvements become only marginal. Once this point has been reached we recommend tuning the

proposal variances to get the desired levels for the acceptance probabilities. If one ends up having

to decrease variances by a lot to get acceptance probabilities of around 40% for long chains this is

an indication that M is not sufficiently large. It is helpful to always keep an eye on the ACFs. If

one has to use small proposal variances to get acceptance probabilities of 40% and observes highly

autocorrelated chains at the same time this is another strong indicator that M is too small.

4.2 Discrete time Gaussian SV model

We now turn to a simple real life problem and estimate the the Gaussian discrete time stochastic

volatility model (e.g. Ghysels, Harvey, and Renault (1996) and Kim, Shephard, and Chib (1998)).
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Figure 12: Random walk with noise model; N = 100000; first row: likelihoods and ACFs from
Kalman filter, second row: particle filter with M = 100, third row: M = 500, fourth row: M =
1000; last row: M = 2000.
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Figure 13: Random walk with noise model; N = 100000; first row: parameter histograms from
Kalman filter, second row: particle filter with M = 100, third row: M = 500, fourth row: M =
1000; last row: M = 2000.
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mean MC s.e. P(accept) covariance and correlation inefficiency
µ 0.562 0.001 0.252 0.097 -0.085 -0.100 0.071 7.8
σε 1.031 0.003 0.250 -0.017 0.414 0.914 -0.968 29
ρ 0.783 0.001 0.245 -0.007 0.130 0.049 -0.959 30
ση 0.618 0.004 0.256 0.017 -0.485 -0.165 0.606 36

Table 8: Results from MCMC with particle filter; N = 100000, M = 1000.

The stock returns are assumed to follow the process

yt = µ+ exp {β0 + β1αt} εt

and the stochastic volatility factor

αt+1 = φαt + ηt,

where(
εt
ηt

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, α0 ∼ N

(
0,

1
1− φ2

)
Now we have θ = (µ, β0, β1, φ, ρ)′. For this model the likelihood is not available. Researchers have

used MCMC, MSLE, method of moments and indirect inference to estimate this type of model.

See the review in Shephard (2005). We assume a Gaussian prior given by θ ∼ N (θ0, I5) where θ0

is

µ β0 β1 φ ρ

0.036 −0.286 0.077 0.984 −0.794

Any proposals for φ, ρ 6∈ (−1, 1) are automatically rejected. We are using the following random

walk proposals

µi = µi−1 + 0.017ν1,i

β0,i = β0,i−1 + 0.104ν2,i

β1,i = β1,i−1 + 0.010ν3,i

φi = φi−1 + 0.004ν4,i

ρi = ρi−1 + 0.067ν5,i

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 5 and i = 1, . . . , N . We loop through the parameters to make

a proposal for each one individually and accept or reject it. The data we use for this study is the

end-of-day level of the SNP500 Composite Index (NYSE/AMEX only) from CRSP. We use 3271

daily observations from 03.01.1995 until 31.12.2007. The returns are defined as

yt = 100 (log SNP500t − log SNP500t−1)
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mean MC s.e. P(accept) covariance and correlation inefficiency
µ 0.042 0.000 0.411 0.003 -0.895 -0.340 0.511 0.310 15
β0 -0.141 0.001 0.395 -0.015 0.091 0.217 -0.402 -0.184 12
β1 0.080 0.000 0.398 -0.001 0.002 0.001 -0.926 -0.015 18
φ 0.982 0.000 0.424 0.001 -0.002 -0.001 0.000 0.010 16
ρ -0.742 0.000 0.427 0.002 -0.005 0.0000 0.0000 0.010 6.4

Table 9: Results from MCMC with particle filter; N = 100000, M = 2000.

The statistics are displayed in table 9. The data together with the time-series for αt and volatility

exp {β0 + β1αt}, estimated with the posterior means of the parameters is plotted in Figure 14.

Figures 15 and 16 depict likelihoods, ACFs, parameters and their histograms.

4.3 A DSGE model

We now estimate a simple DSGE model. An and Schorfheide (2007) were the first to consider

Bayesian inference for DSGE models.

Fernanzed-Villaverde and Rudio-Ramirez (2007) were the first to consider using particle filters

to perform parameter inference. In their paper however they only report maximum likelihood

estimates and indicate the possibility of using this present algorithm. As mentioned earlier this kind

of maximum simulated likelihood approach runs into difficulties incurred because of the pointwise

convergence of the particle filter estimate of the likelihood. Amisano and Tristani (2007) seem to

use this particle filter in MCMC algorithm to estimate a DSGE model, but without any further

justification.

The model we consider here is simple version of a DSGE model. There is a representative

household maximizing its lifetime utility, given by

max
{Ct,Lt}∞t=0

E0

[ ∞∑
t=0

βt {log (Ct) + ψ log (1− Lt)}

]
, β ∈ (0, 1) , ψ > 0

where Ct is consumption, Lt labour, β the discount factor and ψ determines labour supply. In this

economy there is one single good which is produced according to

Yt = AtK
α
t L

1−α
t

where Kt is the stock of capital and At technology. The stock of capital evolves according to

Kt+1 = (1− δ)Kt + UtIt

where It is investment, Ut investment technology and δ the depreciation rate. We further assume

this to be a closed economy without government, such that the aggregate resource constraint is

given by

Ct + It = Yt
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Figure 14: Stochastic volatility model; Top: log-returns on end-of-day level of the SNP500 Compos-
ite Index (NYSE/AMEX only) from 03.01.1995 until 31.12.2007; bottom: exp {β0 + β1αt} based
on posterior means of the parameters.
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Figure 15: Stochastic volatility model; particle filter with M = 2000: Likelihoods and ACFs of
parameters. Top: L̂

(
θ(i)
)

for i = 1, . . . , N2 ; middle: L̂
(
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for i = N
2 , . . . , N ; bottom: ACF of

θ(i).
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We assume the following laws of motion for the technologies

logAt = ρa logAt−1 + σηa,t

logUt = ρu logUt−1 + σuηu,t

where ηa,t, ηu,t ∼ i.i.N (0, 1). In this economy the central planner and the competitive equilibrium

coincide. We decide to solve the central planner’s problem

max
{Kt+1,Lt}∞t=0

{
E0

[ ∞∑
t=0

βt
(

log
{
AtK

α
t L

1−α
t +

1
Ut

((1− δ)Kt −Kt+1)
}

+ ψ log {1− Lt}
)]}

The first order equilibrium conditions

1
Ct

= UtβEt

[
1

Ct+1

(
αAt+1K

α−1
t+1 L

1−α
t+1 +

1
Ut+1

(1− δ)
)]

ψ
1

1− Lt
=

1
Ct

(1− α)AtKα
t L
−α
t

together with the resource constraint

Ct = AtK
α
t L

1−α
t +

1
Ut

((1− δ)Kt −Kt+1)

and the technology processes fully characterize the solution to the problem. Now we can solve for

the equilibrium of this economy. Solving the system of non-linear expectational difference equations

involves finding policy functions g and h such that

(Ct, Lt) = g (Kt, At, Ut)[
Kt+1 At+1 Ut+1

]
= h (Kt, At, Ut) + σΩηt+1

where

Ω =

0 0
1 0
0 σ2

u
σ

 , ηt+1 =
(
ηa,t+1

ηu,t+1

)

We find a second order approximation to these policy functions by perturbation methods. We

solve the system in terms of log-deviations from a non-stochastic steady-state and use notation

ĉt = log Ct
Css

, where Css denotes the non-stochastic steady-state. We now unify notation by letting

x̂t denote the state variables x̂t =
(
k̂t ât ût

)′
. The solution will be of the form

k̂t+1 = hx,1x̂t +
1
2
x̂′thxx,1x̂t +

1
2
hσσ,1σ

2 (3)

ât = ρaât−1 + σηa,t (4)

ût = ρuût−1 + σuηu,t (5)
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and

ĉt = gx,1x̂t +
1
2
x̂′tgxx,1x̂t +

1
2
gσσ,1σ

2

l̂t = gx,2x̂t +
1
2
x̂′tgxx,2x̂t +

1
2
gσσ,2σ

2

We rely on code from Schmitt-Grohe and Uribe (2004) and Klein (2000) to solve for the unknown

derivatives hx, gx, hxx, gxx, hσσ, gσσ. We make the simple assumption that the observable variable

is given by

ĜDP t = ŷt + σεεt (6)

where ĜDP t is detrended real GDP per capita and we compute

ŷt = ât + αk̂t + (1− α) l̂t

Equations (3)-(5) together with the observation equation (6) specify a non-linear state-space system,

from which we can easily simulate and hence use the particle filter to evaluate the likelihood of the

model L̂ (θ). The parameters we need to estimate are

θ =
(
α β δ ψ ρa ρu σε σ σu

)′
and we use the particle filter in MCMC algorithm. The algorithm to obtain L̂ (θ) inside the MCMC

algorithm works as follows

1. Given θi, compute Kss, Ass, Uss, Css, Lss.

2. Use perturbation methods to find numerical values for hx, gx, hxx, gxx, hσσ, gσσ.

3. Run the particle filter on the state-space system (6) and (3)-(5) to obtain L̂ (θi) .

We use quarterly data on detrended real US GDP per capita from 1960Q1 to 2008Q2. We use

quarterly GDP in chained 2000 dollars from the Bureau of Economic Analysis and data on monthly

population estimates from the U.S. Census Bureau. We divide the GDP by the quarterly average

population to generate the real GDP per capita series. The log of this series is then detrended to

obtain ĜDP t.

In order to guarantee positive variances and ψ > 0 we parameterise the log of the variances and

ψ. We assume a Gaussian prior given by θ ∼ N (θ0, I9) where θ0 is

α β δ logψ ρa ρu log σε log σ log σu
0.37 0.99 0.0154 log 1.956 0.98 0.96 log 0.0036 log 0.005 log 0.0042
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Any proposals for α, β, δ 6∈ (0, 1), and for ρa, ρu 6∈ (−1, 1) are automatically rejected. We are using

the following random walk proposals

αi = αi−1 + 0.033ν1,i

βi = βi−1 + 0.042ν2,i

δi = δ1,i−1 + 0.034ν3,i

logψi = logψi−1 + 0.201ν4,i

ρa,i = ρa,i−1 + 0.078ν5,i

ρu,i = ρu,i−1 + 0.049ν6,i

log σε,i = log σε,i−1 + 0.249ν9,i

log σi = log σi−1 + 0.091ν7,i

log σu,i = log σu,i−1 + 0.096ν8,i

where νj,i ∼ i.i.N (0, 1) for j = 1, . . . , 9 and i = 1, . . . , N . We loop through the parameters to make

a proposal for each one individually and accept or reject it.

Currently we use M = 24000 and N = 10000. As usual we display the likelihood and the ACFs

in figure 17 and the parameter histories and their histograms in figure 18. From the parameter

histories and histograms we see that the parameters of the model are not well identified. This could

be due to the chain being too short or the number of particles being insufficient.

Tables 10 and 11 show the usual statistics and the variance-covariance matrix. The posterior

means take reasonable values. The estimates for β, ρa, and ρu seem rather far away from 1 and δ

seems rather large.

mean MC s.e. P(accept) inefficiency
α 0.344 0.055 0.391 983
β 0.804 0.026 0.348 386
δ 0.127 0.025 0.372 346
ψ 3.292 0.767 0.394 63
ρa 0.731 0.074 0.411 565
ρu 0.827 0.041 0.377 836
σε 0.001 0.000 0.413 31
σ 0.003 0.001 0.402 1022
σu 0.035 0.006 0.391 1039

Table 10: Results from MCMC with particle filter; N = 10000, M = 24000.

Fitting the DSGE model here is done more in a spirit of demonstrating the workings and

capabilities of the algorithm than gaining any new insight on model parameters. We think that

using more observation equations will drive the posterior means to more credible values. Also we

deliberately decided not to fix δ = 0.0145 or β = 0.99 as often done in practice. This concludes the

dynamic model example section.

26



0 50000 100000

0.00

0.05

0.10
mu 

0 50000 100000

−0.50

−0.25

0.00

0.25
beta0 

0 50000 100000

0.075

0.100
beta1 

0.00 0.05 0.10

10

20

30
Density

mu 

−0.50 −0.25 0.00

2.5

5.0

Density
beta0 

0.075 0.100

25

50

75 Density
beta1 

0 50000 100000

0.97

0.98

0.99

1.00
phi 

0 50000 100000

−0.8

−0.7

−0.6

−0.5
rho 

0.97 0.98 0.99

50

100

Density
phi 

−0.8 −0.7 −0.6

5

10 Density
rho 

Figure 16: Stochastic volatility model; particle filter with M = 2000: θ(i) for i = 1, . . . , 100000 and
histogram of parameters for i = 50000, . . . , 100000.
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Figure 17: DSGE model; particle filter with M = 24000: Likelihoods and ACFs of parameters.
Top: L̂

(
θ(i)
)

for i = 1, . . . , N2 ; middle: L̂
(
θ(i)
)

for i = N
2 , . . . , N ; bottom: ACF of θ(i).
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Figure 18: DSGE model; particle filter with M = 24000: θ(i) for i = 1, . . . , 10000 and histogram of
parameters for i = 5000, . . . , 10000.

covariance and correlation
α 15.228 0.599 0.286 -0.400 0.689 -0.932 -0.331 0.889 -0.917
β 4.343 3.452 0.582 -0.557 0.584 -0.583 -0.149 0.467 -0.777
δ 1.980 1.916 3.137 -0.058 0.646 -0.272 0.472 0.386 -0.467
ψ -84.761 -56.154 -5.546 2944.000 -0.275 0.445 0.695 -0.469 0.348
ρa 14.036 5.662 5.971 -77.791 27.245 -0.751 -0.092 0.723 -0.648
ρu -10.543 -3.140 -1.397 69.945 -11.357 8.404 0.452 -0.909 0.808
σε -0.009 -0.002 0.006 0.273 -0.003 0.009 0.000 -0.364 0.144
σ 0.167 0.042 0.033 -1.224 0.182 -0.127 0.000 0.002 -0.753
σu -1.633 -0.659 -0.378 8.616 -1.543 1.070 0.000 -0.017 0.208

Table 11: Results from MCMC with particle filter; N = 10000, M = 24000; covariance (lower
triangle) and correlation (upper triangle) matrix.
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5 Conclusion

In the econometric literature estimated likelihoods are sometimes used as the basis for approximate

maximum likelihood estimation. Such maximum simulated likelihood estimators have a deep the-

oretical flaw, as emphasised in the literature. In this paper we note that the effect of estimation

can be removed by replacing the maximisation of the likelihood by placing the estimated likelihood

inside a MCMC algorithm. The theory of this is very simple.

In this paper we show the power of this approach, providing examples drawn from microecono-

metrics, financial econometrics and macroeconomics. When we use these methods on dynamic

models it is convenient to use a particle filter to deliver an unbiased estimator of the likelihood.

Such estimators are pretty general as they just need one to be able to simulate from the dynamics

of the model to be able to implement it.

A Unbiasedness of particle filter

We now provide a proof of the claim that the likelihood approximation from the particle filter is

unbiased. The proof closely follows Del-Moral (2004) and has no originality in it, but is accessible.

For the sake of notational simplicity we drop the reference to the parameters. We first introduce

extra notation and highlight an important property of the particle filter described in section 3.3.

The proof then works by providing the martingale decomposition of the estimation error of the

particle filter.

A.1 The particle filter

At each point in time the particle cloud of the particle filter provides a random measure defined by

ηMt =
1
M

M∑
j=1

δ
α

(j)
t

where δ
α

(j)
t

is the dirac delta, for the prediction density

ηt = dF (αt | Ft−1)

For any function ht we get an approximation for

ηt (ht) = E [ht (αt) | Ft−1]

given by

ηMt (ht) =
1
M

M∑
j=1

ht

(
α

(j)
t

)
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We can write the likelihood approximation from the particle filter as

f̂ (y) =
T∏
t=0

ηMt (Gt) =
T∏
t=0

1
M

M∑
j=1

Gt

(
α

(j)
t

)
where we use notation Gt (αt) = dF (yt | αt) for the measurement density. The resampling step

can be understood as drawing indices from a multinomial distribution. Denote by n(j)
t the number

of times particle α(j)
t has been resampled. The n(j)

t follow a multinomial distribution(
n

(1)
t , . . . , n

(M)
t

)
∼ Multinomial

(
M,W

(1)
t , . . . ,W

(M)
t

)
where W (j)

t are the normalized weights. An important property of this resampling algorithm is

that

E
[
n

(j)
t | αt

]
=

Gt

(
α

(j)
t

)
1
M

∑M
k=1Gt

(
α

(k)
t

)
where αt =

{
α

(1)
t , . . . , α

(M)
t

}
. Hence

E

 1
M

M∑
j=1

n
(j)
t δ

α
(j)
t
| αt

 =
M∑
j=1

Gt

(
α

(j)
t

)
∑M

k=1Gt

(
α

(k)
t

)δ
α

(j)
t

After resampling we draw predictive particles

α
(j)
t+1 ∼ dF

(
αt+1 | α(ij)

t

)
j = 1, . . . ,M

These particles now provide an approximation for ηt+1, given by

ηMt+1 =
1
M

M∑
j=1

δ
α

(j)
t+1

We conclude by pointing out an observation which will be crucial for the proof. Note that

E
[
ηMt+1 (Gt+1) | α′t

]
=

1
M

M∑
j=1

∫
dF
(
αt+1 | α(ij)

t

)
Gt+1 (αt+1) dαt+1

=
1
M

M∑
j=1

n
(j)
t

∫
dF
(
αt+1 | α(j)

t

)
Gt+1 (αt+1) dαt+1

where α′t =
{
α

(i1)
t , . . . , α

(iM )
t

}
and hence

E
[
ηMt+1 (Gt+1) | αt

]
= E

 1
M

M∑
j=1

n
(j)
t

∫
dF
(
αt+1 | α(j)

t

)
Gt+1 (αt+1) dαt+1 | αt


=

M∑
j=1

Gt

(
α

(j)
t

)
∑M

k=1Gt

(
α

(k)
t

) ∫ dF
(
αt+1 | α(j)

t

)
Gt+1 (αt+1) dαt+1 (7)

Now we proceed by using these results in a martingale decomposition of the estimation error to

show unbiasedness.
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A.2 Unbiasedness

We now produce a martingale decomposition of the difference between the particle approximation

and the true likelihood. We derive the true likelihood of the model by

dF (y) =
∫

dF (y | α) dF (α) dα

=
∫ T∏

t=0

Gt (αt)
T∏
t=0

dF (αt | αt−1) dα

= E

[
T∏
t=0

G (αt)

]

where α = (α1, . . . , αT ). Note that the expectation is with respect to the distribution of the Markov

chain α. Write the prediction error as

ΓMT (GT ) = dF̂ (y)− dF (y)

=
T∏
t=0

1
M

M∑
j=1

Gt

(
α

(j)
t

)
− E

[
T∏
t=0

Gt (αt)

]

For any function ht+1 define the operators

Qt+1 (ht+1) (αt) = Gt (αt)
∫
f (αt+1 | αt)ht+1 (αt+1) dαt+1

Qt,T = Qt+1Qt+2 · · ·QT

We understand then that Qt+1 (Gt+1) (αt) moves the likelihood from period t to t + 1 and hence

Qt,T moves it from t to T . This operator is crucial for the proof. Qt+1 operates on measures as

well as particle approximations to it. Now

ΓMT (GT ) =
T∏
t=0

1
M

M∑
j=1

Gt

(
α

(j)
t

)
− E

[
T∏
t=0

Gt (αt)

]

=
T∏
t=0

1
M

M∑
j=1

Gt

(
α

(j)
t

)
− E [Q0,T (GT ) (α0)]

= γMT
1
M

M∑
j=1

GT

(
α

(j)
T

)
− E [Q0,T (GT ) (α0)]

To make the formulae more readable we used notation

γMT =
T−1∏
t=0

ηMt (Gt (αt))

Then we write

ΓMT (GT ) = γMT
1
M

M∑
j=1

GT

(
α

(j)
T

)
− γMT−1

1
M

M∑
j=1

QT−1,T (GT )
(
α

(j)
T−1

)
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+ γMT−1

1
M

M∑
j=1

QT−1,T (GT )
(
α

(j)
T−1

)
− γMT−2

1
M

M∑
i=1

QT−2,T (GT )
(
α

(j)
T−2

)
. . .

+
1
M

M∑
j=1

Q0,T (GT )
(
α

(j)
0

)
− E [Q0,T (GT ) (α0)]

=
T∑
t=0

γMt 1
M

M∑
j=1

Qt,T (GT )
(
α

(j)
t

)
− γMt−1

1
M

M∑
i=1

Qt−1,T (GT )
(
α

(j)
t−1

)
where we use the conventions QT,T = Id and γM−1

1
M

∑M
j=1Q−1,T (GT )

(
α

(j)
−1

)
= E [Q0,T (GT ) (α0)].

Define the filtration of the particle history FMt−1 = (α0, . . . , αt−1) and take the expectation

E
[
ΓMT (GT ) | FMT−1

]
=

T∑
t=0

γMt E

 1
M

M∑
j=1

Qt,T (GT )
(
α

(j)
t

)
| FMt−1


−

T∑
t=0

γMt−1

1
M

M∑
j=1

Qt−1,T (GT )
(
α

(j)
t−1

)
Using (7), the first term is

E

 1
M

M∑
j=1

Qt,T (GT )
(
α

(j)
t

)
| FMt−1

 =
M∑
j=1

Gt−1

(
α

(j)
t−1

)
∑M

k=1Gt−1

(
α

(k)
t−1

) ∫ dF
(
αt | α(j)

t−1

)
Qt,T (GT ) (αt) dαt

For the second term we have

γMt−1

1
M

M∑
j=1

Qt−1,T (GT )
(
α

(j)
t−1

)
= γMt

1
ηMt−1 (Gt−1 (αt−1))

1
M

M∑
j=1

Qt−1,T (GT )
(
α

(j)
t−1

)

= γMt
1

ηMt−1 (Gt−1 (αt−1))
1
M

M∑
j=1

Gt−1

(
α

(j)
t−1

)∫
dF
(
αt | α(j)

t−1

)
Qt,T (GT ) (αt) dαt

= γMt

M∑
j=1

Gt−1

(
α

(j)
t−1

)
∑M

k=1Gt−1

(
α

(k)
t−1

) ∫ dF
(
αt | α(i)

t−1

)
Qt,T (Gt) (αt) dαt

Thus

E
[
ΓMT (GT ) | FMT−1

]
= 0

Interpretation: We have decomposed the estimation error ΓMT (GT ) into a sum of differences. When

we use a particle filter and propagate the particle cloud through time we accumulate approximation

errors: At the beginning of time we use approximation ηM0 for η0 and hence make a sampling error.

Then we would like to move this measure forward one period according to the updating and

prediction equations (which we cannot solve for analytically). Denote this hypothetically forward-

moved measure by Φ1

(
ηM0
)
, where Φ1 is the “move forward” operator. Ideally we would use
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Φ1

(
ηM0
)

as an approximation for η1. As we cannot do this, we approximate this quantity with ηM1 ,

and make yet another sampling error. Again, as we cannot move this forward “directly” and use

Φ2

(
ηM1
)
, we approximate it with ηM2 making yet another sampling error. Running this reasoning

up to time T we can write the difference between the particle approximation and the truth as a

sum of one-step prediction errors. One then shows that the conditional expectation of ηMt given

particles at time t− 1 is the same as Φt

(
ηMt−1

)
. See also Del-Moral (2004) Ch. 7 for more on this.
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