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Abstract

This paper considers bootstrap methods for panel data models with �xed regressors. It is shown
that simple resampling methods (i.i.d., individual only or temporal only) are not always valid in
simple cases of interest, while a double resampling that combines resampling in both individual and
temporal dimensions is valid. This approach also permits to avoid multiples asymptotic theories
that may occur in large panel models. In particular, it is shown that this resampling method
provides valid inference in the one-way and two-way error component models and in the factor
models. Simulations con�rm these theoretical results.

JEL Classi�cation: C15, C23.

Keywords: Bootstrap, Panel Data Models.

�I am grateful to Benoit Perron and Silvia Gonçalves for helpful comments. All errors are mine. Finan-
cial support from the Department of Economics, Université de Montréal and CIREQ, is gratefully acknowledged.
Address for correspondance : Université de Montréal, Département de Sciences Economiques, C.P. 6128, succ.
Centre-Ville, Montréal, Qc H3C 3J7, Canada. E-mail : b.hounkannounon@umontreal.ca. 3J7, Canada. E-mail
b.hounkannounon@umontreal.ca.

1



1 Introduction

The true probability distribution of a test statistic is rarely known. Generally, its asymptotic law
is used as approximation of the true law. If the sample size is not large enough, the asymptotic
behavior of the statistics could lead to a poor approximation of the true one. Using bootstrap
methods, under some regularity conditions, it is possible to obtain a more accurate approximation
of the distribution of the test statistic. Original bootstrap procedure has been proposed by Efron
(1979) for statistical analysis of independent and identically distributed (i.i.d.) observations. It is a
powerful tool for approximating the distribution of complicated statistics based on i.i.d. data. There
is an extensive literature for the case of i.i.d. observations. Bickel & Freedman (1981) established
some asymptotic properties for bootstrap. Freedman (1981) analyzed the use of bootstrap for least
squares estimator in linear regression models.

In practice, observations are not i.i.d. Since Efron (1979) there is an extensive research to
extend bootstrap to statistical analysis of non i.i.d. data. Wild bootstrap is developed in Liu
(1988) following suggestions in Wu (1986) and Beran (1986) for independent but not identically
distributed data. Several bootstrap procedures have been proposed for time series. The two most
popular approaches are sieve bootstrap and block bootstrap. Sieve bootstrap attempts to model
the dependence using a parametric model. The idea behind it is to postulate a parametric form
for the data generating process, to estimate the parameters and to transform the model in order
to have i.i.d. elements to resample. The weakness of this approach is that results are sensitive
to model misspeci�cation and the attractive nonparametric feature of bootstrap is lost. On the
other hand, block bootstrap resamples blocks of consecutive observations. In this case, the user
is not obliged to specify a particular parametric model. For an overview of bootstrap methods
for dependent data, see Lahiri (2003). Application of bootstrap methods to several indices data
is an embryonic research �eld. The expression "several indices data" regroups : clustered data,
multilevel data, and panel data.

The term "panel data" refers to the pooling of observations on a cross-section of statistical units
over several periods. Because of their two dimensions (individual -or cross-sectional- and temporal),
panel data have the important advantage to allow to control for unobservable heterogeneity, which
is a systematic di¤erence across individuals or periods. For an overview about panel data models,
see for example Baltagi (1995) or Hsiao (2003). There is an abounding literature about asymptotic
theory for panel data models. Some recent developments treat of large panels, when temporal and
cross-sectional dimensions are both important. Paradoxically, literature about bootstrap for panel
data is rather restricted. In general, simulation results suggest that some resampling methods
work well in practice but theoretical results are rather limited or exposed with strong assumptions.
As previous references about bootstrap methods for panel models, it can be quoted Bellman et
al. (1989), Andersson & Karlsson (2001), Carvajal (2000), Kapetanios (2004), Focarelli (2005),
Everaert & Pozzi (2007) and Herwartz (2006; 2007). In error component models, Bellman et al.
(1989) uses bootstrap to correct bias after feasible generalized least squares. Andersson & Karlsson
(2001) presents bootstrap resampling methods for one-way error component model. For two-way
error component models, Carvajal (2000) evaluates by simulations, di¤erent bootstrap resampling
methods. Kapetanios (2004) presents theoretical results when cross-sectional dimension goes to
in�nity, under the assumption that cross-sectional vectors of regressors and errors terms are i.i.d..
This assumption does not permit time varying regressors or temporal aggregate shocks in errors
terms. Focarelli (2005) and Everaert & Pozzi (2007) uses bootstrap to reduce bias in dynamic panel
models with �xed e¤ects when T is �xed and N goes to in�nity, bias quoted by Nickell (1981).
Herwartz (2006 & 2007) deliver a bootstrap version to Breusch-Pagan test in panel data models
under cross-sectional dependence. Recently, Hounkannounon (2008) gives some theoretical results
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about bootstrap methods used with panel data models. Its theoretical results are about a model
without regressor and concern the sample mean. This paper aims to extend these results to linear
regression model. Various bootstrap resampling methods will be confronted with panel models
commonly used to evaluate their validity. The paper is organized as follows. In the second section,
di¤erent panel data models are presented. Section 3 presents �ve bootstrap resampling methods for
panel data. The fourth section presents theoretical results, analyzing validity of each resampling
method. In section 5, simulation results are presented and con�rm theoretical results. The sixth
section concludes.

2 Panel Data Models

It is practical to represent panel data as a rectangle. By convention, in this document, rows corre-
spond to the individuals and columns represent time periods. A panel dataset with N individuals
and T time periods is represented by a matrix Y of N rows and T columns. Y contains thus NT
elements. yit is i0s observation at period t:

Y
(N;T )

=

0BBBB@
y11 y12 ::: ::: y1T
y21 y22 ::: ::: y2T
::: ::: ::: ::: :::
::: ::: ::: :: :::
yN1 yN2 :: ::: yNT

1CCCCA
Consider the following linear model

yit = � + Vi� +Wt +Xit� + �it = Zit� + �it (2.1 )

�
(K;1)

=

0BB@
�
�

�

1CCA (2.2 )

Three kinds of variables are considered : cross-section varying variables Vi, time varying variable
Wt and double dimensions varying variables Xit. � is an unknown vector of parameters. Inference
will be about these parameters and consists in building con�dence intervals for each component �k
of �. Assumptions about �it de�ne di¤erent panel data models. The speci�cations of error terms
commonly used can be summarized by (2.3) under assumptions below.

�it = �i + ft + �iFt + "it (2.3 )

Assumptions A
A1 : (�1; �2; ::::::; �N ) � i:i:d:

�
0; �2�

�
, �2� 2 (0;1)

A2 : fftg is a stationary and strong �-mixing process1 with E (ft) = 0, 9 � 2 (0;1) :

E jftj2+� <1,
1X
j=1

� (j)�=(2+�) <1 , and V1f =
1X

h=�1
Cov (ft; ft+h) 2 (0;1)

A3 : (�1; �2; ::::::; �N ) � i:i:d:
�
0; �2�

�
, �2� 2 (0;1)

A4 : f"itgi=1:::N; t=1::T � i:i:d:
�
0; �2"

�
, �2" 2 (0;1)

1See Appendix 1 for de�nition of an �-mixing process.
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A5 : fFtg is a stationary and strong �-mixing process with E (Ft) = 0, 9 � 2 (0;1) :

E jFtj2+� <1,
1X
j=1

� (j)�=(2+�) <1 , and V1F =

1X
h=�1

Cov (Ft; Ft+h) 2 (0;1)

A6 : The �ve series are independent.

These assumptions can seem strong. They are made in order to have strong convergence and
to simplify demonstrations. Considering special cases with di¤erent combinations of processes in
(2.3.), gives the following panel data models : one-way error component model, two-way error
component model and factor model.

One-way ECM

�it = �i + "it (2.4)

�it = ft + "it (2.5)

Two speci�cations are considered. The term, one-way error component model (ECM), comes
from the structure of error terms : only one kind of heterogeneity, that is systematic di¤erences
across cross-sectional units or time periods, is taken into account. The speci�cation 2.4 (resp. 2.5)
allows to control unobservable individual (resp. temporal) heterogeneity. The speci�cation (2.4)
is called individual one-way ECM, (2.5) is temporal one-way ECM. It is important to emphasize
that here, unobservable heterogeneity is a random variable, not a parameter to be estimated. The
alternative is to use �xed e¤ects model in which heterogeneity must be estimated.

Two-way ECM

�it = �i + ft + "it (2.6 )

Two-way error component model allows to control for individual and temporal heterogeneity,
hence the term two-way. Like in one-way ECM, individual and temporal heterogeneities are random
variables. Classical papers on error component models include Balestra & Nerlove (1966), Fuller &
Battese (1974) and Mundlak (1978).

Factor Model

�it = �i + �iFt + "it (2.7 )

In (2.7), the di¤erence with one-way ECM, is the term �iFt. The product allows the common
factor Ft to have di¤erential e¤ects on cross-section units. This speci�cation is used by Bai & Ng
(2004), Moon & Perron (2004) and Phillips & Sul (2003). It is a way to introduce dependence
among cross-sectional units. An other way is to use spatial model in which, the structure of the
dependence can be related to geographic, economic or social distance (see Anselin (1988))2.

2Bootstrap methods studied in this paper do not take into account spatial dependence. Reader insterested by
resampling methods for spatial data, can see for example Lahiri (2003), chap. 12.
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3 Bootstrap Methods

This section presents the bootstrap methodology and �ve ways to resample panel data.

Bootstrap Methodology

From initial data (Y;X) , create pseudo data (Y �; X�) by resampling with replacement elements
of (Y;X) : This operation must be repeated B times in order to have B + 1 pseudo-samples :
fY �b ; X�

b gb=1::B+1. Statistics are computed with these pseudo-samples in order to make inference. In
this paper, inference is about � and consists in building con�dence intervals and testing hypothesis
for each parameter of the element of the vector �. There are two main bootstrap approaches with
regression models :the residual-based bootstrap an the paired bootstrap. The paired bootstrap
resamples dependent variable and regressors whereas residuals resamples �rst step residuals to
compute pseudo values of the dependent variable. This paper analyzes only the residual-based
bootstrap which steps are the followings :

Step 1 : Run pooling regression to obtain OLS estimator b� and the residuals b�it
b� = � eZ= eZ��1 eZ= eY
b�it = yit � Zitb�

Step 2 : Rescale the residuals in order to have better properties in small samples.

uit =
NT

NT �K b�it
By OLS properties, the residuals have mean equal to zero : centering is not necessary. The

N � T matrix of rescaled residuals is noted U .

Step 3 : Use a resampling method to create pseudo-sample of residuals U�:

U = fuitg
resampling! U� = fu�itg

Use the pseudo- residuals to pseudo-values of the dependent variable.

y�it = Zitb� + u�it
Run pooling regression with (Y �; X)

b�� = � eZ= eZ��1 eZ= eY �
Step 4 : Repeat step 3 B times in order to have B + 1 realizations of fY �; Xg and b��: These

realizations are quoted fY �b ; Xgb=1::B+1and
nb��bo

b=1::B+1
:

The probability measure induced by the resampling method conditionally on U is noted P �.
E� () and V ar� () are respectively expectation and variance associated to P �. In this paper, The
resampling methods used to compute pseudo-samples are exposed below.
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Iid Bootstrap

In this document i.i.d bootstrap refers to original bootstrap as de�ned by Efron (1979). It was
designed for one dimensional data, but it�s easy to adapt it to panel data. For N � T matrix U ,
i.i.d. resampling is the operation of constructing a N � T matrix U� where each element u�it is
selected with replacement from Y: Conditionally on U , all the elements of U� are independent and
identically distributed. There is a probability 1=NT that each u�it is one of the NT elements uit
of U:

Individual Bootstrap

For a N � T matrix U , individual resampling is the operation of constructing a N � T matrix
U� with rows obtained by resampling with replacement rows of U: Conditionally on U , the rows of
U� are independent and identically distributed. Contrary to i.i.d. bootstrap case, u�it cannot take
any value. u�it can just take one of the N values fuitgi=1;:::N .

Temporal Bootstrap

For N � T matrix U , temporal resampling is the operation of constructing a N � T matrix
Y � with columns obtained by resampling with replacement columns of Y: Conditionally on U , the
columns of U� are independent and identically distributed. u�it can just take one of the T values
fuitgt=1;:::T .

Block Bootstrap

Block bootstrap for panel data is a direct accommodation of non-overlapping block bootstrap
for time series, due to Carlstein (1986). The idea is to resample in temporal dimension, but
not single period like in temporal bootstrap case, but blocks of consecutive periods in order to
capture temporal dependence. Assume that T = Kl, with l the length of a block, then there are
K non-overlapping blocks. For N � T matrix Y , block bootstrap resampling is the operation of
constructing a N � T matrix U� with columns obtained by resampling with replacement the K
blocks of columns of U: Note that temporal bootstrap is a special case of block bootstrap, when
l = 1: Moving block bootstrap (Kunsch (1989), Liu & Singh (1992)), circular block bootstrap
(Politis & Romano (1992)) and stationary block bootstrap (Politis & Romano (1994)) can also be
accommodated to panel data.

Double Resampling Bootstrap

For a N � T matrix Y , double resampling is the operation of construction a N � T matrix U��
with columns and rows obtained by resampling columns and rows of U . Two schemes are explored.
The �rst scheme is a combination of individual and temporal bootstrap. The second scheme is a
combination of individual and block bootstrap. Carvajal (2000) and Kapetanios (2004) improve this
resampling method by Monte Carlo simulations, but give no theoretical support. Double stars ��
are used to distinguish estimator, probability measure, expectation and variance induced by double
resampling.
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4 Theoretical Results

This section presents theoretical results about resampling methods exposed in section 3, using
models speci�ed in section 2.

Multiple Asymptotics

In the study of asymptotic distributions for panel data, there are many possibilities. One index
can be �xed and the other goes to in�nity. In the second case, how N and T go to in�nity, is not
always without consequence. Hsiao (2003 p. 296) distinguishes three approaches : sequential limit,
diagonal path limit and joint limit. A sequential limit is obtained when an index is �xed and the
other passes to in�nity, to have intermediate result. The �nal result is obtained by passing the
�xed index to in�nity. In case of diagonal path limit, N and T pass to in�nity along a speci�c path,
for example T = T (N) and N ! 1: With joint limit, N and T pass to in�nity simultaneously
without a speci�c restrictions. In some times it can be necessary to control relative expansion rate
of N and T . It is obvious that joint limit implies diagonal path limit. For equivalence conditions
between sequential and joint limits, see Phillips & Moon (1999). In practice, it is not always clear
how to choose among these multiple asymptotic distributions which may be di¤erent.

Assumptions B (Regressors)
B1 : The regressors are �xed.
B2 : (Rank condition) : The K �K matrix eZ= eZ is not singular.
B3 : eZ= eZ

NT
!

NT!1
Q

(K;K)
> 0 (4.1 )

B4 :

Z
=
Z

N
!

N!1
Q (4.2 )

B5 :

Z=Z

T
!

T!1
Q (4.3 )

B6 :


 > 0 (4.4 )

In addition to these assumptions, some Lindeberg conditions will be appropriately assumed,
depending on the case of analysis. Assumption A4 implies that time varying regressors are excluded.
Assumptions A5 excludes cross-section varying regressors.

Table 1 summarizes asymptotic distributions for the di¤erent panel models. For i.i.d. panel
model, NT ! 1 summarizes three cases of asymptotic : N is �xed and T goes to in�nity,
T is �xed and N goes to in�nity, and �nally N and T pass to in�nity simultaneously. Two
asymptotic theories are available for one-way ECM. In the case of two-way ECM, N and T must
go to in�nity. The relative convergence rate between the two indexes, � de�nes a continuum
of asymptotic distributions. Finally, factor has a unique asymptotic distribution, when the two
dimensions go to in�nity. Details about these convergences are exposed in appendix 1.
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Model Asymptotic distribution V ariance
(
)

Individual p
N
�b� � �� =)

N!1
N (0;
) �2�

�
Q�1QQ�1

�
+ �2"

T Q
�1

One� way

ECM
p
N
�b� � �� =)

N;T!1
N (0;
) �2�

�
Q�1QQ�1

�
Temporal p

T
�b� � �� =)

T!1
N (0;
) �2f

�
Q�1QQ�1

�
One� way �2"

N Q
�1

ECM
p
T
�b� � �� =)

N;T!1
N (0;
) �2f

�
Q�1QQ�1

�

Two� way
p
N
�b� � �� =)

N;T!1
N
T
!�2[0;1)

N (0;
) �2�
�
Q�1QQ�1

�
+ �:�1f

ECM
p
T
�b� � �� =)

N;T!1
N
T
!1

N (0;
) �1f

Factor
p
N
�b� � �� =)

N;T!1
N (0;
) �2�

�
Q�1QQ�1

�
model

Table 1 : Asymptotic distributions
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Bootstrap Con�dence Intervals

In the literature, there are several bootstrap con�dence interval. The methods commonly used
are percentile interval and percentile-t interval.

Bootstrap Percentile Interval
With each pseudo-sample Y �b , compute b��b and the K statistics

rb�k =
b�b�k � b�k (4.5 )

The empirical distribution of these (B + 1) realizations is :

bR�k (x) = 1

B + 1

B+1X
b=1

I
�
rb�k � x

�
(4.6 )

The percentile-t con�dence interval of level (1� �) for the parameter b�k is:
CI�1��;k =

hb�k + r�k;�
2
; b�k + r�k;1��

2

i
(4.7 )

where r�k;�=2 and r
�
k;1��=2 are respectively is the lower empirical �=2-percentage point and

(1� �=2)-percentage point of bR�k: B must be chosen so that � (B + 1) =2 is an integer. Using
equality 4.5, 4.7 becomes :

CI�1��;k =
hb��k;�

2
; b��k;1��

2

i
(4.9 )

where b��k;�=2 and b��k;1��=2 are respectively is the lower empirical �=2-percentage point and (1� �=2)-
percentage point of the empirical distribution of

nb��k;bo
b=1::B+1

:

Bootstrap Percentile-t Interval
With each pseudo-sample Y �b , compute b��b and the K statistics

tb�k =
b�b�k � b�krbV ar� �b�b�k � (4.10 )

In the denominator of (4.10), there is an estimator of the bootstrap-variance that must be
computed for every bootstrap resample. The empirical distribution of the (B + 1) realizations of
tb�k is :

bF �k (x) = 1

B + 1

B+1X
b=1

I
�
tb�k � x

�
(4.11 )

The percentile-t con�dence interval of level (1� �) for the parameter b�k is:
CI�1��;k =

"b�k �rV ar� �b�b�k �:t�k;1��
2
; b�k �rV ar� �b�b�k �:t�k;�

2

#
(4.12 )

The strength of percentile-t is that it permits theoretical demonstrations about asymptotic re�ne-
ments.
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Bootstrap Consistency

There are several ways to prove consistency of a resampling method. For an overview, see
Shao & Tu (1995, chap. 3). The method commonly used is to show that the distance between
the cumulative distribution function on the classical estimator and the bootstrap estimator goes
to zero when the sample grows-up. Di¤erent notions of distance can be used : sup-norm, Mallow�s
distance.... Sup-norm is the commonly used. The notations used for one dimension data must be
to panel data, in order to be more formal. Because of multiple asymptotic distributions, there are
several consistency de�nitions. The presentation takes into account percentile con�dence interval.
Similar de�nitions can be formulated for percentile-t con�dence interval.

A bootstrap method is said consistent for � if :

sup
x2RK

���P � �pNT �b�� � b�� � x�� P �pNT �b� � �� � x���� P!
NT!1

0 (4.13 )

or
sup
x2RK

���P � �pN �b�� � b�� � x�� P �pN �b� � �� � x���� P!
NT!1

0 (4.14 )

or
sup
x2RK

���P � �pT �b�� � b�� � x�� P �pT �b� � �� � x���� P!
NT!1

0 (4.15 )

De�nitions 4.12, 4.13 and 4.14 are given with convergence in probability ( P!). This case implies
a weak consistency. The case of almost surely (a:s.) convergence provides a strong consistency.
These de�nitions of consistency does not require that the bootstrap estimator or the classical
estimator has asymptotic distribution. The idea behind it, is the mimic analysis : when the sample
grows, the bootstrap estimator mimics very well the behavior of the classical estimator. In the
special when the sample mean asymptotic distribution is available, consistency can be established
by showing that bootstrap-sample mean has the same distribution. The next proposition expresses
this idea.

Proposition 1
Assume

p
NT

�b� � �� =) L and
p
NT

�b�� � b�� �
=) L�. If L�and L are identical and

continuous, then

sup
x2RK

���P � �pNT �b�� � b�� � x�� P �pNT �b� � �� � x���� P!
NT!1

0

Proof. The fact that b� and b�� have the same asymptotic distribution, implies that jP � (::)� P (::)j
converges to zero. Under continuity assumption, the uniform convergence is given by Pólya theorem
(Pólya (1920) or Ser�ing (1980), p. 18)

Similar propositions similar can be formulated for de�nitions 4.13 and 4.14. Using Proposition
1, the methodology adopted in this document is, for each resampling method, to �nd the asymptotic
distribution of the bootstrap-estimator b��. Comparing theses distributions with those in Table 1,
permits to �nd consistent and inconsistent bootstrap resampling methods for each panel model.
Consistent resampling methods can be used to build con�dence intervals.
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Remarks
1 - The de�nitions of consistency are given for the vector of parameters, but con�dence intervals

are given for each component of this vector.
2 - The given de�nitions of consistency are appropriate to build percentile con�dence interval.

Similar de�nitions can be given using tb�k and its classical counterpart. In this case, for each para-
meter �k, the percentile-t con�dence interval is valid if on the de�nition given for consistency,.we
must have : bV ar� �b�b�k � P ��! V ar�

�b�b�k � (4.16 )

3 - Consistency in an asymptotic property. It must be taken in mind that bootstrap procedure
has been originally designed for small samples and its validity depend of the fact that the bootstrap
data mimic as well as possible the behavior of the original data. In this paper, this approach will
be called mimic analysis. Residual-based bootstrap estimator mimics very well the behavior the
classical asymptotic estimator if the bootstraped residuals mimic very well the behavior of the
original error terms.

In the following for each bootstrap resampling method, the mimic analysis is presented followed
by the consistency analysis.

I.i.d. Bootstrap

In a mimic analysis, it can be said that iid resampling method does not take into account the
structure of dependence of the error terms. That leads to inconsistent estimator for all the panel
model speci�cations.

Model Asymptotic distribution V ariance (
) Consistency

Individual
p
NT

�b�� � b�� �
=)
N!1

N (0;
)
�
�2� + �

2
"

�
Q�1

One� way Nop
NT

�b�� � b�� �
=)

N;T!1
N (0;
)

�
�2� + �

2
"

�
Q�1

ECM

Temporal
p
NT

�b�� � b�� �
=)
T!1

N (0;
)
�
�2f + �

2
"

�
Q�1

No
One� way p

NT
�b�� � b�� �

=)
N;T!1

N (0;
)
�
�2f + �

2
"

�
Q�1

ECM

Two� way
p
NT

�b�� � b�� �
=)

N;T!1
N (0;
)

�
�2� + �

2
f + �

2
"

�
Q�1 No

ECM

Factor
p
NT

�b�� � b�� �
=)

N;T!1
N (0;
)

�
�2� + �

2
��

2
F + �

2
"

�
Q�1 No

model
Table 2 : Asymptotic distributions with i.i.d. bootstrap
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Individual Bootstrap

U = b�+ bf + b�= bF + b" ; U�ind = b�� + bf + b��= bF + [b"col]�

U�ind � E� (U�) = (b�� � b�) + �b��= � b�=� bF + ([b"row]� � b") (4.17 )

Model Asymptotic distribution V ariance Consistency
(
)

Individual
p
N
�b�� � b�� �

=)
N!1

N (0;
) �2�
�
Q�1QQ�1

�
+ �2"

T Q
�1

Y es

One� way
p
N
�b�� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
ECM

Temporal
p
T
�b�� � b�� �

=)
T!1

N (0;
) �2f
�
Q�1QQ�1

�
+ �2"

N Q
�1

No
One� way p

T
�b�� � b�� �

=)
N;T!1

N (0;
) �2f
�
Q�1QQ�1

�
ECM

Two� way
p
N
�b�� � b�� �

=)
N!1

N (0;
) �2�
�
Q�1QQ�1

�
+�2"
T Q

�1

No

ECM
p
N
�b�� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�

Factor
p
N
�b�� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
Y es

model
Table 3 : Asymptotic distribution with individual bootstrap
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Temporal Bootstrap

U�temp � E� (U�) =
� bf� � bf�+ b�= � bF � � bF�+ ([b"col]� � b") (4.18 )

Model Asymptotic distribution V ariance Consistency
(
)

Individual
p
NT

�b�� � b�� �
=)
T!1

N (0;
) �2"Q
�1

One� way Nop
NT

�b�� � b�� �
=)

N;T!1
N (0;
) �2"Q

�1

ECM

Temporal
p
NT

�b�� � b�� �
=)
T!1

N (0;
) �2f
�
Q�1QQ�1

�
No if

+�2"
N Q

�1 ft is
One� way p

NT
�b�� � b�� �

=)
N;T!1

N (0;
) �2f
�
Q�1QQ�1

�
correlated

ECM

Two� way
p
T
�b�� � b�� �

=)
T!1

N (0;
) �2f
�
Q�1QQ�1

�
+�2"
N Q

�1

No

ECM
p
T
�b�� � b�� �

=)
N;T!1

N (0;
) �2f
�
Q�1QQ�1

�

Factor
p
T
�b�� � b�� m:s:�!

N;T!1
0 No

model
Table 4 : Asymptotic distributions with temporal bootstrap
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Block Bootstrap

U�bl � E� (U�bl) =
� bf�bl � bf�+ b�= � bF �bl � bF�+ ([b"col]�bl � b")

Model Asymptotic distribution V ariance Consistency
(
)

Individual
p
NT

�b�� � b�� �
=)
T!1

N (0;
) �2"Q
�1

One� way Nop
NT

�b�� � b�� �
=)

N;T!1
N (0;
) �2"Q

�1

ECM

Temporal
p
NT

�b�� � b�� �
=)
T!1

N (0;
) �1f +
�2"
N Q

�1

Y es
One� way p

NT
�b�� � b�� �

=)
N;T!1

N (0;
) �1f

ECM

Two� way
p
T
�b�� � b�� �

=)
T!1

N (0;
) �1f +
�2"
N Q

�1

No

ECM
p
T
�b�� � b�� �

=)
N;T!1

N (0;
) �1f

Factor
p
T
�b�� � b�� m:s:�!

N;T!1
0 No

model
Table 4 : Asymptotic distributions with block bootstrap

14



Double Resampling Bootstrap

U�� = b�� + bf� + b��= bF � + b"��

U�� � E�� (U��) = (b�� � b�) + � bf� � bf�+ �b��= � b�=�� bF � � bF�+ (b"�� � b")
Model Asymptotic distribution V ariance Consistency

(
)

Individual

One� way
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
Y es

ECM

Temporal

One� way
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �2f
�
Q�1QQ�1

�
Y es

ECM

Two� way
p
N
�b��� � b�� �

=)
N;T!1
N
T
!�2[0;1)

N (0;
) �2�
�
Q�1QQ�1

�
No if

+��2f
�
Q�1QQ�1

�
ft is

ECM
p
T
�b��� � b�� �

=)
N;T!1
N
T
!1

N (0;
) �2f
�
Q�1QQ�1

�
correlated

Factor
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
Y es

model
Table 6 : Asymptotic distributions with double resampling bootstrap : scheme 1
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U��bl � E�� (U��bl ) = (b�� � b�) + � bf�bl � bf�+ �b��= � b�=�� bF �bl � bF�+ (b"��bl � b") (4.21 )

Model Asymptotic distribution V ariance Consistency
(
)

Individual

One� way
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
Y es

ECM

Temporal

One� way
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �1f Y es

ECM

Two� way
p
N
�b��� � b�� �

=)
N;T!1
N
T
!�2[0;1)

N (0;
) �2�
�
Q�1QQ�1

�
+ ��1f

Y es

ECM
p
T
�b��� � b�� �

=)
N;T!1
N
T
!1

N (0;
) �1f

Factor
p
N
�b��� � b�� �

=)
N;T!1

N (0;
) �2�
�
Q�1QQ�1

�
Y es

model
Table 7 : Asymptotic distributions with double resampling bootstrap : scheme 2

5 Simulations

Data Generating Process for errors is the following : �i � i:i:d:N (0; 1) , �i � i:i:d:N (0; 1) ;
ft � i:i:d:N (0; 1), "it � i:i:d:N (0; 1) ; Ft = �Ft�1 + �t, �t � i:i:d:N

�
0;
�
1� �2

��
� = 0 and � =

0:5: Data Generating Process for data for regressors is the following : � = 1; Ui � i:i:d:N (1; 1),
Wt � i:i:d:N (1; 1) ; Xit � i:i:d:N (1; 1) : For each bootstrap resampling method, 999 Replications
and 1000 Simulations are used. Six sample sizes are considered : (N;T ) = (30; 30) ; (50; 50) ;
(100; 100), (50; 10) and (10; 50) : Tables 7, 8, 9, 10 and 11 give rejection rates, for theoretical level
� = 5%:
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I.i.d. Ind. Temp. Block 2Res-1 2Res-2

� 0.480 0.076 0.620 0.676 0.070 0.065
Individual � 0.656 0.077 0.740 0.774 0.006 0.064
One-way  0.007 0.059 0.067 0.098 0.069 0.015
ECM � 0.046 0.053 0.161 0.420 0.049 0.059

Temporal � 0.619 0.716 0.197 0.146 0.186 0.123
One-way � 0.007 0.080 0.063 0.210 0.009 0.003
ECM  0.619 0.733 0.065 0.080 0.060 0.058
� = 0:5 � 0.059 0.165 0.063 0.058 0.064 0.053

� 0.554 0.183 0.202 0.277 0.062 0.096
Two-way � 0.527 0.077 0.705 0.770 0.065 0.053
ECM  0.548 0.737 0.069 0.095 0.068 0.078
� = 0 � 0.051 0.118 0.128 0.292 0.057 0.065

� 0.562 0.184 0.185 0.377 0.046 0.180
Two-way � 0.560 0.074 0.748 0.724 0.069 0.058
ECM  0.535 0.721 0.071 0.079 0.067 0.068
� = 0:5 � 0.053 0.115 0.107 0.295 0.060 0.065

� 0.430 0.063 0.543 0.588 0.048 0.046
Factor � 0.574 0.063 0.668 0.664 0.064 0.041
model  0.021 0.060 0.071 0.086 0.009 0.014

� 0.056 0.060 0.127 0.287 0.059 0.060
Table 7 : Simulations with (N ;T )=(30;30)
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I.i.d. Ind. Temp. Block 2Res-1 2Res-2

� 0.569 0.069 0.685 0.739 0.062 0.042
Individual � 0.690 0.067 0.775 0.798 0.068 0.063
One-way  0.008 0.057 0.061 0.077 0.009 0.010
ECM � 0.060 0.063 0.184 0.391 0.061 0.048

� 0.696 0.781 0.168 0.130 0.160 0.098
Temporal � 0.010 0.076 0.072 0.203 0.013 0.007
One-way  0.687 0.773 0.057 0.070 0.053 0.055
ECM � 0.050 0.160 0.051 0.066 0.050 0.058

� 0.681 0.196 0.202 0.242 0.056 0.099
Two-way � 0.609 0.066 0.761 0.794 0.058 0.069
ECM  0.636 0.781 0.060 0.072 0.059 0.068
� = 0 � 0.060 0.112 0.113 0.282 0.060 0.064

� 0.636 0.174 0.167 0.343 0.048 0.160
Two-way � 0.640 0.060 0.777 0.797 0.058 0.066
ECM  0.653 0.794 0.051 0.078 0.051 0.068
� = 0:5 � 0.050 0.136 0.122 0.278 0.058 0.050

� 0.513 0.061 0.603 0.618 0.057 0.052
Factor � 0.670 0.060 0.745 0.731 0.057 0.055
model  0.022 0.066 0.062 0.074 0.012 0.011

� 0.058 0.057 0.128 0.290 0.058 0.061
Table 8 : Simulations with (N ;T )=(50;50)
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I.i.d. Ind. Temp. Block 2Res-1 2Res-2

Individual � 0.709 0.057 0.794 0.801 0.049 0.047
One-way � 0.782 0.064 0.843 0.861 0.063 0.045
ECM  0.006 0.045 0.049 0.063 0.005 0.005

� 0.041 0.046 0.160 0.377 0.042 0.043
Temporal � 0.796 0.849 0.196 0.299 0.188 0.278
One-way � 0.009 0.051 0.048 0.453 0.009 0.002
ECM  0.794 0.861 0.051 0.062 0.042 0.062
� = 0:5 � 0.057 0.160 0.058 0.056 0.055 0.053

� 0.737 0.147 0.154 0.315 0.047 0.142
Two-way � 0.735 0.057 0.850 0.875 0.054 0.049
ECM  0.745 0.852 0.062 0.075 0.061 0.067
� = 0 � 0.047 0.112 0.112 0.277 0.048 0.058

� 0.789 0.247 0.267 0.459 0.109 0.295
Two-way � 0.751 0.070 0.852 0.887 0.073 0.043
ECM  0.712 0.830 0.048 0.072 0.047 0.056
� = 0:5 � 0.040 0.103 0.107 0.294 0.049 0.057

� 0.649 0.051 0.726 0.719 0.043 0.050
Factor � 0.744 0.052 0.796 0.800 0.049 0.045
model  0.031 0.056 0.056 0.066 0.009 0.010

� 0.046 0.050 0.107 0.267 0.052 0.056
Table 9 : Simulations with (N ;T )=(100;100)

19



I.i.d. Ind. Temp. Block 2Res-1 2Res-2

Individual � 0.242 0.054 0.458 0.586 0.035 0.044
One-way � 0.402 0.051 0.584 0.684 0.039 0.040
ECM  0.008 0.059 0.109 0.186 0.013 0.021

� 0.043 0.041 0.163 0.424 0.044 0.061
Temporal � 0.713 0.777 0.283 0.420 0.266 0.395
One-way � 0.011 0.062 0.089 0.310 0.008 0.018
ECM  0.675 0.748 0.120 0.243 0.110 0.225

� 0.054 0.133 0.079 0.145 0.062 0.090

� 0.561 0.410 0.145 0.295 0.091 0.195
Two-way � 0.329 0.062 0.572 0.688 0.048 0.034
ECM  0.667 0.781 0.116 0.190 0.117 0.179
� = 0 � 0.037 0.106 0.148 0.372 0.045 0.067

� 0.610 0.483 0.267 0.420 0.192 0.286
Two-way � 0.332 0.058 0.597 0.669 0.053 0.048
ECM  0.642 0.777 0.107 0.191 0.099 0.179
� = 0:5 � 0.056 0.097 0.161 0.351 0.059 0.063

� 0.215 0.055 0.404 0.554 0.039 0.031
Factor � 0.363 0.053 0.543 0.639 0.041 0.045
model  0.030 0.068 0.114 0.185 0.015 0.023

� 0.049 0.051 0.140 0.406 0.046 0.051
Table 10 : Simulations with (N ;T )=(50;10)
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I.i.d. Ind. Temp. Block 2Res-1 2Res-2

Individual � 0.600 0.111 0.708 0.731 0.106 0.099
One-way � 0.730 0.104 0.791 0.789 0.102 0.102
ECM  0.008 0.093 0.065 0.054 0.008 0.006

� 0.056 0.076 0.137 0.345 0.060 0.065

Temporal � 0.386 0.573 0.152 0.134 0.130 0.084
One-way � 0.012 0.130 0.064 0.186 0.014 0.006
ECM  0.395 0.578 0.060 0.065 0.048 0.060

� 0.038 0.178 0.043 0.042 0.041 0.041
� 0.573 0.140 0.421 0.440 0.078 0.093

Two-way � 0.652 0.109 0.781 0.793 0.108 0.101
ECM  0.340 0.578 0.057 0.078 0.051 0.069
� = 0 � 0.062 0.169 0.117 0.222 0.061 0.060

� 0.601 0.173 0.458 0.473 0.116 0.133
Two-way � 0.673 0.126 0.805 0.805 0.124 0.115
ECM  0.326 0.575 0.058 0.081 0.044 0.062
� = 0:5 � 0.054 0.149 0.098 0.230 0.064 0.055

� 0.529 0.126 0.612 0.627 0.105 0.090
Factor � 0.647 0.122 0.705 0.734 0.107 0.105
model  0.032 0.095 0.054 0.074 0.005 0.012

� 0.046 0.061 0.090 0.249 0.053 0.060
Table 11 : Simulations with (N ;T )=(10;50)
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6 Conclusion

This paper considers the issue of bootstrap methods for panel data models. Four speci�cations
of panel data have been considered, namely, individual one-way error component model, temporal
one-way error component model, two-way error component model and lastly factor model. Five
bootstrap methods are explored in order to make inference about vector of parameters.It is demon-
strated that simple resampling methods (i.i.d., individual only or temporal only) are not valid
in simple cases of interest, while double resampling that combines resampling in both individual
and temporal dimensions is valid in these situations. Simulations con�rm these results. A logical
follow-up of this paper is to extend the results to dymamic panel models.
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7 APPENDIX

Appendix 1 :
Matrix Notations

Error terms :

U
(N;T )

=

0BBBB@
U11 U12 ::: ::: U1T
U21 U22 ::: ::: U2T
::: ::: ::: ::: :::
::: ::: ::: :: :::
UN1 UN2 :: ::: UNT

1CCCCA =

0BBBB@
U(1)
U(2)
:::
:::
U(N)

1CCCCA
eU

(NT;1)
=
�
U
=
(1) U

=
(2) ::: ::: U

=
(N)

�=
Regressors :

eZ
(NT;K)

=

0BBBB@
Z(11)
Z(12)
:::
:::

Z(NT )

1CCCCA
Z(i;t)
(1;K)

=
�
Z
(1)
(i;t) Z

(2)
(i;t) :::: Z

(K)
(i;t)

�
Z(i)
(T;K)

=
�
Z(i;1) Z(i;2) ::: Z(i;T )

�=
; Z(t)
(N;K)

=
�
Z(1;t) Z(2;t) ::: Z(N;t)

�=
Subbar is put for aggeegation in individual dimension. Upbar refers to aggregation in temporal

dimension.

Z(i)
(1;K)

=
1

T

TX
t=1

Z(it) ; Z(t)
(1;K)

=
1

N

NX
i=1

Z(it)

Z
(N;K)

=
�
Z(1) Z(2) ::: Z(N)

�=
; Z

(T;K)

=
�
Z(1) Z(2) ::: Z(T )

�=
;
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Mixing Process

De�nition
Let fftgt2Z be a sequence of random variables. The strong mixing or �-mixing coe¢ cient of

fftgt2Z is de�ned as :

� (j) = sup fjP (A \B)� P (A)P (B)jg ; j 2 N
with A 2 � hfft : t � kgi ; B 2 � hfft : t � k + j + 1gi ; k 2 Z

fftgt2Z is called strongly mixing (or �-mixing ) if � (j)! 0 as j !1:

Appendix 2 : Classical Asymptotic Theory

Individual One-way ECM

�i =

 
1

T

TX
t=1

Z
=
(it)Eit

!
=
1

T
Z
=
(i)E(i)

E (�i) = 0

V ar (�i) =
1

T 2
Z
=
(i)

h
V ar

�
E
=
(i)

�i
Z(i)h

V ar
�
E
=
(i)

�i
= �2"IT + �

2
�JT

where IT is (T � T ) identity matrix, and JT is (T � T ) matrix with each element equal to one. �i
are independent. Lindeberg condition can be written :

lim
N!1

max
1�i�N

Z
=
(i)Z(i)

�
Z
=
Z
��1

= 0

1

N

NX
i=1

V ar (�i) =
1

N

NX
i=1

1

T 2
Z
=
(i)

h
V ar

�
E
=
(i)

�i
Z(i) = �

2
"

eZ= eZ
N

1

T 2
+ �2�

Z
=
Z

N

P!
N
�2"
1

T
Q+ �2�Q

Apply Lindberg-Feller CLT to (�1; �2; ::::::; �N ) :

1p
N

NX
i=1

�i =)
NT!1

N

�
0; �2"

1

T
Q+ �2�Q

�
p
N
�b� � �� =)

N!1
N (0;
)

with


 = Q�1�Q�1 = �2�
�
Q�1QQ�1

�
+
�2"
T
Q�1
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Temporal One-way ECM

Two-way ECM

a)NT ! � 2 [0;1)

p
N
�b� � �� =  eZ= eZ

NT

!�1 "
1p
N

NX
i=1

Z
=
(i)�i +

p
Np
T

1p
T

TX
t=1

Z
=
(t)ft +

1p
T

 
1p
NT

NX
i=1

TX
t=1

Z
=
(it)"it

!#

1p
T

 
1p
NT

NX
i=1

TX
t=1

Z
=
(it)"it

!
m:s:!
T!1

0

1p
N
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The result follows.

Appendix 3 : Iid Bootstrap

Proposition 2 : CLT for i.i.d. bootstrap
Under assumptions A and B, and appropriate Lindeberg conditions, if the bootstrap-variance of
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By Lindberg-Feller CLT,
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Appendix 4 : Individual Bootstrap

Proposition 3 : CLT for individual bootstrap
Under assumptions A and B, and appropriate Lindeberg conditions,
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Appendix 5 : Temporal Bootstrap
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Proposition 4 : CLT for temporal bootstrap
Under assumptions A and B, and appropriate Lindeberg conditions,
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Demonstrations are similar to individual bootstrap case.

Appendix 6 : Block Bootstrap

Appendix 7 : Double Resampling Bootstrap
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