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Abstract

The unit root power envelope is used both as a benchmark and as a mechanism

for generating feasible unit root tests, via quasi-differencing. This paper derives an

explicit representation for the envelope, via direct saddlepoint expansions for the

inversion formulae for both the null and alternative distributions of the set of point

optimal tests. It is shown to be both more accurate and computationally efficient than

the current partial sum based approximations to limiting representations in terms of

stochastic integrals. Accuracy is demonstrated through a sequence of experiments

and efficiency via application to find the efficient detrending parameter in models

with broken trends.



1 Introduction

The unit root power envelope, i.e. the set of powers of point optimal tests, serves

two vital roles. First, in the absence of a uniformly most powerful test of a unit root

every proposed feasible test must have its power characteristics compared with the

envelope. Second, in the presence of deterministic components, the Quasi-Differenced

(QD) Dickey-Fuller tests, introduced in Elliott, Rothenberg and Stock (1996) rely on

our ability to calculate the point at which the envelope reaches 0.5. For sample size

T, this paper provides a formal O(T−1) saddlepoint approximation for both the size

and power of point optimal unit root tests.

The power of unit root tests is known to be sensitive to the precise specification

of any deterministic component in the model, see for example Durlauf and Phillips

(1988), Perron (1989), Zivot and Andrews (1992), Leybourne, Mills and Newbold

(1998) and Phillips and Xiao (1998, §4), Perron and Rodríguez (2003) and Harris,

Harvey, Leybourne and Taylor (2007). In the presence of such model heterogeneity,

to both objectively assess the performance of feasible tests and provide new QD-based

tests requires a method which is both efficient and accurate. Below the Saddlepoint

approximation is seen to achieve both.

Ever since the pioneering work of Phillips (1987a, 1987b) the modus operandi of

papers in this area has been, for any given test, to characterize the asymptotic rep-

resentation for the statistic itself. This is usually in terms of functionals of Brownian

motion and under alternatives local to the null hypothesis. Evaluation of power is

then achieved via Monte Carlo simulation either of partial sum approximations to

stochastic integrals or by direct simulation of the statistic. Exceptions are the nu-

merical inversions of asymptotic inversion formulae by Nabeya and Tanaka (1990)

and Juhl and Xiao (2003) or the closed form results of Abadir (1993) and approxi-

mations of Larsson (1998). The latter two are available only in the special case of no

deterministic component, while the former work applies only for the cases of a linear

trend and/or constant. Here, the approximation may be used for any deterministic

specification, unlike any of these methods.

This paper returns to the original characterization of unit root tests in the sem-

inal paper of Dickey and Fuller (1979). There the “Dickey-Fuller” statistics were
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represented via an infinite sum of weighted chi-square random variables. Utilizing

that approach here we are able to both write down inversion formulae for both the

size and the power of any point optimal test and give an explicit asymptotic repre-

sentation, via a Saddlepoint expansion. Using methods developed in Phillips (1978),

Lugannani and Rice (1980), Daniels (1987), Jensen (1992), Lieberman (1994) and

Marsh (1998), asymptotic size and power can be expressed as Gaussian probabilities

at a quantity which may be instantly computed. Numerical evidence establishes that

the proposed characterizations are much more accurate than relying upon partial

sum approximations to limiting stochastic integrals and therefore, by implication,

other approximations of those probabilities. Moreover, to illustrate computational

efficiency, the approximation is used to evaluate the efficient QD parameter in set of

broken trend models of Harris, Harvey, Leyboune and Taylor (2007). This was accom-

plished in a fraction of the time required for the equivalent Monte Carlo experiment,

while none of the other techniques are available for these models.

The plan for the paper is as follows. The next section derives explicit inversions

for the size and power of point optimal tests. Section 3 derives Saddlepoint approx-

imations to these and compares the resulting asymptotic approximation with that

based on partial sum approximations. Following the conclusions and references an

appendix contains all proofs as well as tables used in the numerical evaluations.

2 Inversion Formulae for the Power Envelope

In common with the vast majority of the literature, the unit root problem is considered

within the context of the following equations which specify the generation of data

(yt)
T
t=1, via

i) : yt = x
′
tβ + ut

ii) : ut = ρut−1 + ηt (1)

iii) : ηt = φ(l)εt .

In (1) xt is a k × 1 deterministic regressor, β a k × 1 unknown parameter, φ(l) a lag

polynomial, of degree m, with roots lying outside the unit circle and an error process
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(εt)
T
t=1 , which here will be assumed to be independent and identically distributed

with zero mean and variance σ2. To proceed define the following vectors and matrices;

y = (y1, .., yT )
′ and ε = (ε1, .., εT )

′, and let X = (x1, x2, ..., xT )
′ and β = (β1, ..., βk)

′ .

Now let L(j) define a lower triangular matrix with 1
′

s on the jth lower diagonal and

0′s elsewhere, so that we can construct the matrices

∆ρ = I − ρL(1) and Kφ = I +
m∑

j=1

L(j)φj,

then, when y0 = 0, the equations in (1) define the following generalized linear regres-

sion model,

y = Xβ +∆−1
ρ Kφε. (2)

The focus is upon tests on hypothesized values of ρ, specifically

H0 : ρ = 1 vs. H1 : |ρ| < 1. (3)

Notice that neither the null nor the alternative in (3) change if the data y are trans-

formed according to the following group of transformations G = (a, g) , with a ∈ R
and g ∈ Rk and with action

y → ay +Xg ,

as a consequence the meaningful power envelope will be that for the class of invariant,

under G, tests. Invariant tests can be found, most generally, under the following

assumption on the distribution of y:

Assumption 1 (i) Let the density of y, given X, be f(y; β, ρ, σ2Ω |X) = f(y) ∈ F ,
the elliptically symmetric family, with

F =

{

f : f(y; β, ρ, σ2Ω) =
q [(y −Xβ)′(σ2Σρ(Ω))−1(y −Xβ)]

|σ2Σρ(Ω)|1/2

}

,

where X and β are defined above, σ2 is a scalar and Ω = KφK
′
φ a T ×T matrix

with Σρ(Ω) = ∆−1
ρ Ω(∆−1

ρ )′. Furthermore, we assume q[.] is a nonincreasing

convex function on [0,∞).

(ii) ||Ω||1 = supj
∑T

i=1 |Ωi,j| < M <∞, for all T.
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Notice that implicit in Assumption 1 as applied to the regression in (2) is that any

value y0 is taken to be zero. A non-zero, exogenously determined, observed initial

condition may be incorporated into the regressor setX (as the column x̄1 = (y0, 0..0)
′)

as detailed in Marsh (2007). By so doing it is possible to abstract the results that

follow from any influence caused by uncertainty over the initial condition. In any

case, all asymptotic results will apply for any initial value satisfying T−1/2y0 = op(1).

Part (ii) of Assumption 1 is satisfied, asymptotically, for the standard innovation

assumption that

lim
m→∞

m∑

j=1

j
∣∣φj
∣∣ <∞, (4)

as in Condition A of Elliott, Rothenberg and Stock (1996).

Defining W = ∆1X and applying standard results, see King (1980) and Dufour

and King (1991), the maximal invariant for testing the hypotheses in (3) is given by

v =
w

|w| =
C ′∆1y√
y′∆′

1MW∆1y
,

where the symmetric idempotent is,

MW = I −W (W ′W )
−1
W ′,

and has singular value decomposition,

CC ′ =MW ; C ′C = IT−k.

Following King (1980), the density of v (with respect to normalized Haar measure on

the surface of the Unit sphere in n = T − k dimensions) is given by

pdf (v) = |A|−1/2
(
v′A−1v

)−n

2 , (5)

where

A = C ′∆′
1∆

−1
ρ Ω

(
∆−1
ρ

)′
∆1C.

Applying the Neyman-Pearson Lemma, we have the most powerful test of H0

against a fixed alternative |ρ| < 1, (i.e. the Point Optimal (PO) test) is given by:

reject H0 if PO =
pdf (v|H1)
pdf (v|H0)

> kα,
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where k is chosen so that the size is fixed, at α say. Consequently, the PO test is,

reject H0 if PO =
v′A−1v

v′ (C ′ΩC)−1 v
< kα, (6)

where the critical value kα in (6) is chosen so that the size of the test is α, with

α = Pr

[
v′A−1v

v′ (C ′ΩC)−1 v
< kα|H0

]
. (7)

The power envelope is then the set of powers of each PO test at size α, given by

Πα = Πα(ρ) = Pr

[
v′A−1v

v′ (C ′ΩC)−1 v
< kα|H1

]
. (8)

In the wider family F , we explicitly require tests invariant to scale, i.e. to σ. By
so doing we obtain results analogous to those presented in Elliott, Rothenberg and

Stock (1996), for the narrower Gaussian case. To characterize those, assume σ2 is

known and that the εt are iid Gaussian, then the likelihood for y is (up to constants

and other quantities not depending on ρ),

L = −1

2
(y −Xβ)′∆−1

ρ Ω−1
(
∆−1
ρ

)′
(y −Xβ) .

Noting that only invariance with respect to y → y + Xβ (or equivalently ∆ρy →
∆ρy +∆ρXβ, provided that y0 = 0) is required, then the PO test involves rejecting

for small values of

L∗(Ω) = y′ρMWρ
Ω−1MWρ

yρ − y′1MW1
Ω−1MW1

y1, (9)

where yρ = ∆ρy andWρ = ∆ρX, andMWρ
is defined analogously toMW . As Francke

and de Vos (2007) point out, L∗(Ω) is the likelihood ratio in the marginalized like-

lihood. This approach is essentially identical to constructing the maximal invariant,

which is in this case ȳ = C ′∆1y, where C is as defined above, giving point optimal

tests,

PO∗ = y′∆′
1CA

−1C ′∆1y − y′∆1M∆1y,

where A and M are defined above. Consequently, it is easily seen that previous

characterizations of the unit root power envelope are either identical to or are special

cases of that given here.
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To characterize the power envelope, first consider

Ã = (C ′ΩC)
−1/2
A (C ′ΩC)

−1/2
,

and its ordered eigenvalues (λi)
n
i=1 , and the associated eigenvectors, ri, with

Ãri = λiri ; r′irj =





1 if i = j

0 otherwise
.

Elliott, Rothenberg and Stock (1996) characterize the asymptotic power envelope

generated by the set of tests defined in (9) in terms of probabilities of certain func-

tionals of Brownian motion. Here, as with the characterizations of Dickey and Fuller

(1979), it instead involves probabilities for certain weighted averages of Chi-square

distributed random variables as in the following lemma.

Lemma 1 Let zi be a sequence of independent standard normal random variables,

then under Assumption 1, the size (α) and power (Πα) of the Point Optimal test in

(6) are defined by;

α = Pr

[
n∑

i=1

(
1

kαλi
− 1

)
z2i < 0

]

, and

Πα = Pr

[
n∑

i=1

(1− kαλi) z2i < 0

]

. (10)

Lemma 1 provides unresolved expressions for the size and power in terms of

weighted sums of Chi-square random variables. Unlike related unresolved expres-

sions involving probabilities of functionals of Brownian motion, these may be explic-

itly evaluated or approximated. For example, given a matrix Ã and its eigenvalues

(λi)
n
i=1 , Imhof’s (1961) procedure will yield accurate numerical approximations, al-

though at the expense of any analytic information concerning the dependence of the

probabilities in (10) on the model features, via those eigenvalues.

3 An Explicit Representation for the Asymptotic

Power Envelope

In this section an asymptotic representation of the power envelope is derived and

then analyzed in a series of Monte Carlo experiments. From Theorem 2 of Elliott,
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Rothenberg and Stock (1996), the asymptotic power envelope depends neither on σ2,

nor the coefficients in (4). Moreover, Jansson (2008) proves that the asymptotic enve-

lope is identical for every Locally Asymptotically Normal likelihood. Given also that

here we will impose invariance to scale, then the envelope is also identical for every

member of the elliptically symmetric family. Consequently, the envelope obtained by

imposing Ω = I, with point optimal tests,

reject H0 if v
′A−1v < kα, A = C ′∆1∆

−1
ρ

(
∆−1
ρ

)′
∆1C, (11)

is the benchmark against which all current procedures in the literature should be

measured.

3.1 Main Result

Lemma 1 gives the size and power of the point optimal tests in terms of weighted

sums of chi-square random variables. To derive expressions for asymptotic power, let

ρ = 1 − c/T, where c > 0. Returning to the definitions in (7) and (8), the power

envelope for unit root tests can be written in terms of probabilities associated with

the two random variables,

p0 =
n∑

i=1

(
λ−1i − kα

)
z2i and p1 =

n∑

i=1

(1− kαλi) z2i , (12)

where zi ∼ N(0, 1) and the (λi)
n
1 are the ordered eigenvalues of A, as in (11), with

λ1 ≤ λn. Size and power are then, α = Pr[p0 < 0] and Πα = Pr[p1 < 0].

Now let λ0i = λi/λ1, and λ
1
i = λi/λn, so that both

(
λ0i
)−1

and λ1i are bounded

between 0 and 1. Consequently, we can define

q0 =
n∑

i=1

((
λ0i
)−1 − k̄α

)
z2i and q1 =

n∑

i=1

(
λ̄− k̄αλ1i

)
z2i , (13)

where k̄α = λ1kα and λ̄ = λ1/λn, so that limiting size and power have the represen-

tation,

α = lim
n→∞

Pr[q0 < 0] and lim
n→∞

Πα = Pr[q1 < 0].

What we require here is an explicit representation for both the size α, which may

then be inverted to obtain the critical value k̄α, and also the resulting power, Πα. To
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proceed, note that the characteristic functions of q0 and q1 are,

ψ0(iω) = E

[

exp

{

iω
n∑

i=1

((
λ0i
)−1 − k̄α

)
z2i

}]

=
n∏

i=1

[
1− 2iω

((
λ0i
)−1 − k̄α

)]−1/2
,

and

ψ1(iω) = E

[

exp

{

iω
n∑

i=1

(
λ̄− k̄αλ1i

)
}]

=
n∏

i=1

[
1− 2iω

(
λ̄− k̄αλ1i

)]−1/2
.

Consequently, transforming with θ = iω and applying the closed curve theorem, the

respective densities of q0 and q1 can be obtained, in principle, from the Inverse Fourier

Transforms,

fj(q) =
1

2πi

∫ τ+i∞

τ−i∞
e−qθψj(θ)dθ, j = 0, 1.

Immediately, the distributions of q0 and q1 are given by,

Fj(q) =

∫ q

0

fj(k)dk, j = 0, 1,

and then the asymptotic size and power of point optimal tests are,

α = lim
n→∞

F0(q)|q=0 and Πα = lim
n→∞

F1(q)|q=0 .

As is evident from the development above, in order to characterize the power en-

velope under Assumption 1, what is actually required is the distribution of weighted

sums of Chi-squared random variables. Currently the literature does contain ex-

act representations for such distributions, for example see Hillier (2000) or Forchini

(2002). However, as yet no exact representation has been found which is at all suit-

able for actually providing usable critical values, nor indications of power; the current

given expressions being far too complicated for such purposes. Instead here we utilize

a form of the Saddlepoint approximation, developed through Phillips (1978), Lugan-

nani and Rice (1980), Daniels (1987), Lieberman (1994) and Marsh (1998) to give

an explicit representation for the asymptotic power envelope in terms only of simple

Gaussian probabilities. Before proceeding define the following quantities,

Rj(θ) =
1

n
ln
[
ψj(θ)

]
(14)

Rj(θ) = sign [θ]
√
−2nRj (θ) and δj(θ) = θ

√

n
d2Rj(θ)

dθ2
,
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for j = 0, 1, then asymptotic representations for the size and power of point optimal

unit root tests, and their orders of error, are as given in the following theorem, again

proved in the appendix.

Theorem 1 Suppose that Assumption 1 holds, then:

(i) Asymptotically the size of the point optimal tests (6) for the unit root hypothesis

in (3) satisfies,

α = Φ(γ̂0)− φ(γ̂0)
(

1

δ̂0
− 1

γ̂0

)
+O(n−1), (15)

where Φ[.] is the standard normal CDF,

γ̂0 = γ0(θ̂0) and δ̂0 = δ0(θ̂0),

and the saddlepoint θ̂0 is the unique solution to,

n∑

i=1

((
λ0i
)−1 − k̄α

)

1− 2θ̂0

((
λ0i
)−1 − k̄α

) = 0 ;
1

2
((
λ0i
)−1 − k̄α

) ≤ θ̂0 ≤
1

2
((
λ0i
)−1 − k̄α

) .

(ii) Letting kα be the unique solution to limn→∞Φ−1 [α] = r̂0, then the asymptotic

power of each point optimal test (6) satisfies,

Πα = lim
n→∞

Φ(γ̂1)− φ(γ̂1)
(

1

δ̂1
− 1

γ̂1

)
+O(n−1), (16)

where γ̂1 and δ̂1 are defined analogously, while in this case the saddlepoint θ̂1 satisfies,

n∑

i=1

(
λ̄− k̄αλ1i

)

1− 2θ̂1
(
λ̄− k̄αλ1i

) = 0 ;
1

2
(
λ̄− k̄αλ1i

) ≤ θ̂1 ≤
1

2
(
λ̄− k̄αλ1i

) .

As in Jing and Robinson (1994), we may exploit the transformation detailed in

Lemma 2.1 of Jensen (1992) to provide an even more computationally convenient

representation for the asymptotic power envelope. Specifically, in terms of the ap-

proximate distributions above, that if, for qj it is true that,

Pr[qj < 0] = Φ(γ̂j)− φ(γ̂j)
(

1

δ̂j
− 1

γ̂j

)

(1 + o(1)) ,

then also,

Pr[qj < 0] = Φ(r∗j ) (1 + o(1)) , (17)
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where

r∗j = r
∗
j (q) = γ̂j +

1

γ̂j
ln

(
δ̂j
γ̂j

)

.

Consequently, we can more easily find asymptotic critical values k̄α, of size α,via

r∗0(k̄α) = Φ−1 (α) , (18)

and the asymptotic power associated with those critical values is then,

Πα = Φ

(

γ̂1 +
1

γ̂1
ln

(
δ̂1
γ̂1

))

.

In the numerical analysis to follow the representations based on (17) were employed,

rather than those given in Theorem 1, since inversion of (18) is far more straight

forward than that of (15).

4 Numerical Analysis

Theorem 1 provides an O(T−1) = O(n−1) representation for the asymptotic power

envelope. For a given critical value kα the approximation of the power envelope, for

finite T, at any point ρ can be calculated essentially instantaneously. This contrasts

sharply with the often lengthy Monte Carlo simulation of partial sum approximations

to stochastic integrals, the approach most often employed in the literature.

Computational efficiency is, of itself, a worthless virtue if what is being calculated

does not accurately approximate what can be expected in finite samples. Conse-

quently here we will numerically compare the accuracy of the formulae given in The-

orem 1 with those partial sum approximations for the envelope of Elliott, Rothenberg

and Stock (1996), as given by the point optimal tests in (9).

We will consider the two simple models most commonly employed,

Ma : yt = β1 + ut ; ut = (1− c/T )ut−1 + εt (19)

Mb : yt = β1 + β2t+ ut ; ut = (1− c/T )ut−1 + εt, (20)

as well as two specifications for the errors,

E1 : εt ∼ iidN(0, 1), ; E2 : εt ∼
iidχ2(1)− 1√

2
.
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The latter specification allows some limited analysis of the robustness of both meth-

ods of approximation to the specification of the underlying distribution. All of the

numerical analysis to follow was performed using the symbolic package Mathematica

and all experiments are based upon 20000 replications.

Tables 1a) and 1b) give the finite sample rejection frequencies of critical values,

for two sizes, for the point optimal tests in (6) obtained from inverting (15). Sample

sizes 25 through 150 and different values of the local parameter, c = T (1 − ρ), are
considered for both models Ma and Mb, respectively. Tables 2a) and 2b) give those

for critical values obtained through partial sum approximations of the stochastic

integrals,

Ma : L∗(I) + c⇒ c2
∫ 1

0

W 2
0 + cW 2

0 (1)

Mb : L∗(I) + c⇒ c2
∫ 1

0

V 20 (t,−c) + (1 + c)V 20 (1,−c) (21)

with W and V defined as in Theorem 1 of Elliott, Rothenberg and Stock (1996), and

noting the slightly different definitions of c. For both models, when the errors are

Gaussian, the Saddlepoint approximation provides critical values which have true size

almost uniformly equal to nominal. For critical values obtained by partial summation

this is not so, particularly for larger values of c, although as the sample size grows

the accuracy rapidly becomes much more acceptable.

Tables 3a) and 3b), as well as 4a) and 4b) report the outcomes of a repetition of

the experiment but with errors which are proportional to a Chi-square. In this case

the accuracy of the Saddlepoint approximation is maintained, particularly for sample

sizes of 100 and more, while clearly the use of partial sum approximations does not

deliver critical values with the same level of robustness, at least in the small samples

given here. Although no author explicitly recommends use of such approximations

in sample sizes this small it is worth noting that the range of sample sizes in the

(updated) Nelson and Plosser (1982) data set falls within that considered here.

The primary purpose of this paper is to characterize the asymptotic power en-

velope and so the next set of experiments seek to analyze the accuracy of (16) as

an approximation to finite sample power. Here for models Ma and Mb finite sample

power was simulated for the same combinations of sample sizes and local parameters
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for the single size, 5% and only for the case of Gaussian errors. Note that the power

envelope is no longer actually that if the errors are not Gaussian. Recorded in tables

5a) and 5b) under the heading MC are the simulated powers, minus the size 5%.

Under the heading SA is the Saddlepoint approximation for the power of the point

optimal test (6) based on approximate critical values obtained from (15), minus the

size of those critical values. Once again the Saddlepoint approximation is seen to be

highly accurate.

At each point the approximation is available essentially instantaneously. A Monte

Carlo study, however, requires simulation of the point optimal test, or an approxi-

mation to its limiting form, both under the null and alternative. Given also its high

accuracy then this method seems particularly appropriate for providing envelopes for

the task of assessing the properties of feasible tests, in light of increased model het-

erogeneity. Moreover, the effect of any particular specification of the deterministics

may be efficiently and accurately measured. To illustrate this efficacy, consider two

models having breaks in their trends, viz.

M1 : yt = β1 + β2(t− τT )It(τ ) + ut
M2 : yt = β1 + β2t+ β3(t− τT )It(τ) + ut, (22)

where ut = (1 − c/T )ut−1 + εt, It(τ ) is the indicator function taking values 1 if

t ≥ τT, and 0 otherwise. Thus M1 has a trend which only begins a fraction τ into

the series while M2 has a segmented trend, at the fraction τ . Even this rather simple

extension, introduced in the work of Perron and Rodríguez (2003) and Harris, Harvey,

Leybourne and Taylor (2007), implies computational complexities necessitating the

use of explicit distributional formulae, as given here.

To apply the suggested procedure of Elliott, Rothenberg and Stock (1996), in

full, requires calculation of the point c̄ at which the power envelope is 0.5. Then c̄ is

used to Quasi-difference the data to ultimately form the t-test in the detrended data.

Notionally, therefore, this value must be calculated for every τ , and moreover, for

every chosen significance level. Table 6, in the appendix, gives values of c̄ obtained

from the expressions given in Theorem 1, for values of α = .01, .05 and .10, and

for fractions, τ = 0.1, 0.2, .., 0.9 and based on a sample size of T = 250 (increasing

the sample size beyond 250 did not alter the outcomes to the given accuracy). The
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computational time (for a 3.0 Ghz Pentium D PC running Mathematica 4.0) was

just over 15 minutes per model. Notice also that the values of c̄ for M2 are almost

identical to those derived by a partial summation approximation and given in Table

1 of Harris, Harvey, Leybourne and Taylor (2007), but are available at a fraction of

the computational cost.

5 Conclusions

This paper has derived an explicit asymptotic representation for the invariant power

envelope based upon Saddlepoint expansions of inversion formulae for the distri-

butions of the set of point optimal tests. Recent innovations in the literature have

greater heterogeneity in the model specification when unit root testing. The represen-

tations derived here have the advantages of computational efficiency and numerical

accuracy over the more usual Monte Carlo partial summation approach as well as

more generality than the approaches of Abadir (1993) or Nabeya and Tanaka (1990).

Together these facts indicate the importance of these results in objectively assessing

the performance of feasible tests in ever more general cases.
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Appendix I
(1) Proof of Lemma 1

For tests of size α, the critical value kα is chosen according to,

α = Pr

[
v′A−1v

v′ (C ′ΩC)−1 v
< kα | H0

]
= Pr

[
w′A−1w

w′ (C ′ΩC)−1w
< kα | H0

]
,

wherew = C ′∆1y.Then if we let z = (C ′ΩC)1/2w and Ã = (C ′ΩC)−1/2A (C ′ΩC)−1/2 ,

we have

α = Pr

[
z′Ã−1z

z′z
< kα | H0

]

= Pr
[
z′Ã−1z < (w′w) kα | H0

]

= Pr
[
z′
(
Ã−1 − kαIn

)
z < 0 | H0

]
.

Since α does not depend upon the particular member of the elliptically symmetric

family generating the data y, we can, without loss of generality, assume z ∼ N(0, In).

Consider the spectral decomposition of Ã,

Ã = U ′ΛU,

with U ′U = I and Λ = diag {λ1, λ2, .., λT−k} , with λi the ordered eigenvalues of Ã,
then also

Ã−1 = UΛ−1U ′.

Consequently, for zi ∼ iidN(0, 1), the critical value may instead be found from

α = Pr

[
n∑

i=1

(
λ−1i − kα

)
z2i < 0

]

= Pr

[
n∑

i=1

(
1

kαλi
− 1

)
z2i < 0

]

.

Given the critical value, we can then calculate power,

Πα = Pr

[
v′A−1v

v′ (C ′ΩC)−1 v
< kα | H1

]
= Pr

[
w′A−1w

w′ (C ′ΩC)−1w
< kα | H1

]
.

Now define

ζ = σ−1A−1/2w ∼ N(0, In),

so that

Πα = Pr

[
ζ ′ζ

ζ ′A1/2 (C ′ΩC)−1A1/2ζ
< kα

]
= Pr

[
ζ ′
(
I − kαA1/2 (C ′ΩC)−1A1/2ζ

)
ζ < kα

]
,
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and since the eigenvalues of A1/2 (C ′ΩC)−1A1/2 are identical to those of Ã, then, as

required,

Πα = Pr

[
n∑

i=1

(1− kαλi) z2i < 0

]

.

(2) Proof of Theorem 1

In order to find both asymptotic critical values and thence the asymptotic power

envelopes we require approximations for the distributions of q0 and q1. To proceed,

define the distribution of qj by

Fj(q) = Pr[qj ≤ q] =
∫ q

0

fj(z)dz

= 1−
∫ ∞

q

fj(z)dz = 1−
∫ ∞

q

1

2πi

∫ τ+i∞

τ−i∞
e−zθψj(θ)dθdz

= 1− 1

2πi

∫ τ+i∞

τ−i∞

exp {−qθ}
θ

ψj(θ)dθ, j = 0, 1. (23)

The integrals in (23) are precisely of the type considered in Lugannani and Rice

(1980) and exploited to give tail probability approximations for ratios of quadratic

forms in Lieberman (1994) and Marsh (1998). While derivation of the leading term

approximation is quite routine (see for example Lieberman (1994)), here we focus

on the asymptotic character of the approximation, i.e. that size and power can be

explicitly approximated to order O(n−1).

To proceed, let

ξ0,i =
((
λ0i
)−1 − k̄α

)
and ξ1,i =

(
λ̄− k̄αλ1i

)
,

where k̄α and λ̄ are defined under (13), and write

ψ̄j(θ) =
n∏

i=1

(
1− 2θξj,i

)− 1

2n ,

so that the integrals (23) can be written as

Fj(q) = 1− 1

2πi

∫ τ+i∞

τ−i∞

exp {−qθ}
θ

(
ψ̄j(θ)

)n
dθ, j = 0, 1

which is of the same form as the inversion in Lugannani and Rice (1980, equation

(2)). Define

Rj(θ) = log
[
ψ̄j(θ)

]
= − 1

2n

n∑

i=1

log
(
1− 2θξj,i

)
,
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so that

Fj(q) = 1− 1

2πi

∫ τ+i∞

τ−i∞

exp {n (Rj(θ)− xθ)}
θ

dθ, j = 0, 1, (24)

where x = q/n. Then for each x, a valid asymptotic expansion in powers of n−1 and

derivatives of Rj(θ) of (23) exists if the two conditions in Section 4 of Lugannani and

Rice (1980) hold and if the derivatives of Rnj (θ) are O(1).

Notice that the sequences
(
ξ0,i
)n
1
and

(
ξ1,i
)n
1
are the eigenvalues of the matrices,

B0 = (λ1A)
−1 − k̄αIn and B1 = λ̄In − k̄αA, respectively. Since both B0 and B1 are

symmetric then ξ0,i and ξ1,i are real and so since,

ψ̄j(θ) =
n∏

i=1

(
1− 2θξj,i

)− 1

2n ,

is continuous in θ, and limθ→0 ψ̄j(θ) is bounded away from zero then continuity

in θ ensures ψ̄j(θ) �= 0 in a strip of width 2ε around the imaginary axis, Θε =

{θ : −iε ≤ θ ≤ iε} − iε ≤ θ ≤ iε. As a consequence ψ̄j(θ) is analytic for all θ ∈ Θε.

Thus condition (i) holds. For condition (ii), note that

∣∣ψ̄j(θ)
∣∣ =

n∏

i=1

∣∣(1− 2θξj,i
)∣∣− 1

2n ≤ sup
i

(
1− 2θξj,i

)− 1

2 .

Since the ξj,i are O(1) for all i and j, then

lim
|θ|→∞

∣∣ψ̄j(θ)
∣∣ = 0,

and so condition (ii) is also satisfied.

To proceed we follow the analysis of Daniels (1987) and transform in the integral

(24) according to
γ2j
2
− γ̃jγj = Rj(θ)− θR′j(θ̂),

where the saddlepoint θ̂ satisfies

R′(θ̂) =
dRj(θ)

dθ

∣∣∣∣
θ=θ̂

= x,

and so

γ̃j = sign
[
(θ̂)
]{[

2
(
θ̂R′j(θ̂)−Rj(θ̂)

)]}
.

Thus (24) can be rewritten as

Fj(q) = 1− 1

2πi

∫ τ+i∞

τ−i∞
exp

{
n

(
1

2
γ2j − γ̃jγj

)}(
1

θ

dθ

dγj

)
dγj,
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from which the asymptotic expansion, identical to Daniels (1987, equation 4.6), then

follows, i.e.

Fj(q) = Φ
(√
nγ̃j

)
− φ

(√
nγ̃j

)
{

1√
n

(
1

δ̃j
− 1

γ̃j
+

∞∑

k=1

n−kbk,j

)}

, (25)

where δ̃j = θ̂
[
R′′(θ̂)

]1/2
and the bk are functions only of the derivatives of Rj(θ), at

θ = θ̂, R
(r)
j

(
θ̂
)
. Letting,

µ̂(r) =
R
(r)
j

(
θ̂
)

[
R′′(θ̂)

]r/2 ,

then the first correction is

b1,j =
1

δ̃j

(
1

8
µ̂(r) −

5

24

(
µ̂2(3)

)
−
µ̂(3)

2δ̃
2

j

− 1

δ̃
3

j

+
1

γ̃3j

)

.

For the unit root power envelope we only require the asymptotic expansion in (25)

evaluated at q = x = 0, at which point the saddlepoints are the unique solutions to

R′(θ̂j) =
1

n

n∑

i=1

ξj,i

1− 2θ̂1ξj,i
= 0 ;

1

2maxi ξj,i
≤ θ̂1 ≤

1

2min ξj,i
.

Moreover, the rth derivative of Rj(θ) is then

R
(r)
j (θ) =

drRn(θ)

dθr
=

(−1)r (r − 1)!

n

n∑

i=1

(
2ξj,i

1− 2θξj,i

)r
,

so that R
(r)
j (θ) is finite for all θ, and consequently noting that R′(θ̂j) = 0, we have

δ̃j = O(1), µ̂(r) = O(1), for all r, and

γ̃j = sign
[
(θ̂)
]{[

−2Rj(θ̂)
]}

= O(1).

Consequently the coefficients in (25) at x = 0 satisfy bk,j = O(1) for all k, and so

letting γ̂j =
√
nγ̃j and δ̂j =

√
nδ̃j, we have

Fj(q) = Φ
(
γ̂j
)
− φ

(
γ̂j
)
{(

1

δ̂j
− 1

γ̂j
+O(n−1)

)}

, j = 0, 1,

as required.
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Appendix II Tables

Table 1a): Nominal size of critical values for (9) approximated

by (15) in model (19), with εt ∼ iidN(0, 1).

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .054 .106 .053 .105 .051 .103 .051 .102

8 .053 .107 .052 .104 .051 .103 .051 .103

c 12 .053 .106 .052 .103 .051 .102 .050 .100

16 .053 .106 .053 .103 .051 .102 .049 .100

20 .055 .107 .053 .104 .051 .102 .049 .100

Table 1b): Nominal size of critical values for (9) approximated

by (15) in model (20), with εt ∼ iidN(0, 1).

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .053 .106 .053 .104 .051 .103 .051 .103

8 .053 .106 .052 .104 .052 .103 .051 .103

c 12 .053 .106 .051 .102 .050 .102 .051 .103

16 .054 .105 .050 .102 .050 .102 .052 .104

20 .053 .106 .051 .102 .051 .102 .051 .102

Table 2a): Nominal size of critical values for (9) approximated

by Partial Sum in model (19), with εt ∼ iidN(0, 1).

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .054 .097 .050 .098 .050 .097 .048 .105

8 .058 .148 .059 .143 .059 .117 .053 .114

c 12 .084 .194 .075 .167 .068 .134 .062 .119

16 .087 .198 .087 .169 .078 .135 .064 .116

20 .096 .214 .092 .180 .081 .134 .064 .121
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Table 2b): Nominal size of critical values for (9) approximated

by Partial Sum in model (20), with εt ∼ iidN(0, 1).

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .083 .111 .079 .109 .072 .111 .072 .117

8 .045 .073 .054 .086 .049 .099 .047 .089

c 12 .043 .078 .047 .090 .046 .092 .047 .088

16 .028 .074 .039 .088 .044 .104 .049 .103

20 .042 .091 .055 .111 .052 .101 .061 .112

Table 3a): Nominal size of critical values for (9) approximated

by (15) in model (19), with εt ∼ iidχ2(1)−1√
2
.

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .064 .121 .058 .113 .056 .109 .055 .108

8 .068 .125 .060 .114 .056 .110 .055 .108

c 12 .069 .126 .061 .115 .056 .109 .054 .108

16 .069 .125 .061 .115 .056 .108 .054 .109

20 .069 .125 .062 .117 .056 .109 .055 .109

Table 3b): Nominal size of critical values for (9) approximated

by (15) in model (20), with εt ∼ iidχ2(1)−1√
2

.

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .051 .101 .045 .093 .049 .102 .048 .098

8 .051 .099 .046 .093 .050 .101 .048 .097

c 12 .050 .099 .045 .092 .049 .101 .049 .098

16 .049 .097 .045 .094 .048 .101 .048 .098

20 .048 .095 .046 .095 .050 .100 .048 .097
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Table 4a): Nominal size of critical values for (9)

approximated by Partial Sum in model (19), with εt ∼ iidχ2(1)−1√
2
.

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .052 .084 .048 .085 .046 .087 .053 .099

8 .054 .115 .048 .121 .054 .121 .052 .106

c 12 .063 .169 .066 .147 .056 .127 .060 .111

16 .075 .193 .072 .166 .060 .128 .053 .120

20 .081 .198 .083 .181 .067 .140 .064 .122

Table 4b): Nominal size of critical values for (9)

approximated by Partial Sum in model (20), with εt ∼ iidχ2(1)−1√
2
.

T 25 50 100 150

α .05 .10 .05 .10 .05 .10 .05 .10

4 .141 .158 .131 .148 .131 .152 .130 .162

8 .075 .096 .075 .095 .073 .099 .063 .094

c 12 .054 .075 .055 .081 .053 .084 .046 .079

16 .031 .050 .038 .068 .036 .067 .043 .078

20 .025 .053 .041 .071 .037 .075 .047 .087

Table 5a): Monte Carlo (MC) and Saddlepoint Approximation (SA) to

Power minus size in model (19), at the 5% level, with εt ∼ N(0, 1).

T 25 50 100 150

MC SA MC SA MC SA MC SA

4 .148 .153 .167 .168 .183 .184 .179 .175

8 .403 .402 .449 .443 .477 .467 .503 .490

c 12 .687 .684 .700 .694 .743 .738 .754 .751

16 .863 .865 .864 .867 .877 .884 .888 .895

20 .930 .933 .928 .932 .930 .937 .932 .939
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Table 5b): Monte Carlo (MC) and Saddlepoint Approximation (SA) to

Power minus size in model (20), at the 5% level, with εt ∼ N(0, 1).

T 25 50 100 150

MC SA MC SA MC SA MC SA

4 .036 .043 .039 .041 .036 .039 .040 .044

8 .152 .157 .157 .159 .158 .160 .160 .163

c 12 .360 .364 .352 .353 .348 .348 .360 .362

16 .611 .612 .581 .581 .591 .591 .592 .596

20 .811 .809 .773 .772 .774 .775 .778 .781

Table 6): Values of c̄ satisfying Πα(c̄) = 0.5

for the two models in (22), for different α and τ .

M1 M2

α .01 .05 .10 .01 .05 .10

1 20.9 13.6 10.2 24.4 16.4 12.6

2 20.8 13.3 9.87 25.6 17.4 13.4

3 20.5 13.0 9.49 26.1 17.9 14.0

4 20.1 12.5 9.04 26.3 18.1 14.2

τ 5 19.7 12.0 8.50 26.3 18.0 14.1

6 19.0 11.4 7.88 25.9 17.9 13.9

7 18.4 10.6 6.95 25.3 17.1 13.3

8 17.5 9.34 6.30 24.4 16.1 12.3

9 16.8 8.78 6.08 22.9 14.9 11.4
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