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4) Some solutions to weak instruments 
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1) IV Regression and GMM 
Philip Wright (1928) needed to estimate the supply equation for butter: 
 

ln( ) = β0 + β1ln( ) + ut butter
tQ butter

tP
Or: 
      yt = Ytβ  + ut,  (generic notation) 

 
β1 = price elasticity of supply of butter  
 
OLS is inconsistent because ln( ) is 
endogenous: price and quantity are determined 
simultaneously by supply and demand… 

butter
tP

 
Philip Wright (1861-1934), MA Harvard, Econ, 1887 
Lecturer, Harvard, 1913-1917 

 4 
 



 

 
 

Figure 4, p. 296, Wright (1926), Appendix B 
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Derivation of the IV estimator in P. Wright (1928, p. 314) 
 
Now multiply each term in this equation by A (the corresponding deviation in the 
price of a substitute) and we shall have: 

eA×P = A×O – A×S1. 
Suppose this multiplication to be performed for every pair of price-output deviations 
and the results added, then: 

e A P×∑  = 1A O A S× − ×∑ ∑  or  e =  1A O A S
A P

× − ×

×
∑ ∑

∑
. 

But A was a factor which did not affect supply conditions; hence it is uncorrelated 

with S1; hence 1A S×∑  = 0; and hence e = 
A O
A P
×

×
∑
∑

.   

 
In modern notation: for an exogenous instrument, i.e. Zt s.t. EZtut = 0, 

Z′(y – Yβ) = Z′y – Z′Yβ = z′u, but Ez′u = 0, so EZ′y – EZ′Yβ = 0, 

which suggests:   ˆTSLSβ  =
′
′

Z y
Z Y
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Classical IV regression model & notation 
 
Equation of interest:    yt = Ytβ  + ut,  m = dim(Yt) 
k exogenous instruments Zt:  E(utZt) = 0, k = dim(Zt) 
Auxiliary equations:    Yt = Π′Zt + vt, corr(ut,vt) = ρ (vector) 
Sampling assumption:    (yt, Yt, Zt) are i.i.d. (for now) 
 
Equations in matrix form:   y = Yβ + u   (“second stage”) 
         Y = ZΠ + v  (“first stage”) 
Comments: 
• We assume throughout the instrument is exogenous (E(utZt) = 0) 
• Included exogenous regressors have been omitted without loss of 

generality 
• Auxiliary equation is just the projection of Y on Z 

 



Generalized Method of Moments 
 
GMM notation and estimator: 
GMM “error” term (G equations):  h(Yt;θ);  θ0 = true value 

Note: In the linear model,    h(Yt;θ) = yt – θ′Yt 

Errors times k instruments:    φt(θ) = 
1 1

0( , )
G k

t th Y Zθ
× ×

⊗  

Moment conditions - k instruments:  Eφt(θ) = E[
1 1

0( , )
G k

t th Y Zθ
× ×

⊗ ] = 0 

GMM objective function:   ST(θ) = 1/2 1/2

1 1

( ) ( )
T T

t T t
t t

T W Tφ θ φ θ− −

= =

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

GMM estimator:       θ̂  minimizes ST(θ) 
Efficient (infeasible) GMM:    WT = Ω–1, Ω = 2π ( ) (0)

t
Sφ θ  

CUE (Hansen, Heaton, Yaron 1996):  WT = (θ)–1 (each θ) Ω̂
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Weak instruments:  four examples 
 
Example #1 (time-series IV):  Estimating the elasticity of 
intertemporal substitution, linearized Euler equation 
e.g. Campbell (2003), Handbook of Economics of Finance 

Δct+1 = consumption growth, t to t+1 
ri,t+1 = return on ith asset, t to t+1 

Log-linearized Euler equation moment condition: 
  Et(Δct+1 – τi – ψri,t+1) = 0 

where 
ψ = elasticity of intertemporal substitution (EIS) 
1/ψ = coeff. of relative risk aversion under power utility 

Resulting IV estimating equation: 
  E[(Δct+1 – τi – ψri,t+1)Zt] = 0  

(or use Zt–1 because of temporal aggregation) 
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EIS estimating equations: 
Δct+1 = τi + ψri,t+1 + ui,t+1       (a) 

or    ri,t+1 = μi + (1/ψ)Δct+1 + ηi,t+1      (b) 
 
Under homoskedasticity, standard estimation is by the TSLS estimator in 
(a) or by the inverse of the TSLS estimator in (b). 
 
Findings in literature (e.g. Campbell (2003), US data): 
• regression (a):  95% TSLS CI for ψ is (-.14, .28) 
• regression (b):  95% TSLS CI for 1/ψ is (-.73, 2.14) 

 
What is going on? 
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Example #2 (cross-section IV): Angrist-Kreuger (1991),  
 What are the returns to education? 
 
Example #3 (linear GMM):  Hybrid New Keynesian Phillips Curve 
e.g. Gali and Gertler (1999), where xt = labor share; see survey by 
Kleibergen and Mavroeidis (2008).   
 
Example #4 (nonlinear GMM):  Estimating the elasticity of 
intertemporal substitution, nonlinear Euler equation 
Hansen, Heaton, Yaron (1996), Stock & Wright (2000), Neely, Roy, & 
Whiteman (2001) 
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Working definition of weak identification 
 
θ is weakly identified if the distributions of GMM or IV estimators and 
test statistics are not well approximated by their standard asymptotic 
normal or chi-squared limits because of limited information in the data. 
• Departures from standard asymptotics are what matters in practice 
• The source of the failures is limited information, not (for example) 

heavy tailed distributions, near-unit roots, unmodeled breaks, etc. 
• The focus is on large T. 
• Throughout, we assume instrument exogeneity 



Why do weak instruments cause problems? 
IV  regression with one Y and a single irrelevant instrument 
 

   =  ˆTSLSβ
′
′

Z y
Z Y

 = 
( )β′

′
Z Y + u

Z Y
 = β + 

′
′

Z u
Z Y

  

 
If Z is irrelevant (as in Bound et. al. (1995)), then Y = ZΠ + v = v, so 

ˆTSLSβ  – β =  
′
′

Z u
Z v

 = 1

1

1

1

T

t t
t
T

t t
t

Z u
T

Z v
T

=

=

∑

∑
  

d
→ u

v

z
z

, where ⎟ ~ u

v

z
z
⎛ ⎞
⎜
⎝ ⎠

2

20, u uv

uv v

N
σ σ
σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

Comments: 
ˆ•  isn’t consistent (nor should it be!) TSLSβ

• Distribution of ˆTSLSβ  is Cauchy-like (ratio of correlated normals) (Choi 
& Phillips (1992)) 
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• The distribution of ˆTSLSβ  is a mixture of normals with nonzero mean:  
write zu = δzv + η, η ⊥ z, where  δ = σuv/ 2

vσ .  Then  

u

v

z
z

 = v

v

z
z

δ η+  = δ +
vz
η , and 

vz
η |zv ~ N(0, 

2

2
vz
ησ ) 

so the asymptotic distribution of  – β0 is the mixture of normals, ˆTSLSβ

ˆTSLSβ  – (β0 + δ)  
d
→

2

2(0, ) ( )
vz v v
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v

N f z dzη

z
σ

∫  (1 irrelevant instrument) 

• heavy tails (mixture is based on inverse chi-squared) 
ˆ• center of distribution of  is β0 + δ.  But  TSLSβ

ˆOLSβ  – β0 = 
/
/
T
T

′
′

Z u
Z Z

 = 
/
/
T
T

′
′

v u
v v

p
→  2

uv

v

σ
σ

 = δ, so plim( ˆOLSβ ) = β0 + δ, 

so 

ˆTSLSβ  – plim( ˆOLSβ )  
d
→

2

2(0, ) ( )
vz v v

v

N f z dz
z
ησ∫  (1 irrelevant instrument) 



The unidentified and strong-instrument distributions are two ends of a 
spectrum.  Distribution of the TSLS t-statistic (Nelson-Startz (1990a,b)): 

 
Dark line = irrelevant instruments; dashed light line = strong instruments; 
intermediate cases: weak instruments.  The key parameter is: 

μ2 = Π ′Z′ZΠ/ 2
vσ  (concentration parameter) 

  = k × (numerator) noncentrality parameter of first-stage F statistic 
 15 
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 Weak instrument asymptotics bridges this spectrum. 
 
Adopt nesting that makes the concentration parameter tend to a constant as 
the sample size increases by setting  

Π = C/ T  (weak instrument asymptotics) 
• This is the Pitman drift for obtaining the local power function of 

the first-stage F. 
• This nesting holds Eμ2 constant as T → ∞. 

• Under this nesting, F 
d
→  noncentral 2

kχ /k with noncentrality 
parameter Eμ2/k (so F = Op(1)) 

• Letting the parameter depend on the sample size is a common 
ways to obtain good approximations – e.g. local to unit roots 
(Bobkoski 1983, Cavanagh 1985, Chan and Wei 1987, and Phillips 
1987) 
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ogenous vble:Weak IV asymptotics for TSLS estimator, 1 included end  
– β0 = (Y′PZu)/(Y′PZY) ˆTSLSβ  

Now 

Y′P Y = Z

1( ) ( )
T TT

−′ ′Π +⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

Z v Z Z Z ′ Π +⎛ ⎞
⎜ ⎟

Z Z v  
⎝ ⎠⎝ ⎠

= 

⎝ ⎠
1/2 1/2

T

− −′′ ′ ′ ′ ′ ′Π Π⎛ ⎞ ⎛
T TT T T

⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎜ ⎟ ⎜ ⎟⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎠⎝ ⎝ ⎠

Z Z v Z Z Z Z Z Z Z Z v  

= 
1/2 1/2 1/2−⎡ ′′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞Z Z v Z Z Z Z Z 1/2

C
T T T TT

⎤ ⎡ ′′ ′ ′⎛ ⎞′⎢ ⎥ ⎢+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣

Z Z Z v

d
→  (λ + z ′ (λ + z ), 

C
T

− ⎤′
⎥
⎥⎦
 

where 

λ = 

v) v

1/2
ZZC Q′ , QZZ = EZtZt′, and  u

z
⎛ ⎞
⎜ ⎟ ~ 

2

20, u uvN
σ σ
σ σ

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥  

v

z

⎝ ⎠ uv v⎣ ⎦⎝ ⎠



Similarly,  
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Y
1( ) )

TT T

−′
′PZu = ′ ′⎞ ⎛ ⎞⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Z Z u  

= 

Π +⎛ ⎛
⎜ ⎟

Z v Z Z

1

C
T TT T

−′ ′ ′ ′⎛ ⎞ ⎛ ⎞⎛ ⎞′ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Z Z v Z Z Z Z u  

d
→  (λ + zv)′zu, 

so 

– β0 ˆTSLSβ  
d
→  (  )

(  ) (  )
v u

v v

z z
z z

λ
λ λ

′+
′+ +

 

• Under weak instrument asymptotics, μ2 C′QZZC/
p
→  2

vσ  = λ′λ/ 2
vσ  

• Unidentified special case: – β0 ˆTSLSβ  
d
→  v u

v v

z z
z z

′

′
 (obtained earlier) 

d
→  uzλ• Strong IVs: λ λ′ ( ˆTSLSβ  – β0) 

λ λ
′  ~ N(0, 2

uσ ) (standard limit) 
′
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f weak IV asymptotic results:Summary o  
 
• Resulting asymptotic distributions are the same as in the exact normal 

classical model with fixed Z – but with known covariance matrices. 
• Weak IV asymptotics yields good approximations to sampling 

distributions uniformly in μ2 for T moderate or large. 
• Under this nest g

o IV estimators are not consistent, are nonnormal  
o J-test of overidentifying restrictions) do 

r uti

• e dis b io s ca in 
ain a corr di tribu p ce 

in : 

Test statistics (including the 
not have normal or chi-squared dist ib ons 

o Conventional confidence intervals do not have correct coverage  

Because μ2 is unknown, thes tri ut n n’t be used directly 
practice to obt  “ ected” s tion for urposes of inferen
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instruments 3) Detection of weak 
How weak is weak?  Need a cutoff value for μ2 

ˆTSLSβ  – β0 
d
→  (  )

(  ) (  )
v u

v v

z z
z z

λ
λ λ

′+
′+ +

,  

where   μ2 = Π ′Z′ZΠ/  (concentration parameter) 2
vσ

 
p

  = k × (numerator  noncentrality parameter of)  first-stage F  

→  λ′λ/ 2
vσ  

For what values of μ2 does (  )v uz z
(  ) (  )v vz z

λ ′+
λ λ′+ +

  ≈ uzλ′ ? 
λ λ′

Var

0) 

• Hahn-Hausman (2003) test 
• Other methods (R2, partial R2, Shea (1997), etc.) 

ious procedures: 
• 
• Stock-Yogo (2005a) relative bias method (approximately yields F>1
• Stock-Yogo (2005a) size method 

First stage F > 10 rule of thumb (Staiger-Stock (1997)) 



TSLS relative bias cutoff method (Stock-Yogo (2005a)) 

 The relative squared normalized bias of TSLS to OLS is, 
  

Some background:  

 21 

    2B  = 
IV IV( β β) 'Σ ( β β)YYE E− −

n OLS OLS( β β) 'Σ ( β β)YYE E

ˆ ˆ
ˆ ˆ− −

 

 
The square root of the maximal relative squared asymptotic bias is: 

 
max ) 

 
T

i 2 ; this yields the cutoff 

B  =  maxρ: 0 < ρ′ρ ≤ 1 limn→∞|Bn|, where ρ = corr(ut,vt

is maximization problem is a ratio of quadratic forms so h it turns into a 
(generalized) eigenvalue problem; algebra reveals that the solution to this 
e genvalues problem depends only on μ /k and k

bias . 2μ



Critical values 
 
One included endogenous regressor 

The 5% critical value of the test is the 95% percentile value of the 
noncentral 2

kχ /k distribution, with noncentrality parameter 2
biasμ /k 

Multiple included endogenous regressors 
The Cragg-Donald (1993) statistic is: 

gmin = mineval(GT), where GT Y′PZY k, 
 
• GT is essentially a matrix first stage F statistic 
• Critical values are given in Stock-Yogo (2005a) 

 

 
1/2Σ̂−

VV ′ 1/2Σ̂−
VV / = 

 
Software 
 STATA (ivreg2),… 
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itical value of F to ensure indicated maximal bias  
(Stock-Yogo, 2005a) 

5% cr

 
T ensure 10% maximalo  bias, need F < 11.52; F < 10 is a rule of thumb
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Other methods for detecting weak instruments 
2 2R2, partial R , or adjusted R  

• None of these are a good idea, more precisely, what needs to be large 
is the concentration parameter, not the R2.  An R2 = .10 is small if T = 
50 but is large if T = 5000. 

• The first-stage R2 is especially uninformative if the first stage 
regression has included exogenous regressors (W’s) because it is the 
marginal explanatory content of the Z’s, given the W’s, that matters. 

Hahn-Hausman (2003) test 
• Idea is to test the null of strong instruments, under which the TSLS 

estimator, and the inverse of the TSLS estimator from the “reverse” 
regression, should be the same 

• Unfortunately the HH test is not consistent against weak instruments 
(power of 5% level test depends on parameters, is typically ≈ 15-20% 
(Hausman, Stock, Yogo (2005)) 
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nstruments  

T
Fu

•  

4) Some Solutions to Weak I
 

here are two approaches to improving inference (providing tools): 
lly robust methods: 
Inference that is valid for any value of the conce tration parameter, • n
including zero, at least if the sample size is large, under weak 
instrument asymptotics 

o For tests: asymptotically correct size (and good power!) 
o For confidence intervals: asymptotically correct coverage rates 
o or estimators: asymF ptotically unbiased (or median-unbiased) 

Partially robust methods: 
Methods are less sensitive to weak instruments than TSLS – e.g. bias
is “small” for a “large” range of μ2 
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Fully Robust Testing 
• Approach #1: use a “worst case” (over all possible values of μ2) 

μ2 

• , but 

su
• A

critical value for the TSLS t-stat 
o leads to low-power procedures 

• Approach #2: use a statistic whose distribution does not depend on 
(two such statistics are known) 
Approach #3: use statistics whose distribution depends on μ2

compute the critical values as a function of another statistic that is 
fficient for μ2 under the null hypothesis. 
pproach #4: “optimal” nonsimilar tests (subsumes 1-3) 
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sApproach #2:  Tests that are valid unconditionally – linear IV ca e  
hat is, the distribution of the test statistic does not depend on μ2) (t

 
The Anderson-Rubin (1949) test 
C

T of 
y – 

onsider H0: β = β0 in  y = Yβ + u,   
Y = ZΠ + v 

he Anderson-Rubin (1949) statistic is the F-statistic in the regression 
Yβ0 on Z. 

AR(β0) = 0( ) (
( ) ( )

0

0 0

) /
/ ( )

P k
M T k
β β

β β
′− −

′− − −Z

Zy Y y Y
y Y y Y
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AR(β0) = 0 0( ) ( ) /
( ) ( ) / ( )0 0

P k
M T k
β β

β β
′− −

′− − −
Z

Z

y Y y Y
y Y y Y

 

Comments 
• AR(  = Hansen’s (2003)ˆTSLSβ )  J-statistic  

μ2: 
Under the null, y – Yβ

• Null distribution doesn’t depend on 

0 = u, so 

AR = /
/ ( )

P k
M T k

′
′ −

Zu u
u u

 ~ Fk,n–k   if ut is normal 

d

Z

  AR →  2
kχ /k   if ut is i.i.d. and Ztut has 2 moments (CLT) 

• The distribution of AR under the alternative depends on μ2 – more 
information, more power (of course) 

• Difficult to interpret:  rejection arises for two reasons: β0 is false or Z 
is endogenous 

• Power loss relative to other tests; inefficient under strong instruments 
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Kleibergen’s (2002) LM test 
 

d ull distribution that is 2
1χ  - Kleibergen eveloped an LM test that has a n

d
 
• 
• Is efficient if instruments are strong 
• Has very strange power properties (we shall see) 

oesn’t nd on μ2. depe

Fairly easy to implement 

• Its power is dominated by the conditional likelihood ratio test 
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tsApproach #3: Conditional tes  
onditional tests have rejection rate 5% for all points under the null (β0, 

• LR tests β = β  u ing the LIML likelihood: 
β) – log-likelihood(β0) 

 
n μ2 under the null 

LR| QT, 

C
μ2) (“similar tests”).  Moreira (2003): 

0 s
 LR = maxβ log-likelihood(

• QT is sufficient for μ2 under the null 
• Thus the distribution of LR| QT does not depend o
• Thus valid inference can be conducted using the quantiles of 

that is, use critical values which are a function of QT 
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elihood ratio (CLR) testMoreira’s (2003) conditional lik  

 
A

 
w

LR = maxβ log-likelihood(β) – log-likelihood(β0) 

fter some algebra, this becomes: 
 
LR S TQ S T ST = ½{Q̂  – ˆ  + [(Q̂  – Q̂ )2 + 4 2Q̂ ]1/2} 

here 

Q̂  = 
ˆ ˆ

ˆ ˆ
S STQ Q⎡ ⎤

⎢ ⎥  = 0Ĵ ′ ˆ
ST TQ Q⎢ ⎥⎣ ⎦

Ω–1/2Y+′PZY+Ω̂–1/2′ 0Ĵ  

Ω̂  = M+ +′
ZY Y /(T–k),  Y+ = (y  Y) 

0Ĵ  = 
1/2 1/2

0 0

1
0 0 0 0

ˆ ˆ

ˆ ˆ
b a

b b a a

−

−

⎡ ⎤′Ω Ω⎢ ⎥
⎢ ⎥′ ′Ω Ω⎣ ⎦

, b0 = 
0

1
β

⎛ ⎞
⎜ ⎟−⎝ ⎠

 a0 = 0

1
β⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
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CLR test: Comments 
• Mo
• In fact, effectively uniformly most powerful among asymptotically 

variant to rotations of the instruments 
Andrews, Moreira, Stock (2006)) 

• (c iv G s c or c uting LR and conditional p-
values exists 

• Only developed (so far) for a single included endogenous regressor 
• 

extensions to heteroskedasticity and serial correlation have been 

re powerful than AR or LM 

efficient similar tests that are in
(
STATA ond reg), aus ode f omp

but.. 

As written here, the software requires homoskedastic errors; 

developed but are not in common statistical software 



Approach #4: Nonsimilar tests (Andrews, Moreira, Stock (2008)) 
 
Polar coordinate transform (Hillier (1990), Chamberlain (2005)): 

r2 = λ′λh′h,  h = 
c

d
β

β

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0 0 0( - ) / b bβ β⎛ ⎞′Ω⎜ ⎟

 33 

1 1
0 0 0/a a a a− −⎜ ⎟⎜ ⎟′ ′Ω Ω⎝ ⎠

 

sin
cos

θ
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
0
1
⎛ ⎞
⎜ ⎟
⎝ ⎠

) h/ 'h h   (so x(θ ) = x(θ) = 0

Mapping: 
β   θ 
β0 0 

< β0 (> β0) < 0 (> 0) 

∞ θ∞   = limβ→∞cos–1[dβ/(h′h)1/2] 

-∞ θ−∞  = θ∞  – π 



Compound null hypothesis and two-sided alternative: 

 34 

H0:  0 ≤ r < ∞, θ = 0   vs.  H1:  r = r1, θ = ±θ1 (*) 

Strategy
 

 (follows Lehmann (1986)) 
1. Null: transform compound null into point null via weighs :  

 
h (q) = 

Λ

Λ 0( ; , ) ( )Qf q r d rθ Λ∫  

 
tive2.  Alterna : transform into point alternative via equal weighting of (r1, 

±θ1) (this is a necessary but not sufficient condition for nonsimilar tests to 

be AE): 

g(q) = 1 ( ; , ) ( ; , )f q r f q r
2 Q Qθ θ⎡ +⎣ ⎤− ⎦ . 



3.  Point optimal invariant test of hΛ vs. g: from Neyman -Pearson Lemma, 
reject if 
 

 35 

1 1, , ( )rNP qθΛ  = ( )
( )h q

 = 
( ; , ) ( ; , )1

2 ( )
Q Qf q r f q r

h q
θ θ+ −

 > g q
1 1, , ;r θ ακΛ   

Λ Λ

 

1 1, , ( )rNP qθ4.  Least favorable distribution Λ:  Λ

 if Λ 

 is POINS for the original 

distribution is least favorable, that is, if 

1 1 1 1, 0 , , , , ;
0

r r r
r

θsup Pr ( )NP qθ θ α= Λ Λ
≤ <∞ ⎣ ⎦

 

κ⎡ ⎤>  = α 

5.  POINS Power envelope. 
The PE of POINS tests of (*) is the envelope of power functions of 

1 1, ,
( )q , wheLF r

NP
θΛ

re ΛLF is the least favorable distribution 
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orable distributions + Bessel function approximations): 

   

A closed form, POINS test of θ = 0 (using theoretical results on one-point 
least fav

1

*
,r 1

P θ  = 
( )1 1

21 *
,

2 2
1 1

cosh

sin
rD

r
θ

θ

−⎡ ⎤
⎣ ⎦  

where 
1 1,r  = 

( ) ( )*D θ ( ) ( )
1 0

1/ 4 1/ 42 / 2 2 / 2
0 0 0 0

/ 2

1 z z z z
e e

ν ν

1 0
1/ 4 1/ 42 2 / 2

1 1 1 1
2 z z z z

φ φ φ φ

ν

ν ν

ν ν
− −

⎡ ⎤+ +
⎢ ⎥+
⎢ ⎥+ +

, 

φ0 = 

ν
⎣ ⎦

2 0
0 2

0

ln zz
z

ν ν
ν ν

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟+ +⎝ ⎠

 ( tce .), ν = (k – 2)/2 

 resulted in 2
1r  = 20k  and Numerical search over r1, θ1 θ1 = π/4 
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Upper and lower bound on power envelope for nonsimilar invariant tests 
, |θ|) and power envelope for similar invariant tests against (r, 

θ|),  
0 ≤ θ ≤ π/2, r2/

 
Andrews, Moreira and Stock (2008), Figures 2/3 

 

against (r
|

k  = 0.5, 1, 2, 4, 8, 16, 32, 64; k = 5 
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Figure 4  Power envelope for similar invariant tests against (r, |θ|) and power functions of 

the CLR, LM, and AR tests, 0 ≤ θ ≤ π/2, r2/ k = 5 k  = 1, 4, 8, 32, 
 46 



 
Figure 5  Power functions of the CLR, P*B, and P* tests (in which 2r  = 20k  and θ  = 1 1

π/4), for  0 ≤ θ ≤ π/2, r2/  k = 5 k  = 1, 4, 8, 32, and
 47 
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Confidence Intervals – linear IV case 
• Dufour (1997) impossibility result for Wald intervals 
• Valid intervals come from inverting valid tests 
 
(1) Inversion of AR test: AR Confidence Intervals 

95% CI = {β0: AR(β0) < Fk,T–k;.05} 
• For m = 1, this entails solving a quadratic equation: 

AR(β0) = 0 0

0 0

( ) ( ) /
( ) ( ) / ( )

P k
M T k
β β

β β
′− −

′− − −
Z

Z

y Y y Y
y Y y Y

 < Fk,T–k;.05 

• For m > 1, solution can be done by grid search or using methods in 
Dufour and Taamouti (2005) 

• Sets for a single coefficient can be computed by projecting the larger 
set onto the space of the single coefficient (see Dufour and Taamouti 
(2005)), also see recent work by Kleibergen (2008) 

• Intervals can be empty, unbounded, disjoint, or convex 
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(2) Inversion of CLR test: CLR Confidence Intervals 
 

 
w
 
C

• 

95% CI = {β0: LR(β0) < cv.05(QT)} 

here cv.05(QT) = 5% conditional critical value 

omments: 
• Efficient GAUSS and STATA (condivreg) software 
• Will contain the LIML estimator (Mikusheva (2005)) 
• Has certain optimality properties:  nearly uniformly most accurate 

invariant; also minimum expected length in polar coordinates 
(Mikusheva (2005)) 
Only available for m = 1 



What about the bootstrap or subsampling? 
A straightforward bootstrap algorithm for TSLS: 

t

Yt = Π′Zt + vt 

Estimate 

yt = β′Yt + u  

i) β, Π by ˆTSLSβ , Π̂  
ii) Compute the residuals 

Zt}, and 
ˆtu , ˆtv  

iii) Draw T “errors” and exogenous variables from {
construct bootstrap data t

ˆtu , ˆtv , 
y , tY  using ˆTSLSβ , Π̂  

iv) Compute TSLS estimator (and t-statistic, etc.) using bootstrap 
v) Repeat, and compute bias-adjustments and quantiles from the 

boostrap distribution, e.g. bias = bootstrap mean of ˆTSLSβ  – β̂
using actual data 

data 

, this algorithm works (provides second-order 
improvements). 

TSLS  

• Under strong instruments

 50 



Bootstrap, ctd. 
• Under weak instruments, this algorithm (or variants) does not even 

The reason the bootstrap fails here is that 
provide first-order valid inference 

Π̂  is used to compute the 
ds
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bootstrap distrib n. T
ˆ 2

utio   h t
fTSLS( TSLSβ ;μ ) (e.g. Rot en e

e rue pdf depen  on μ2, say 
a v  h b rg (1984 exposition bo e, or weak

instrument asymptotics).  By using Π̂ , μ2 is estimated, say by ˆ .  2μ

The bootstrap correctly estimates ˆTSLSβfTSLS( ; 2μ̂ ), but fTSLS( TSLSβ ; 2ˆˆ μ ) 
≠ fTSLS( TSLSβ ;μ2) because 2ˆˆ μ  is not consistent for μ2. ‘ 

• p 
fa ode
This story might sound familiar – it is the same reason the bootstra

ils in the unit root model, and in the local-to-unity m l. 
• Subsampling for these (non-pivotal) statistics doesn’t work either; see 

Andrews and Guggenberger (2007a,b). 
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Some remarks about estimation 
• It isn’t possible to have an estimator that is completely robust to we

instruments 
ak 

• TS y
per

• 
have ge (infinite) variance 

• 
esti eine ( or a

LS (2-step GMM) is about the worst thing ou can do – from a bias 
spective 

LIML (in GMM, CUE) has much better median bias properties but can 
 lar

In the linear case, there are alternative estimators, e.g. Fuller’s 
mator; see Hahn, Hausman, and Kuerst r JAE, 2006) f n 
ensive o parison ext MC c m
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Example #1: Consumption CAPM and the EIS 

Yogo (REStat, 2004) 
 

 

 
M
 
EIS ct+1 = τi + ψri,t+1 + ui,t+1    (“forwards”) 
or        ri,t+1 = μi + (1/ψ)Δct+1 + ηi,t+1  (“backwards”) 
 
Under homoskedasticity, standard estimation is by TSLS or by the inverse 
of the TSLS estimator (remember Hahn-Hausman (2003) test?); but with 
weak instruments, the normalization matters 

Δct+1 = consumption growth, t to t+1 
r  = return on i,t+1 ith asset, t to t+1 

oment conditions:     Et(Δct+1 – τi – ψri,t+1) = 0 

 estimating equations:  Δ



First stage F-statistics for EIS (Yogo (2004)): 
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kward Various estimates of the EIS, forward and bac
 

 
 



AR, LM, and CLR confidence intervals for ψ: 
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What about stock returns – should they “work”? 

 



Extensions to >1 included endogenous regressor 
 
• CLR exists in theory, but difficult computational issues because the 

conditioning statistic has dimension m(m+1)/2 (AMS (2006), 
Kleibergen (2007)) 

• Can test joint hypothesis H0: β = β0 using the AR statistic: 

AR(β0) = 0 0

0 0

( ) ( ) /
( ) ( ) / ( )

P k
M T k
β β

β β
′− −

′− − −
Z

Z

y Y y Y
y Y y Y

 

under H0, AR 
d
→  2

kχ /k  

• Subsets by projection (Dufour-Taamouti (2005)) or by concentration + 
bounds (Kleibergen and Mavroeidis (2008, 2009) – 2009 is GMM 
treatment) 
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Extensions to GMM 
 
(1) The GMM-Anderson Rubin statistic 
(Kocherlakota (1990); Burnside (1994), Stock and Wright (2000))  The 

ension of the AR statext istic to GMM s the CUE objective fun
valuated at θ0: 

i ction 
e

   0( )CUE
TS θ  = 1/2 1 1/2

0 0 0
1 1

ˆ( ) ( ) ( )
T T

t t
t t

T Tφ θ θ φ θ− − −

= =

′⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑   

     
d
→  ψ(θ0)′Ω(θ0)–1Ψ(θ0) ~ 2

kχ  

• Thus a valid test of Η0: θ = θ0 can be undertaken by rejecting if ST(θ0) 
> 5% critical value of 2

kχ . 
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in, ctd.GMM-Anderson-Rub  
n the homoskedastic/uncorrelated linear IV model, the GMM-AR statistic 

rees of freedom correction): 
I
simplifies to the AR statistic (up to a deg

0( )CUE
TS θ  = 1/2 1 1/2

0 0 0
1 1

ˆ( ) ( ) ( )
T T

t t
t t

T Tφ θ θ φ θ− − −

= =

′⎡ ⎤ ⎡ ⎤Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

1
1/2 2 1/2

0 0= 
1 1

'( ) ( )
T T

t t t v t t t
t t

T y Y Z s T y Y Z
T

θ θ
−

− −
′⎡ ⎤ ⎡ ⎤⎛ ⎞′ ′− −⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑Z Z  

= 

= =

0 0

0 0

( ) ( )
( ) ( ) / ( )

P
M T k
θ θ

θ θ
′y − −

′
Y

− −
Z

Z

y
−

Y
y Y y Y

 = k × AR(θ0) 

θ 
• The GMM-AR can fail to reject any values of θ (remember the Dufour 

(1997) critique of Wald tests) 

• 
the AR, specifically, the GMM-AR rejects because of endogenous 
instruments and/or incorrect 

The GMM-AR statistic has the same issues of interpretation issues as 
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(2) GMM-LM 
Kleibergen (2005) – develops score statistic (based on CUE objective 
function – details of construction matter) that provides weak-
identification valid hypothesis testing for sets of variables 

(3) GMM-CLR 
Andrews, Moreira, Stock (2006) – extension of CLR to linear GMM 
with a single included endogenous regressor, also see Kleibergen 
(2007).  Very limited evidence on performance exists; also problem of 

4
dimension of conditioning vector 

( ) Other methods 
Guggenberger-Smith (2005) objective-function based tests based on 
Generalized Empirical Likelihood (GEL) objective function (Newey 
and Smith (2004)); Guggenberger-Smith (2008) generalize these to 
time series data.  Performance is similar to CUE (asymptotically 
equivalent under weak instruments) 
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sConfidence set  
• F

ac
• θ which, 

s the null, are not rejected by the GMM-AR statistic. 
• 

a
• Θ) with finite probability with 

 

ully-robust 95% confidence sets are obtained by inverting (are the 
ceptance region of) fully-robust 5% hypothesis tests 

Computation is by grid search in general: collect all the points 
when treated a
Subsets by projection or by concentration + bounds (see Kleibergen and 
Mavroeidis (2008, 2009) for an application of GMM-AR confidence sets 
nd subsets) 

Valid tests must be unbounded (contain 
weak instruments
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Many instruments: a solution to weak instruments? 
 

he appeal of using many instrumentsT  
• Under standard IV asymptotics, more instruments means greater 

efficiency. 
• This story is not very credible because 

(a) the instruments you are adding might well be weak (you already 
have used the first two lags, say) and  
b) even if ( they are strong, this require  consistent estimation of 

increasingly many parameter to obtain the efficient projection – henc
s

e 
slow rates of growth of the number of instruments in efficient GMM 
literature. 
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LSExample of problems with many weak instruments – TS  
ecall the TSLS weak instrument asymptotic limit: R

ˆTSLSβ  – β0 
d
→  (  

(  ) (
vz )

 )
u

v v

z
z z

λ
λ λ

′+
′+ +

 

with the decomposition, z  = δz  + η.  Suppose that k is large, and that u v

′λ/k → Λ∞ (one way to implement “many λ weak instrument 
asy

 

mptotics”).  Then as k → ∞, 

λ′zv/k 
p
→  0 and λ′zu/k 

p
→  0 

zv′zv/k 
p
→  1 and zv′η/k 

p
→  0 (zv and η are independent by construction) 

Putting these limits together, we have, as k → ∞, 
(  )

(  ) (  )
v u

v v

z z
z z

λ
λ λ

′+
′+ +

 
p
→  

1
δ

∞+ Λ
 

In the limit that Λ∞ = 0, TSLS is consistent for the plim of OLS! 
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ntial asymptotics (T 
→ ∞, then k → ∞).  However the sequential asymptotics is justified 

/T (specifically, k4/T → 0) 
 are 

ned into a blessing (if they are not too 
weak! They can’t push the scaled concentration parameter to zero) by 
e tin d na nvergence across instruments.  This can 

single best method at this point but there is promising research, e.g. 
anson (2005), and 

Hansen, Hausman, and Newey (2006)) 

Comments  
• Strictly this calculation isn’t right – it uses seque

under certain (restrictive) conditions on K
• Typical conditions on k k3/T → 0 (e.g. Newey and Windmeijer 

(2004)) 
• Many instruments can be tur

xploi g the a ditio l co
lead to bias corrections and corrected standard errors.  There is no 

Newey and Windmeijer (2004), Chao and Sw
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• 

• 
• 

• 

Gospodinov (2008) 
• Weak set identification?  

5)  Current Research Issues & Literature 
• Detection of weak instruments in general nonlinear GMM model 

Efficient testing in GMM with weak instruments 
Andrews, Moreira, Stock (2006), Kleibergen (2008) 

• Subset testing 
Kleibergen and Mavroides (2008, 2009) 

• Improved estimation in GMM 
Guggenberger-Smith (2005) (GEL) 

Many instruments 
Breaks in GMM with weak instruments 

Caner (2008) 
Connection between weak ID, HAC estimation, and SVAR 
identification using long run restrictions 


