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Abstract

The ever-increasing complexity of engineering systems has fuelled the need for novel and efficient

computational tools able to enhance the accuracy of current modelling strategies for industrial sys-

tems. Indeed, traditional Fault and Event Tree techniques still monopolize the reliability analysis of

complex systems despite their limitations, such as the inability to capture underlying dependencies

between components or to include degradation processes and complex maintenance strategies into

the analysis. However, the lack of alternative solutions able to tackle large scale modelling efficiently

has contributed to the continued use of such methodologies, together with their robustness and fa-

miliarity well rooted in engineering practice. The current paper defines a novel modelling framework

for safety system performance which retains the capabilities of both Fault and Event Tree methods,

but also overcomes their limitations. The ambition is to provide a technique for application to

real-world systems preserving a familiar user-model interface and grounding the novel approach in

well-known and established reliability techniques. In order to describe the methodology developed

and demonstrate its validity, five case-studies referring to a simplified industrial plant cooling system

are analysed and discussed. Further discussion regarding the scalability of the proposed approach is

provided, outlining the advantages of the current implementation and its computational cost.
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1 Introduction

Risk modelling methodologies have played a crucial role in the development and safe operation of

engineering systems, allowing to understand their behaviour and to manage their growing complexity.

Nevertheless, conventional approaches such as Fault and Event Trees (FT/ET ), were developed

back in the 1970s and have limitations in terms of their applicability to modern systems. Such

limitations are intrinsically linked to the simplifying assumptions of the constancy of components

failure rates and their independence. Both these hypothesis affect the ability of the model to capture

the realistic system behaviour. In the case of constant failure rates, this results in the adoption of

the exponential distribution for the representation of component failure time and may lead to the

misrepresentation of the actual deterioration process to which systems are unavoidably subject. This

may result in the overestimation of failure probability (e.g. in the case of decreasing failure rates)

and hence overengineering, or in the underestimation of risks (e.g. in the case of increasing failure

rates and aging components). Similarly, disregarding the dependencies influencing the performance

of multiple components or subsystems, may conceal failure mechanisms or their significance for the

overall system’s safety, preventing an adequate understanding of the system’s behaviour.

Several research efforts have been focused on overcoming the limitations of fault and event trees

[22], leading to the development of dynamic FTs [10] [8], Boolean logic Driven Markov Processes

[5] and Pandora temporal FTs [31], relying on the use of dynamic gates for modelling sequence

dependent failure mechanisms and their computation through the use of Markov Models (MM) [12].

However, such solutions come with a wide range of shortcomings and remain mostly restricted

to academic applications or to small-scale problems, due to the computational burden generally

associated with this kind of techniques [17] [30] [32]. The objective of the research presented in this

paper is to address the need for novel approaches to safety analysis able to expand the capacity

of existing techniques and complement traditional risk assessment methodologies. While FT/ET

come with limitations, it is also true that they have played a crucial role in the successful design

and operation of complex engineering systems for decades, and remain the common language shared

between designers, analysts and regulators. The aim is then to implement a modelling framework

able to enhance the strengths of traditional techniques (e.g. modelling simplicity, relatively low
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computational costs, robustness), by overcoming the limitations. In the proposed methodology, this

is achieved by identifying the sections of the model where underlying traditional assumptions are

unjustified and adopting numerical techniques better suited for their assessment. The approach

implies the integration of several existing techniques, such as FTs, ETs, MMs [16], Binary Decision

Diagrams (BDDs) [9] and Petri Nets (PNs) [20], under the same framework. The novel technique

can be applied to any system requiring FT/ET analysis, providing the analyst with a higher degree

of modelling flexibility.

More detail regarding the structure and nature of the proposed modelling framework is provided

in Section 2. The validity and efficiency of the proposed framework is then tested through its

application to a simplified industrial system, whose description is provided in Section 3. Five case-

studies are then considered, in order to compare the proposed solution with traditional techniques for

several types of system dependencies. Finally, Section 4 is dedicated to discussing the computational

feasibility of the proposed approach for large scale systems.

2 Methodology

Large-scale engineered systems consist of many concurrently operating elements, which interacting

as an ensemble provide the designed system functionality. The malfunctioning of one or more of

such elements can hinder the correct operation of systems, which are therefore vulnerable to faults

due to their spatial distribution and subsystems interdependencies [4]. The resulting emergent and

multiscale properties of large engineered systems have often earned them the classification of com-

plex systems [6], although there is no widely agreed upon definition of what makes an engineering

system complex [23].

The use of the term complexity in this study is strictly intended from a reliability modelling point

of view, and refers to those dynamic features of systems, e.g. degradation processes, stochastic

dependencies, feed-forward and feedback connections, that are not representable through traditional

tools. Indeed, the most straightforward approach to model the failure of engineering systems is to

interpret these latter as a network of interconnected and intercommunicating components. Under

this assumption, the losses of functionalities in the system can be mapped through the so called
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Fault Trees [2]: such graphical tools allow to factorize the main system functionality in terms of

sub-functionalities (e.g. through component operational state), defining the logical rules regulating

the interaction between the nodes of the tree/network and hence the systems components. While this

approach has been adopted successfully in the safety analysis of large-scale engineered systems [24],

it relies on the strong simplifying assumption of components independence, hence neglecting the

dynamic features that are proper of real-world systems. Still, the behaviour of complex stochastic

systems is determined by dynamic logical interactions between components (e.g. synchronization,

sequentiality, concurrency and conflict), as therefore must be their reliability.

The modelling framework proposed in this study aims at overcoming these limitations, allowing the

accurate representation of actual complex dynamic features of the system within the FT formalism.

This is achieved through the integration into the latter of techniques suitable for the depiction of

components interaction in time [3] [13] [15]. The key to such integration is the use of common prob-

abilistic formalism, able to translate the behaviour of the systems and its components on different

modelling levels: the components level, which can be characterized by complex, dynamic interactions

which are quantified probabilistically through the use of PNs and MMs; and the system function-

ality level, where the information collected previously is re-introduced in terms of its probabilistic

contribution to the overall system loss of functionality over the time interval of study, with regards

to which is a static value.

This results in a novel simulation framework that, rooted in well-established mathematical modelling

formulations, extends the capabilities of current risk analysis methods, overcoming their most criti-

cal limitations. The hope is very much to promote through similar tools a significant shift towards

more realistic system modelling, without renouncing the familiarity of techniques already deeply

entrenched in engineering practice.

The proposed solution relies on integration of traditional FT/ET with PNs and MMs, marrying com-

putational feasibility with analysis accuracy. An overview of the simulation framework implemented

is presented in Figure 1. The input required from the analyst consists of the system setting (in the

form of conventional FTs and ETs as well as component failure modes) and, where necessary, of

PN/MM models representing complex components’ maintenance strategies and dependencies. The

developed algorithms identify and isolate independent modules within individual or combined (in
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Figure 1: Overview of the proposed simulation framework
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the case of dependencies between subsystems) fault trees containing Dependency Groups (DGs).

These refer to closed sets of components whose failures are mutually dependent on each other. The

isolated complex structures are then implemented (when not pre-defined by the user) and analysed

in the form of individual PNs or MMs, generating a high level of detail in the simulation. Finally, the

results obtained are re-integrated within the original FT structure and subsequently within the ET,

completing the analysis. The following sections provide a detailed description of the computational

steps entailed by the methodology.

2.1 Input Structure

The first step towards the generation of models for the proposed methodology is the submission of:

• system event tree structure: this provides crucial information on the nature of the interaction

between subsystems, capturing how their failure or working states impact the safety of the

overall system of interest.

• subsystems fault tree structures: these represent the causes of failure patterns resulting from

the malfunctioning of the subsystem’s components.

• components failure mode information: a complete list of the system’s components and their

associated failure/repair/inspection time distributions.

• PNs/MMs models: these provide user-defined PN or MM structures modelling complex fea-

tures of the system (such as complex maintenance strategies or degradation processes), offering

a further degree of flexibility to the overall methodology.

Figure 2 gives an overview of the input structure and its implementation in the analysis.

2.2 Components Reliability Metrics Computation

The first step of the procedure involves the calculation of the reliability metrics, i.e. failure frequency

and unavailability, associated with each system component. Where conventional assumptions, such

as constant failure and repair rates components, independence and simplistic maintenance strategies,

are relevant, the unavailability and failure frequency of the component is calculated according to
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Figure 2: Hierarchical input structure and analysis organisation

Figure 3: PN model of components T1 failure-repair cycles

traditional failure models [2]. Conversely, when failure and repair times are represented by distribu-

tions other than exponential, the proposed approach relies on the use of PNs. These are utilised to

compute the component’s unavailability and failure intensity simulating the stochastic occurrence of

alternating failure and repair events. For instance, let the failure time of a component T1 be repre-

sented by a Weibull distribution, hence having a non-constant failure rate. In addition, assume the

repair time associated with T1 to be lognormally distributed. The resulting PN model portraying

the failure mode of T1 is shown in Fig. 3. The network consists of two places: one associated with

the correct operation of the component (labelled T1), the other (T1) indicating its failure state. The

presence of a token in one or the other place denotes the current state of the component. The firing

of the stochastic failure transition, occurring at time fT1, causes the movement of the token from
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the working to the failure state, while the repair transitions (occurring at time rT1) simulates the

completion of corrective maintenance and hence the restoration of component functionality.

In the framework implementation, similar life-cycle PNs are automatically generated for any com-

ponent in input characterised by non-traditional failure models, and then simulated to convergence.

The component unavailability information is then extracted from the simulation results, being cal-

culated as the fraction of downtime over the total simulation time. The failure intensity is estimated

as the number of failures occurring over the simulated time interval. More complex maintenance

strategies or degradation processes affecting the component can be captured through the same ap-

proach: complex features may be captured by user-defined models provided in input, through the

use of PN or MM structures. The use of MMs in particular can offer advantages in the case expo-

nentially distributed failure and repair times, since the associated steady-state solution may reduce

the computational demand associated with the calculation. Nevertheless, it is worth emphasizing

that even the use of more expensive simulation techniques (i.e. PN) is restricted only to those com-

ponents for which traditional simplifying assumptions are unjustified and thus resulting in potential

inaccuracies, while computational ease is maintained untouched for the remaining components.

2.3 Dependency Groups Identification and Computation

The unavailability and failure intensity of dependent components, is estimated in relation to the

DG to which they belong. This is achieved through the implementation and computation of PNs

or MMs models representing the dependency relationship, resulting in the estimation of the joint

failure probability and intensity associated with the components included in the group.

For instance, with reference to Fig.4, let P1 and P2 be two stochastically dependent components

(pumps): these share the load equally but when one fails and the remaining functioning component

must supply the required flows alone. Under these conditions the functioning pump experiences a

higher load and is more likely to fail.

If both components are in working order (places P1, P2), their failure time is represented by the

distributions fP1 and fP2 respectively. However, when P1 fails (place P1), the redundant compo-

nent P2 experiences a greater load. This increases its failure probability, changing the failure time

distribution from fP2 to f ′
P2 (see transitions named accordingly in Fig. 4). Symmetrically, if P2
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Figure 4: PN modelling the dependency group embracing components P1 and P2

fails (place P2), the failure time distribution for the component P1 increases from fP1 to f ′
P1. The

relationship between the two components P1 and P2, is then fully captured by the PN in Fig. 4.

The simulation of the latter is carried out using the Monte Carlo method [21] and results in the

computation of the joint reliability metrics of interest for the two components: for example, the

joint availability can be calculated dividing the simultaneous working time of the two components

(i.e. token in the joint place P1P2) over the simulated time interval. Similarly, the failure intensity

of the event P1P2, referring to the working state of P1 and failure state of P2, can be calculated as

the number of times a token entered the associated place P1P2 over the total simulated system life.

If all the residence times in any state of the model are exponentially distributed, the failure mech-

anisms within the dependency group could be represented through the use of a MM, quantifying

the joint probabilities of interested through the computation of its steady-state solution. This alter-

native approach may reduce the computational effort when compared to the equivalent PN, hence

enhancing the efficiency of the calculation. Figure 5 shows the MM associated with the DG entailing

P1 and P2, where λ1 and λ2 refer to the rates associated with the failure of one component expe-

rienced when the second component is working or failed respectively, while ν indicates the repair
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Figure 5: MM modelling the dependency group embracing components P1 and P2

rate common to the two components. This step of the methodology is comparable to the procedure

discussed in Section 2.2 for non-conventional component failure models, with the only difference that

the simulation, and subsequently its output, are here referring to a group of dependent components

rather than to individual, independent ones.

2.4 FTs identification and Conversion

The next phase of the procedure focuses on the identification of independent system FTs and their

conversion into equivalent BDDs. If all subsystems are independent, the FTs submitted in input

remain untouched. Conversely, if any type of dependency exists between two or more subsystems,

the respective FTs are merged together. This operation is carried out directing the top events of

the individual dependent FTs into an AND gate whose output becomes the top event of the new

merged FT.

For example, let X1 and X2 be the top events of two individual FTs representing the failure of a

primary and secondary cooling subsystem respectively (see Fig. 7). Assuming the two subsystems

to have a common component P2, the related FTs fail the assumption of independence, resulting

in the need to compute the two models jointly and hence to merge the two FTs as shown in Fig.

6. Overall, the result of this step is to obtain a set of independent FT models, that can then be

analysed separately without affecting the accuracy of the analysis.

Once the independent FTs are identified, their conversion to BDDs is carried out. A BDD is a
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Figure 6: Merging procedure for dependent FTs

directed acyclic graph consisting of terminal and non-terminal vertices connected by edges (also

referred to as branches) [19] [9]. Each non-terminal vertex is associated with a basic event (e.g. the

failure of individual components in the current application) and is the origin of two branches: a 0

branch representing the non-occurrence of the basic event (e.g. the working state of the component)

and a 1 branch representing the occurrence of the basic event (e.g. component failure). Terminal

vertices, in which all paths through the BDD terminate, assume either a 0 value, associated with the

working state of the system, or 1, indicating instead the failure of the system. The Boolean function

underlying a BDD structure can be factorised node by node through the use of if − then−else (ite)

structure. Any BDD node N can be represented as:

N = ite(Xi, G1, G0) (1)
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where Xi, which labels the node, refers to the associated basic event, while G1 and G0 are further

Boolean function representing children nodes lying on the 1 and 0 branch of N respectively. The

expression in Eq. 1 translates as: if Xi fails then consider the Boolean function G1 ; else consider

function G0 which, lying on the branch 0, implies the working state of the same component [26].

The structure of the BDD can be then expressed as the combination of the ite structure of its nodes.

For instance, the structure of the BDD shown on the right hand-side of Fig. 10a, can be expressed

as:

Nroot = ite (HX1, 1, ite (T1, 1, ite (P2, ite (P1, 1, 0) , 0))) (2)

where Nroot refers to the root node labelled by the failure event HX1. Each path, i.e. chain of events

interconnecting through the BDD structure, linking the root node of the graph with a terminal 1

describes a system cut set and hence represents a possible failure mechanisms of the system.

One of the advantages associated with BDDs is the ease with which a tree can be converted to

represent its complementary top event. This is represented by a Dual Binary Decision Diagram

(DBDD), which can be easily obtained from the associated BDD by inverting the value of the

terminal vertices while maintaining the structure unaltered. In terms of BDD structure, the result

of the conversion procedure depends strongly on the variable ordering selected. In the current study,

the conversion method developed by Rauzy [18] has been adopted applying the special ordering

suggested by Sinnamon and Andrews [25]. According to this, FT gate events are considered in a

top down ordering, with the only exception that at each gate the input basic events are listed with

the repeated events first (if the gate has more than one repeated event as an input then the most

repeated event is placed first).

2.5 Models Integration

BDDs encode Boolean functions through the combination of a graphical structure entailing edges,

terminals and nodes, and the probabilistic information associated to these latter. The analysis of

the graphical structure allows to define the possible combinations of events (or components states)

resulting in the overall system failure, while the manipulation of the numerical information associated
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to each node allows to quantify the likelihood of the failure. In light of this, the graphical layout of the

BDD depends exclusively on the corresponding FT structure and the variable ordering adopted for

the conversion, and hence is not affected by the nature of the events embraced and their probabilistic

characterisation. However, in the proposed methodology the integration of the auxiliary PN and

MM models discussed in Section 2.2 and 2.3, is still accomplished within the BDD definition, and

more specifically by means of the numerical characterization of the nodes according to the nature

of the event depicted.

As discussed so far, the probabilistic information associated with each basic FT event, and therefore

with each BDD node, can be gathered from four possible sources:

• traditional maintenance models: referring to independent components or events characterised

by constant failure and repair rates;

• marginal MMmodels: this option is available to model the life cycle of independent components

characterised by constant failure/repair rate as well as complex maintenance strategies not

captured by canonical maintenance models;

• marginal PN models: adopted to describe individual components characterised by non-exponentially

distributed failure/repair times or by complex maintenance strategies (e.g. user-defined);

• joint MM models: used to model the interaction between failure mechanisms and repair pro-

cesses of two or more components characterised by constant failure/repair rates;

• joint PN models: as for the former, this solution can be adopted to model the interdependencies

and dynamic features existing between components, even when characterised by non-constant

rates.

The first three categories result in the estimation of marginal unavailability values for independent

components, and can therefore be associated with the corresponding nodes as for traditional BDDs,

regardless of their origin (e.g. if MM/PN output or from traditional models). On the contrary, the

computation of the joint PN and MMmodels results in the estimation of joint probabilities associated

with each possible combination of outcomes of the dependent events included in a dependency group

previously identify. Therefore, each BDD node belonging to a dependency group is associated with
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a joint probability table covering all possible combinations of events entailed in the group rather

than an individual probability value like in the other cases. Such tables are common to all nodes of

the same dependency group and allow to integrate the output of the secondary PN and MM models

within the BDD structure even when including component dependencies.

In light of this, the numerical characterisation of each BDD through the probabilistic output of PN

and MM models (joint or marginal), represents the core of the multi-model integration on which the

proposed methodology relies.

2.6 BDDs computation

The computational steps discussed so far provide a structure of independent BDDs as well as the

reliability information associated with independent components and dependency groups. This in-

formation can now be processed in order to quantify each BDD, focusing on the prediction of three

relevant reliability metrics: failure probability, failure frequency and component importance mea-

sures.

As discussed in the previous section, each path PATHi connecting a BDD root node with a terminal

1 represents a combination of components states leading to the failure of the system. In light of

this, the failure probability of the system (i.e. the probability associated with the top event of the

corresponding FT) can be calculated as the sum of the probability values associated with each such

path. This can be expressed as:

Qsystem =

m∑
i=1

q(PATHi) (3)

where q(PATHi) indicates the probability associated with the i − th of the m disjoint paths con-

necting the BDD root to a terminal 1.

In order to achieve an adequate understanding of a system’s behaviour, it is desirable to measure the

contribution of individual components to its overall failure probability. This can be estimated for a

generic component X as the difference of the system failure probability assuming the component Xj

has failed (i.e. Qsystem(Xj)), minus the system failure probability assuming the component to work

correctly (i.e. Qsystem(Xj)). This quantity is known as the Birnbaum’s measure of importance of
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the component, and can be expressed as:

G(Xj) =
∂Qsystem

∂q(Xj)
= Qsystem(Xj)−Qsystem(Xj) (4)

The third metrics of interest in this study can be finally computed from the Birnbaum’s measure of

importance for the components as:

Fsystem =

k∑
j=1

G(Xj) · f(Xj) (5)

where f(Xj) refers to the failure intensity of the j − th of the k components of the system, and

Fsystem is the overall failure intensity.

If the BDD refers to an independent subsystem, and hence matches one of the subsystem FTs in

the input, the reliability information obtained is directly relevant to the independent subsystem

itself. Conversely, if the BDD results from the creation of a merged FT due to the existence of

dependencies between two or more subsystems (as discussed in Section 3.4, the reliability information

refers to the joint state of the two subsystems. For instance, with reference to the example of Fig.6,

the quantification of the BDD obtained from the conversion of the merged FT will result in the

probability associated with the top event indicating the simultaneous failure of both subsystems.

Finally, the occurrence of one or more dependency groups within a FT implies the presence of

components dependencies in the resulting BDD. Currently available algorithms for the computation

of BDDs do not allow for stochastic dependencies, relying instead on the assumption of components

independence typical of FT analysis. In light of this, the simulation framework proposed required

the development of novel solutions for the quantification of BDDs in the presence of dependencies.

The approach adopted relies on the calculation of the probability of all BDD paths to failure using

independent and joint probabilities, as well as their manipulation, as appropriate. This strategy has

been implemented in a novel algorithm [29] and integrated in the simulation framework presented.
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2.7 ET computation

The computation of the independent BDDs provides the information necessary to complete the

safety analysis, through the calculation of the overall system ET. If the subsystems defining the ET

branches are all mutually independent, the computed BDDs match the input FTs structure and hence

refer to individual subsystems: in this case the computation of the ET is straightforward, utilising

the initiating event failure intensity and of the probability of failure of the remaining subsystems.

If instead two or more subsystems included in the ET are linked by some sort of dependency, the

computation of the ET requires the use of conditional, rather than marginal, probabilities. This

can be easily gathered from the joint probabilities calculated from the merged BDD (as discussed in

Section 2.4 and 2.6) according to the marginalisation and conditioning rules. The first of this can

be applied in order to extrapolate marginal values of probability from joint estimates, as:

q(Xi) =
∑
Xj

q(Xi = Xi,Xj) (6)

where the marginal value q(Xi) was obtained summing over the set of probability values q(Xi =

Xi,Xj) obtained from BDDs analysis and associated with the occurrence of state Xi regardless of

the state of dependent component Xj . Similarly, the conditional probability of component Xj to be

in its failed state given the failure of Xi can be computed as:

q(Xj | Xi) =
q(Xi, Xj)

q(Xi)
(7)

3 Numerical Application

To demonstrate the methodology and explore the effects of different assumptions in the analysis, the

proposed approach has been applied to five simple case-studies characterised by different degrees of

complexity:

1. Case Study A: relies on conventional assumptions such as full independence with no component
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Figure 7: Event tree for the model in Section 3

degradation.

2. Case Study B: investigates the inclusion of component degradation in the analysis while main-

taining the assumption of independence.

3. Case Study C: focuses on dependencies resulting from shared basic events between two or more

subsystems. This is referred as a ’hard’ dependency.

4. Case Study D: investigates a category of dependencies referred to as ’soft’. These include

dependencies triggered by secondary procedures or processes, which may be not strictly con-

nected with the hardware function (e.g. maintenance, load, surrounding conditions etc.).

5. Case Study E: considers the overlapping of the dependency types investigated in Case C and

D. This is referred to as a ’complex’ dependency.

The following sections provide a detailed description of the analysis carried out for each case listed

above. All case studies refer to the same system design, whose detail are provided in the following

section.

3.1 System Model

A simplified power plant cooling system has been selected for testing the proposed methodology.

The system design is shown in Fig.8 and embraces four subsystems:
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Figure 8: System model for demonstration of concepts

• Primary Cooling System: this consists of a heat exchanger HX1 which is fed cooling water

from a storage tank T1. The circulation is ensured by the operation of two identical pumps

working in parallel, P1 and P2 (both normally operational). The failure of either HX1 or T1

prevents the correct functioning of the primary cooling system. Similarly, the simultaneous

unavailability of the circulation pumps P1 and P2 leads to the overall failure of the subsystem.

Conversely, the failure of only one of the two pumps, does not affect the operation of the

primary cooling system since both pumps have the capability to provide the coolant required.

The FT summarising the possible failure mechanisms of the primary cooling system is shown

in Fig. 9a.

• Secondary Cooling System: it partially provides the required vessel cooling capability. Sim-

ilarly to the primary cooling, it comprises a heat exchanger HX2, a storage tank T2 and a

pump P3 responsible for the circulation of cooling water. Additionally, the valve V 1 opens to

allow water to flow only when the primary system has failed and P3 is activated and working

correctly. The failure of any of the mentioned components prevents the correct operation of

the system, as shown by the FT in Fig. 9b, resulting in the unavailability of secondary cooling.
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(a) FT for the primary cooling subsystem (b) FT for the secondary cooling subsystem

(c) FT for the detection subsystem (d) FT for the fan cooling subsystem

Figure 9: BDD structures for subsystems

• Detection System: the temperature within the vessel is expected to rise in the case of failure

of the primary cooling system. By design, such increase is detected by dedicated sensors, S1

and S2, working in parallel and transmitting the reading to a programmable logic controller

COMP . When the temperature readings from S1 and S2 exceed a pre-established threshold,

the controller activates both the secondary and fan cooling systems. The failure of the subsys-

tem controller results in the unavailability of the entire system, as shown by the FT of Fig. 9c.

On the contrary, the failure of only one of the two sensors does not affect the correct operation

of the subsystem.

• Fan System: like the secondary cooling system, the fan has the capability to provide partial

cooling of the vessel. When relay R1 energises and its contacts close, the associated circuit
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activates the electric motor M operating fan (F ). The failure of any of these components

results in the unavailability of the subsystem, as highlighted by the FT in Fig. 9d.

Any combination of subsystems states has the potential to result in different consequences, as sum-

marised by the ET in Fig. 7. The failure of the primary cooling system can result in the total loss of

cooling only if in combination with the failure of the detection system (preventing the activation of

secondary mitigation measures) or in the case of simultaneous loss of the secondary and fan cooling

systems. Conversely, if one of the latter two subsystems operates correctly but not the other, there

will be a partial cooling loss. Finally, if all but the primary cooling subsystem are available, no

cooling loss is registered.

3.2 Case A

This is the simplest case considered, relying on the assumption of full independence and neglecting

any degradation process to which the components may be subject. In light of this, the reliability

metrics of the components can be calculated according to conventional failure models, as discussed

in Section 2.2.

For a component X whose failure immediately apparent and for which corrective action is in

place (e.g. revealed failure), the unavailability q(X) can be expressed as:

q(X) =
λ

λ+ ν
(8)

where λ and ν represent the component’s failure and repair rates respectively. This is the case

for all the components belonging to the primary system, since their failure would directly affect

the performance of the system. On the other hand, the malfunctioning of components belonging

to the secondary, detection and fan systems, might be not detected on occurrence due to the sub-

systems not being continuously operational (i.e. unrevealed failure). Scheduled maintenance with

regular inspections is assumed to be in place for such components, whose unavailability can hence

be calculated as:

q(X) = λ · (θ
2
+

1

ν
) (9)
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COMPONENT FAILURE MTTR UNAVAILABILITY FAILURE
RATE INTENSITY
[h−1] [h]

HX1 1.7e−06 24 4.08e−05 1.70e−06

T1 2.7e−08 8 2.16e−07 2.70e−08

P1 8.0e−04 8 6.40e−03 7.95e−04

P2 8.0e−04 8 6.40e−03 7.95e−04

HX2 1.7e−06 14 3.72e−03 1.69e−06

T2 2.7e−08 260 5.91e−05 2.69e−08

V1 2.7e−07 5 5.91e−04 2.69e−07

P3 8.0e−04 8 1.09e−03 4.99e−07

S1 1.7e−06 3 3.72e−03 1.69e−06

S2 1.7e−06 3 3.72e−03 1.69e−06

COMP 3.1e−06 12 6.70e−03 3.04e−06

R1 3.4e−07 3 7.44e−04 3.40e−07

M 8.0e−06 150 4.38e−03 1.99e−06

F 3.5e−06 40.5 7.66e−03 3.47e−06

Table 1: Components failure reliability information for case-study A

where θ refers to the time interval between inspections. The failure intensity f(X) can be then

calculated for the generic component X as:

f(X) = λ(1− q(X)) (10)

The components reliability information and the relative metrics calculated according to the above

equations are shown in Table 1. A regular time interval of 4380 h between inspections, corresponding

to a six monthly maintenance schedule, has been assumed for all components except those belonging

to the primary cooling system. According to the procedure discussed in Section 2, the next step in

the methodology focuses on the identification and computation of dependency groups. However, this

does not apply in the current case since all components and subsystems are assumed independent.

Subsequently, the FTs shown in fig.9a - 9d are independent and can be converted to BDD structures

as discussed in Section 2.4. The resulting BDDs are shown in Fig.10, where dashed lines indicate 0

branches, continuous lines refer to 1 branches. Once the structure of the BDDs has been generated,

their numerical analysis is carried out as discussed in Section 2.6. The resulting failure probability

values associated to each subsystem are shown in Table 2. The subsystems FTs were also analysed
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(a) Primary cooling system BDD (b) Secondary cooling system BDD

(c) Detection system (d) Fan cooling system BDD

Figure 10: BDD structures for subsystems

adopting the Minimal Cut Set Upper Bound approximation [2] [1], in order to verify the algorithms

implemented.

As shown in Fig.7, the failure of the primary cooling system works as trigger event for the overall

system failure. For this reason the failure frequency associated with the primary system was com-

puted, resulting in 1.1901e−05 h−1. From this and the subsystems failure probabilities previously

calculated, it is finally possible to estimate the system ET outcome frequencies for the possible

degrees of cooling loss. The results obtained are shown in Table 7.
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SUBSYSTEM FAILURE PROBABILITY
PRIMARY 8.1942e−05

SECONDARY 5.4615e−03

DETECTION 6.7154e−03

FAN 1.2747e−02

Table 2: Subsystems failure probability for case-study A

3.3 Case B

Assume the components HX1 and T1 from the primary cooling system to be characterised by a

non-constant failure rate, and their failure time follows a Weibull distribution. In addition to this,

let assume T1 to be characterised by a lognormal repair time distribution.

As described in Section 2.2, the proposed approach relies on the use of PNs to compute the re-

liability of components characterised by non-constant failure or repair rates. The lifecycle of T1

is then simulated running to convergence the PN shown in Fig.3, computing then the component

unavailability as the ratio between the total simulated downtown over the overall simulated life.

An identical PN structure has been adopted for HX1. Specifics of the distributions adopted in

the current case-study and the resulting reliability metrics are provided in Table 3. Substituting

such values into the analysis of the primary subsystem BDD (to which the components under study

belong), the associated failure probability q(PRIMARY ) and intensity f(PRIMARY ) are:

q(PRIMARY ) = 9.230e−03 (11)

f(PRIMARY ) = 1.2257e−05h−1 (12)

Also in this case the computation of the system ET is conventional, thanks to the assumption of full

independence. Table 7 shows the results obtained updating the ET calculation in view of the new

probability and intensity values for the primary system failure in Eq.11.

3.4 Case C

Consider now the situation where pump P2 is common to both the primary and secondary cooling

systems (see Fig. 9b). As such, P2 replaces P3 in the FT representing the failure of the secondary
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COMPONENT FAILURE REPAIR UNAVAILABILITY FAILURE
TIME TIME FREQUENCY
[h] [h]

HX1 Weibull Exponential 3.92e−3 1.70e−06

[3, 6622.7] [0.0417]
T1 Weibull Lognormal 5.29e−3 4.87e−7

[2, 417920] [8, 4.125]

Table 3: Assumptions for case-study B

subsystem. To model the real setting of the system, it is now necessary to take into account the

dependency triggered by the shared component P2 and linking the primary and secondary cooling

system FTs. As discussed in Section 2.4, this is achieved merging the dependent FTs, computing

the resulting BDDs, and extracting from the analysis the joint probability associated with all the

possible combinations of states of the two subsystems. In this case, only combinations of states

including the failure of the primary cooling system are of relevance for the safety analysis, since

the working state of the primary cooling would instead garantee the correct operation of the overall

system (see Fig.7). Hence, the probability estimates of interest are:

• q (PRIMARY, SECONDARY ): probability of simultaneous failure of the primary and sec-

ondary cooling;

• q
(
PRIMARY, SECONDARY

)
: probability of the failure of the primary cooling but the

correct operation of the secondary cooling.

The first of these is estimated from the analysis of the FT obtained merging (ANDing) the two

subsystem FTs, as shown in Fig. 6. Similarly, the probability q
(
PRIMARY, SECONDARY

)
can

be calculated as the top event of a FT obtained merging the primary cooling FT in input with the

working state (dual) model of the secondary cooling system FT initially provided. The resulting tree

is shown in Fig.11. Having defined the FTs of interested, they are converted to BDDs, giving the

structures shown in Fig.12. Since the dependency considered in this case is caused by the repetition

of the component P2 in two subsystems, the merging of the FTs is sufficient to guarantee the va-

lidity of the independence assumptions and the resulting BDDs can be computed using traditional

algorithms. The results of the BDDs analysis are shown in Table 4: while the probability associated

with the failure of the detection and fan subsystem remain unchanged (the parameters for these
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Figure 11: Merged FT for case B. Repeated components are highlighted

SUBSYSTEM FAILURE PROBABILITY
PRIMARY&SECONDARY 4.1399e−05

PRIMARY&SECONDARY 8.1942e−05

DETECTION 6.7154e−03

FAN 1.2747e−02

Table 4: Subsystems failure probability for case-study C
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(a) BDD of the joint FT in Fig. 6 (b) BDD of the joint FT in Fig. 11

Figure 12: BDDs for relevant combination of states of primary and secondary system

systems are identical in cases A, B and C), joint values are provided for the primary and secondary

cooling.

As discussed in Section 2.7, the system ET can be now computed taking into account the dependen-

cies underlying the two systems and manipulating the relative joint probability. For instance, the

frequency associated with the consequence NOLOSS, can be now calculated as:

f(NOLOSS) = f(PRIMARY )·q(DETECTION)·q(SECONDARY |PRIMARY )·q(FAN) (13)

where q(SECONDARY |PRIMARY ) refers to the probability of the secondary system to work

given that the primary coolant system has failed, and f(PRIMARY ) to the failure frequency of the

primary coolant subsystem. This can be calculated according to the conditioning procedure shown

in Eq.7, resulting in:

q(SECONDARY |PRIMARY ) =
q(PRIMARY, SECONDARY )

q(PRIMARY )
(14)
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where q(PRIMARY ) can in turn be estimated through marginalisation (see Eq.6) as:

q(PRIMARY ) = q(PRIMARY, SECONDARY ) + q(PRIMARY, SECONDARY ) (15)

using the joint probability values q(PRIMARY, SECONDARY ) and q(PRIMARY, SECONDARY )

obtained from the the BDD analysis. Similarly, the probability of the secondary cooling to fail given

the failure of the primary system can be obtained as:

q(SECONDARY |PRIMARY ) =
q(PRIMARY, SECONDARY )

q(PRIMARY )
(16)

In light of this, the computation of the system ET can be completed, resulting in the loss frequency

values shown in Table 7.

3.5 Case D

In the system, the circulation of cooling water within the primary subsystem is ensured by the

operation of two identical pumps working in parallel, namely P1 and P2. Let now account for the

fact that the failure of one pump will require the second pump to deliver the full supply and therefore

be subject to a higher load, increasing its probability of failure. Such a relationship between the two

components is modelled by the PN shown in Fig.4 as well as by the MM shown in Fig.5. Assuming

the repair and failure times of both pumps to be exponentially distributed, the steady-state solution

can be easily calculated for the associated MM, to gain advantages in terms of computational time.

The two components are assumed to be subject to corrective maintenance with the same repair rate

used in the previous cases, as well as the same failure rate when under design load. However, the

failure rates of the two components increase when the pump is subject to a higher load (i.e. when the

other pump is out of order). Adopting the parameters shown in Table 6, the steady-state solution of

the MM leads to the joint values shown in Table 5: as expected, the joint unavailability of P1 and

P2 results to be one order of magnitude higher than the product of their unavailability calculated

assuming independence.

Carrying out the analysis of the BDD associated with the primary cooling using the joint values
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STATE PROBABILITY FREQUENCY
P1, P2 1.3362e−04 3.3406e−05

P1, P2 6.1863e−03 7.8999e−04

P1, P2 6.1863e−03 7.8999e−04

P1, P2 9.8749e−01 1.5799e−03

Table 5: Output of the MM in Fig. 5

PARAMETER VALUE
λ1 8.00e−04

λ2 2.70e−03

ν 1.25e−01

Table 6: Input of the MM in Fig. 5

obtained, the probability of the subsystem to fail results equal to 1.7460e−04 which is more than

two times higher the estimate of case A. The probability values associated with the failure of the

remaining subsystems remain instead unchanged (see Table 2). The analysis of the ET results in

the loss frequency provided in Table 7. The obtained frequencies show the impact of the P1 and P2

dependency on the overall safety of the system: both the values associated with partial and total

loss of cooling result to be higher than what computed in case of independence.

3.6 Case E

Engineering systems can be characterised by complex dependency structures, not easily attributable

to a single type as for the examples above. In order to test the proposed approach against a

similar case, case-studies C and D have been merged into one: let P2 be shared by the primary

and secondary cooling systems, as well as being dependent on P1. The resulting BDD structures

are then identical to those shown in Fig.12. However, as for case D, their computation requires the

use of the joint probability associated with the failure and operation of both primary and secondary

LOSS CASE A CASE B CASE C CASE D CASE E
[h−1] [h−1] [h−1] [h−1] [h−1]

NONE 1.1606e−05 1.1954e−05 1.4415e−05 3.5639e−05 3.9613e−05

PARTIAL 2.1360e−07 2.1999e−07 7.4687e−06 6.5588e−07 3.0926e−05

TOTAL 8.0742e−08 8.3158e−08 2.4262e−07 2.4793e−07 8.7226e−07

Table 7: Loss frequencies for the case studies analysed

29



AN INTEGRATED MODELLING FRAMEWORK Tolo and Andrews

cooling subsystem (see Table 5). Therefore case E contemplates the stochastic dependency between

P1 and P2, where P2 is a component of both the primary and secondary cooling subsystems. The

quantification of the failure probability of these latter, allows to estimate the effect of such system

setting in terms of system reliability. Indeed, as shown in Table 8, the probability of a simultaneous

failure of both subsystems is equal to 1.3405e−04, which is over 3 times higher than the estimate

obtained in case C (i.e. considering the stochastic dependency between the two pumps but assuming

P3 to service the secondary cooling instead of P2). However, when compared to the system setting

entailing only stochastic dependency (case D), the gap between values widens considerably, with the

joint probability of the primary and secondary system to fail being 3 order of magnitude higher than

its value assuming independence. Therefore, both the stochastic dependency between P1 and P2 and

the dependency between the two cooling subsystems (due to the shared use of P2) rise individually

the likelihood of a simultaneous failure of the primary and secondary cooling, with the second giving

the highest contribution to the increase. This is due to the decline of system redundancy triggered by

the substitution of P3 (as in case D) with P2. On the other hand, the probability associated with the

failure of the primary subsystem and the correct operation of the secondary cooling decreases when

considering the stochastic dependency between the two parallel pumps P1 and P2: the estimate

indeed results to be only 20% of the value calculated in case C, assuming components independence.

This suggests that, when considering the components dependency, the failure of the primary system

is more likely to occur in combination with the failure of the secondary cooling rather than along

its working state. This reflects on the overall system loss frequencies: as shown in Table 7, the

frequency values for the current case are the highest across all system setting considered as well

as losses type. This is true also when considering the occurrence of no cooling losses for which,

involving the working of the secondary system, a lower frequency value could be expected for case

E in comparison with case D, due to the difference in the relative joint probabilities. However,

the gap between the failure probabilities discussed before is mitigated, and its effect on the overall

loss frequency reverted, by the increased frequency for the primary cooling failure registered when

considering the stochastic dependency between P1 and P2.
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SUBSYSTEM FAILURE PROBABILITY
PRIMARY&SECONDARY 1.3405e−04

PRIMARY&SECONDARY 1.7459e−05

DETECTION 6.7154e−03

FAN 1.2747e−02

Table 8: Subsystems failure probability for case-study E

4 Accuracy and Scalability

The strength of the proposed methodology lies with the capability of isolating aspects of the system

behaviour which defy conventional FT/ET analysis assumptions, modelling them with more detailed

and flexible strategies such as MMs and PNs. This is achieved integrating the initial FT models

and the MM/PN output within the BDD frameworks, thanks to the development of algorithms for

the computation of these latter taking into account dependencies. Of course, while hopefully paving

the path towards more realistic and accurate modelling, this kind of approach opens the doors to

new challenges associated with the nature of the newly available modelling capability and their

computational cost, such as:

• The use of BDD with dependencies, which comes at the cost of higher computational power.

The magnitude of such an increase depends on the model structure. As a limited term of

comparison, the computation of case A in the current study was carried out in 0.01 s, while

the analysis of case E employed 0.03 s. To mitigate the costs associated with real-world systems

and ensure the scalability of the approach, the size of the model sections entailing dependencies

can be reduced, hence minimizing the use of more expensive algorithms associated with their

computation. This can be achieved through modularisation, currently under implementation,

consisting in reducing the initial FT structure [14], and subsequentially extracting independent

sections of the tree circumscribing the dependent components [11] [27]. Such sub-models

can be then analysed separately with the novel approach for the computation of BDD in

presence of dependencies, and the results re-introduced in the initial FT model in the form

of an independent surrogate event retaining reliability information equivalent to the section

analysed. The FT so modified could be then analysed with traditional approaches, whose

feasibility for large scale systems has been largely proved.
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• The computational burden of stochastic models and simulation techniques, such as PNs and

MMs, increases significantly with model size or when rare events are involved. As for the case

above, this can be mitigated minimizing the model size. In light of this, an unconventional PN

modelling strategy has been implemented in the proposed framework. This technique inherits

the main aspects of traditional PNs but allows to record the joint state of the places of interest

in the network whenever a transition is fired, giving directly as output joint probabilities and

frequencies and hence avoiding the use of places representing the joint state under study. In

the case of n dependent and Boolean components, the associated PN model would require

2 ·n+2n places, while the alternative PN solution reduces such number to 2 ·n. With regards

to the PN network in Fig.4, this would translate in the computation of only the red section

of the model, with advantages in terms of efficiency and without affecting the accuracy of the

analysis. Other possible strategies to enhance the efficiency of the simulations would entail

the use of advanced Monte Carlo sampling techniques [7] [28].

• The proposed approach removes simplifying assumptions and limitations associated with tra-

ditional FT analysis, providing analysts with a higher degree of flexibility but also transferring

to them the task of identifying modelling assumptions. Indeed, while the FT construction pro-

cess would remain unvaried, the proposed framework allows to specify further the relationship

between components. This implies firstly the need to identify relevant dependencies or complex

relationships between components. The first of these two tasks should be addressed on the

basis not only of the meticulous knowledge of the system (as for FT analysis), but also of the

nature of the interaction between components. Indeed, the model implementation should be

preceded by an analysis of component dependencies, which could be carried out systematically

on the basis of the different source of dependency, e.g. causal dependencies (when the state

of a component directly affects the probability of failure of another component), maintenance

strategies, common environmental factors etc. Once identified possible dependency relation-

ships between components, the further step is to estimate their relevancy. Such task is not

banal, since any direct numerical estimation of the dependency relevancy would have to rely

on the comparison of the joint and marginal probabilities of the interested components, hence

implying the modelling of the dependency relationship. While the possible exclusion of the
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investigated dependency from the model due to lack of significance would decrease the com-

putational burden of the analysis, it would not reduce the modelling load for the analyst, due

to the necessity to estimate the joint probabilities. Further support for the decision making

process could be provided by importance measures, allowing for example to exclude complex

feature modelling when this entail low importance components. Ultimately, the identification

of complex features to include in the modelling would be mostly dictated by the expertise and

knowledge of the system: while this may increase the complexity of the modelling process,

it would also push towards a better understanding of the system as an interconnected net-

work of components, forcing the analyst to consider aspects of the system which would be left

implicitly hidden when adopting more traditional techniques.

• Aside from determining which complex feature to consider in the analysis, the new modelling

capability requires also to explicitly decide the degree of detail of the more sophisticated model

sections (e.g. PN and MM). This would partly depend on the data availability, but mostly leads

back to the long-standing issue of finding a balance between model accuracy and its costs. Also

in this case the strength of the model and its robustness could be evaluated through numerical

strategies, such as sensitivity analysis, but would still increase the modelling burden. However,

as for the previous point, it is worth to highlight that the need to explicitly identify these

analysis details is in itself a significant achievement, even if not without challenges. Indeed,

the new capabilities allow to reduce (if not eliminate) implicit assumptions of traditional

techniques, returning to the analyst a realistic picture of the complexity of the systems under

study and providing the basis for a better understanding, and potentially representation, of

complex systems.

5 Conclusions

The research presented proposes a novel methodology aiming to overcome the limitations of tradi-

tional fault and event tree techniques, whilst preserving their familiar modelling formulation as well

as their computational efficiency. This is achieved through a surgical approach to modelling, relying

on the identification of minimal model subsets requiring a degree of simulation fidelity beyond the
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capability of traditional methodologies (e.g. dependencies, degradation processes, complex mainte-

nance strategies etc.) and their resolution through the use of Petri nets and Markov models. On

the one hand, the use of the latter ensures extreme modelling flexibility and promotes the shifts

towards more realistic modelling. On the other, the restriction in the use of these more expensive

modelling solutions to only the sections of the system for which traditional simplifying assumptions

(e.g. components independence, failure rate constancy) are unjustified, ensures the computational

feasibility and scalability of the approach. The methodology developed is tested against five case-

studies, covering a range of component dependency types and system settings which cannot be

fully represented through the use of conventional fault and event trees. The results obtained are

compared to those achieved with existing techniques, in order to verify the accuracy as well as the

computational efficiency of the implemented algorithms.
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