

University of Nottingham

Current challenges and **future** solutions for system safety analysis

Dr Silvia Tolo

The Safety and Reliability Society 2022 Webinar Programme 26th April 2022

System Safety before System Safety

System Safety before System Safety

The great expectations held for DDT have been realized. During 1946, exhaustive scientific tests have shown known with the state shown with the state of the state shown with the state state shown with the state state

System Safety before System Safety

- Atlas and Titan intercontinental ballistic missiles
- Developed in the 50s
- Focus on the reliability of individual component or subsystem
- Lack of systematic assessment of system safety

- Interface problems went unnoticed until it was too late
- Four missile blew up in their silos during operational testing, within 18 months from becoming operational
- Extremely low launch success rate
- Losses investigation pointed to deficiencies in design, operations, and management

'Organised Common Sense'

- Only in 1960s system safety began to take on its own role
- Born to understand and manage the 'new complexity' of engineering systems
- The Minuteman ICBM became the first (weapon) system to have a contractual, formal, disciplined system safety program
- The space program was the second major area to apply system safety approaches in a disciplined way
- Search for tools able to deal with systems as a whole rather than with subsystems or components
 → the complexity of new systems (and the weakness of judgement tools) lies with their
 interconnected nature

MIL-STD-882B 30 March 1984 SUPERSEDING MIL-STD-882A 28 June 1977

MILITARY STANDARD

MIL-STD-882B SYSTEM SAFETY PROGRAM REQUIREMENTS

AMSC Number F3329 FSC SAFT

DISTRIBUTION STATEMENT A Approved for Public Release - Distribution Unlimited

NOTICE 1

DEPARTMENT OF DEFENSE WASHINGTON, DC 20301

System Safety Program Requirement: MIL-STD-882B

 This Military Standard is approved for use by all Departments and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertiment data which may be of use in improving this document should be addressed to: R0 AIr Force Systems Command (PEEQ ComSO), Andrews AFB, Washington, DC 20334-5000, by using the self-addressed Standardiation Document Improvement Proposa (DD Form 1426) appearing at the end of this document or by letter.

New Problems, New Solutions

New Problems, New Solutions

12,362 Engineering Electrical Electronic	7,664 Engineering Industrial	6,698 Operations Research Management Science	6,391 Nuclear Science Technology		5,832 Environmenta Sciences
	7,154 Public Environmental Occupational Health				
8,191					
	7,021 Engineering Mechanical	5,242 Transportation Science Technology		ring ciplinary	
[Source: Web of Science]					

New Systems, New Problems...again?

BOEING 737 max:

University of

Nottingham

- Manoeuvring Characteristics Augmentation System (MCAS)
- Safety-analysis led by Boeing concluded there would be little risk in the event of an MCAS failure
- Assumed pilots response time to an unexpected MCAS

Universitu of

> "The nuclear community is facing new challenges as commercial nuclear power plants get older" [IAEA,1990]

...and just Old Problems

- Conservative Approach
- Strong Assumptions

Universitu of

Unknown level of conservatism

"In the absence of methods that explicitly account for uncertainties, seeking reasonable conservatism in nuclear safety analyses can quickly lead to extreme conservatism. The rate of divergence to extreme conservatism is often beyond the expert analysts' intuitive feeling"

[K.Jamaly, Achieving reasonable conservatism in nuclear safety analyses, RESS, Volume 137, May 2015, Pages 112-119]

Boeing's MCAS on the 737 Max may not have been needed at all

The haunting postscript to the 737 Max's infamous flight control system.

This postscript to the most severe safety crisis in Boeing's history outlines the moments, milestones and catastrophic missteps that led to MCAS's fateful implementation. Yet, the saga of MCAS, which still lives now-modified inside the Max flight control computers, concludes with one haunting realization. The system may not have been necessary at all, according to FAA Administrator Steve Dickson, a sentiment seemingly shared by European regulators, too.

Current Challenges

- High level of automation and control technology TRADITIONAL METHODOLOGIES
 - \rightarrow systems are un-negligibly dynamic
 - \rightarrow human-technology interface
 - \rightarrow maintenance strategies are increasingly complex
- Life extension

 \rightarrow system behaviour changes along its life-cycle

• Uncertainty and Modelling

 \rightarrow conservatism comes at a cost

Lack of dependency modelling

No depiction of dynamic features

Limited maintenance models

Constant rates assumption

Modelling limitations balanced by conservative assumptions

Current Challenges

- High level of automation and control technology
 - \rightarrow systems are un-negligibly dynamic
 - \rightarrow human-technology interface
 - \rightarrow maintenance strategies are increasingly complex
- Life extension
 - \rightarrow system behaviour changes along its life-cycle
- Uncertainty and Modelling

 \rightarrow conservatism comes at a cost

SIMULATION-BASED SOLUTIONS

Computationally unfeasible for large-scale systems

University of Nottingham UK | CHINA | MALAYSIA

What can we do differently?

Methodology Overview

An Umbrella Methodology

COMPUTATIONAL FEASIBILITY

An Umbrella Methodology

University of Nottingham

Dependency Modules → the smallest independent section of a FT model enclosing components dependent from each other

Step 5: FTs Computation

Step 6: ET computation

University of Nottingham

Hands On

A simple case-study

Case-study

Overview:

- Industrial cooling system
- 20y life cycle
- Complex features:
 - Aging Components
 - Complex Maintenance Strategies
 - Component Dependencies

Primary Cooling

Primary Cooling

P1&P2 Dependency

Failure of P1 (P2) increases load and failure rate of P2 (P1)

Secondary Water Cooling

Secondary Water Cooling

R Aging Component

Characterised by non-constant failure and repair rates

Detection System

Detection System

S1&S2 Common Cause Failure

Calibration failure in both sensors when event CC occurs

Secondary Air Cooling

Secondary Air Cooling

M Complex Maintenance Strategy

Condition monitoring system with different maintenance actions

University of Nottingham

Hands On

Step 1: Component Reliability

University of Nottingham

UK | CHINA | MALAYSIA

Step 2: Independent FTs definition

Step 3: Dependency Modules Identification

Step 3: Dependency Modules Identification

Step 4: Dependency Modules Computation

University of

Nottingham

JOINT VALUES

State	Probability	Frequency
P1 _F ,P2 _F	1.3362e-04	3.3406e-05
P1 _F ,P2 _w	6.1823e-03	7.8999e-04
P1 _w ,P2 _F	6.1823e-03	7.8999e-04
P1 _F ,P2 _w	9.8749E-01	1.5799e-03

*steady state solution

Step 4: Dependency Modules Computation

University of Nottingham

UK | CHINA | MALAYSIA

University of

JOINT VALUES

State	Probability	Frequency
S1 _F ,S2 _F	4.8023e-04	5.1446e-05
S1 _F ,S2 _W	3.3018e-06	1.5221e-06
S1 _W ,S2 _F	4.4003e-06	1.4459e-06
S1 _W ,S2 _W	9.9951e-01	5.4414e-05

University of

Step 6: ET Computation

Universitu of

Loss of Cooling	Frequency [h ⁻¹]
None	$3.5770e^{-05}$
Partial	$6.5614e^{-07}$
Total	$4.9173e^{-07}$

University of Nottingham

Summing Up

- System safety discipline born to tackle challenges introduced by increasing systems complexity
- Today's systems present further challenges, for instance their intrinsic dynamic nature (automation and control), complex maintenance strategies (e.g. condition monitoring) and ageing (for older system)
- Traditional system safety techniques have strong limitations in modelling these complexities
- Assumptions common to traditional approaches (e.g. component independence and failure rate constancy) may result in the under-estimation of risk or over-conservatism
- Available simulation-based techniques provide the required modelling flexibility but do not guarantee computational feasibility for large-scale systems

- The integration of more flexible modelling techniques with traditional system safety methodologies (such as FT/ET, BDD) can tackle these challenges
- The proposed umbrella methodology aims at maintaining the familiar modelling language well rooted in the engineering community
- It allows to model accurately complex features of engineering systems (e.g. components dependencies, degradation and complex maintenance strategies) through the use of modelling techniques such as PNs and MMs...
- ...while maintaining a traditional FT/ET approach for the remaining sections of the system for which traditional assumptions are justified

University of Nottingham

Thank you

silvia.tolo@nottingham.ac.uk