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Atlas and Titan intercontinental ballistic missiles

* Developed in the 50s
* Focus on the reliability of individual component or subsystem

« Lack of systematic assessment of system safety

* Interface problems went unnoticed until it was too late

* Four missile blew up in their silos during operational testing,
within 18 months from becoming operational

« Extremely low launch success rate

« Losses investigation pointed to deficiencies in design,
operations, and management
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MIL-STD-882B SYSTEM SAFETY PROGRAM
REQUIREMENTS

Only in 1960s system safety began to take on its own role

Born to understand and manage the ‘new complexity’ of engineering systems

The Minuteman ICBM became the first (weapon) system to have a contractual, formal,
disciplined system safety program

The space program was the second major area to apply system safety approaches in a disciplined way

Search for tools able to deal with systems as a whole rather than with subsystems or components
- the complexity of new systems (and the weakness of judgement tools) lies with their
interconnected nature

= @he Arizona Duily Star
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‘, Y " % An Indeoendent NEWSpaper Printing The News I ..muy ''''''''
TUCSON, ARIZONA, SATURDAY MORNING, JANUARY 28, I . THRTY PAGES

Three-Man Crew
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Reliability Block Diagrams
(RBDs, 60s)

Fault Trees
(FTs, 1962)

Event Trees
(FTs, 1974)
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Reliability Block Diagrams
(RBDs, 60s)

Fault Trees
(FTs, 1962)

Event Trees
(FTs, 1974)
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BOEING 737 max:

« Manoeuvring Characteristics Augmentation System
(MCAS)

« Safety-analysis led by Boeing concluded there would be
little risk in the event of an MCAS failure

« Assumed pilots response time to an unexpected MCAS
d

MCAS off

False reading

4

Reality MCAS on
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“The nuclear community is facing new challenges as commercial nuclear power plants get older”
[IAEA,1990]

250

Operable nuclear reactors worldwide by age, July 2021
* More than 2/3 of the 415 reactors in

200 - operation are over 30 years old

« Around 40 years operational lifetime

150

« Around 100 reactors already granted life
extension licenses

100

* Ageing may increase the risk of loss or
reduction of functional capability of key
plant components

Number of Reactor

50

« Impairment of one or more multiple levels
Oto 10 11 to 20 21 to 30 31 to 40 41 to 50 Cwer 50 Of protectlon aﬁorded by defence In depth
Age in Years
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“In the absence of methods that explicitly account for uncertainties,
seeking reasonable conservatism in nuclear safety analyses can quickly
lead to extreme conservatism. The rate of divergence to extreme
conservatism is often beyond the expert analysts’ intuitive feeling”

[K.Jamaly, Achieving reasonable conservatism in nuclear safety

Available analyses,
Knowledge RESS, Volume 137, May 2015, Pages 112-119]

Boeing’s MCAS on the 737 Max
may not have been needed at

Failure

all

I The haunting postscript to the 737 Max’s infamous flight control
« Conservative Approach system BI F g

° Strong Assumptions This postscript to the most severe safety crisis in Boeing’s history outlines the moments, milestones and
catastrophic missteps that led to MCAS's fateful implementation. Yet, the saga of MCAS, which still lives
now-modified inside the Max flight control computers, concludes with one haunting realization. The

° U n kn own I evel Of conservat | sSm system may not have been necessary at all, according to FAA Administrator Steve Dickson, a sentiment
seemingly shared by European regulators, too.
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High level of automation and control technology REzZABIRE@\N\AVE (=3l 0]p]6]Hele] (=S

— systems are un-negligibly dynamic Lack of dependency modelling

~ human-technology interface No depiction of dynamic features

- maintenance strategies are increasingly complex Limited maintenance models

Life extension

—> system behaviour changes along its life-cycle Constant rates assumption

« Uncertainty and Modelling

- conservatism comes at a cost Modelling limitations balanced
by conservative assumptions
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High level of automation and control technology BSIVISIEANRIGNEETAS S DES{0]EERE(0])\ S

— systems are un-negligibly dynamic Computationally unfeasible for

. large-scale systems
- human-technology interface J y

- maintenance strategies are increasingly complex
Life extension

—> system behaviour changes along its life-cycle

Uncertainty and Modelling

—> conservatism comes at a cost
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FAVILIAR MODELLING  REALISTIC RIS ANALYSIS ACCURACY
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An Umbrella Methodology

Non-Constant Failure Rates

System Safety Metrics

Failure Probability

Failure Frequency

Component Importance

Dependencies

Complex Maintenance Strategies
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FOREACHFT

Components
Dependency?

v
Identify
Dependency

Modules

Dependency Modules - the smallest independent section of a FT model
enclosing components dependent from each other
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Create Calculate FOR EACH
Components Dependency DEPENDENCY
DependeilcyGroup Module BDD MODULE
RUN Dependency Collect Joint
Group PN to —#* Reliability Info
convergence from PNs
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Step 5. FTs Computation

Calculate Top Subsystems Failure

—» Event Failure .
Probabili
Probability ty

Calculate Top
FT=>BDD Event Failure Subsystems Eailuse

Frequency i

¥ Probability
Calculate Component

s  Importance Importance
Measures
Substitute Dependency

Modules with Equivalent
Complex Eventin FT
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Consequences
Frequency

—> Compute ET
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Industrial cooling system

T | « 20y life cycle

TANK 2 « Complex features:
~HEAT EXCHANGER| (12) |
_ ) (v1) - Aging Components
- =] ‘ RELAY _ _
| P3_ « Complex Maintenance Strategies
- N (:) () _? - - Component Dependencies
—| COMP
/)
- 32 FAN  MOTOR
(F) (M)
‘ PRIMARY DETECTION SECONDARY FAN
L I R I CICEEL COOLANT
TANK 1_ :' : w - - NoLoss
() F PARTIAL LOSS
HEAT EXCHANGER ‘ ] 5 PARTIALEOSS
(HX1) B ‘Pﬂ | i TOTAL LOSS
PRESSURE VESSEL P2
i ; TOTAL LOSS

__________________________________________________________________________________________
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TANK 1
| (T1)
HEAT EXCHANGER
(HX1) |

Primary cooling
system fails

Heat No coolantto
exchanger heat
leaks exchanger

No
coolant
flow
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P1&P2 Dependency

Failure of P1 (P2) increases load and failure rate of P2 (P1)

v .

MARKOV MODEL
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Secondary Water Cooling

< HEAT EXCHANGER

(HX2)

VALVE
(V1)

- N 'P3

Secondary water
cooling system fails

Lack of
circulatio
n

Heat
exchanger
leaks

System
not
activated

Lack of
coolant

Valve fails
closed
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Detection
system fails

COMP

Computer fails to Sensors fail to detect

_\—@ identify high high temperature in

temperature in vessel vessel
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S1&S2 Common Cause Failure

Calibration failure in both sensors when event CC occurs

PETRI NET MODEL ' Detection

system fails
E(*y)
S1 Failed L
e Computer fails to Sensors fail to detect
- identify high high temperature in
Working / temperature in vessel vessel

E(v,) l—

No Common
Cause
. Yy E(AZ) Ve
.

mmon
Cause

S2 Faile:\‘
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Secondary air cooling
system fails

RELAY

, = - Fan not System not
1 functioning activated

FAN  MOTOR
(F) (M)
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M Complex Maintenance Strategy

Condition monitoring system with different maintenance actions

PETRI NET MODEL

M Working W(B,n) M Degraded W(B,n) M failed E;I

BN - I

LN(p,0)
Replace

Bearings

LN(p,0)
Replace

Motor
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CONSTANT FAILURE/REPAIR RATES

IDENTIEY MODEL COMPUTE REI.IA:II.ITY STORE OUTPUT
_ _ HX1
* Non-Repairable q(HX1) = _}\+ y —
| COMPONENTS - Notepad ~ — N ive Mai Unavailability SRy >
File Edit Format View Help Y orrective Maintenance Failure Frequency
: = Ax(1— 63e—*
HX1 * Scheduled Maintenance f(HXI) A (1 q(HXl)) 1.63e
FAT [ A= failure rate,v = repair rate]
1.7e-6
REPAIR
g.e417
NON-CONSTANT FAILURE/REPAIR RATES
M
PN Constant GENERATE F
o atesn I SENERATEEIN
N STIOREIGUITPUN
- W) S E— S
DEP RUNNOICONVERGENCE
R — N E'led
Worki ai 0.05 . " .
EATL ing i o Unavailability 42265
weibull,2.1,560.0 : Failure F
REPAIR o a "re[h’_‘f]q”ency 1.76e
lognormal,l.8,8.2 INPUITVIODEL ms E
MWorking WM MDegraded W(B.N) M failed o

P2 | @ 0.015 f|
DEP Of LIR® M Unavailabili

D - i e » navalia ||ty 4.386_3
sz ReplaceLN(u,o) (1] 100 200 300 4005‘|miT:m“e°D 700 800 900 1000

Bearings Failure Frequency _6
1.7e-6 RDI‘LN(H'O)
REPAIR eplace
g.8714
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File Edit Format Wiew Help
PRIMARY,1,G1,G2
G2,8,P1,P2

G1,1,HX1,T1

File Edit Format View Help
SECOMNDARY,1,F1,R,F1
F2,1,V1,P2

F1,1,HX2,T2

File Edit Format View Help

DETECTION,1,K1,COMP
K1,8,51,52

Independent FTs definition

Secondary Cooling
Systems fail

Secondary air cooling
system fails

Fan not
functioning

System not
activated

FELRENS

Motor fails

Heat
exchanger
[CELE]

File Edit Format View Help
MMs
P1P2_MM

MMs —
5152 MM

SHARED
R:SECONDARY , FAN Detection

system fails

File Edit Format View Help
FAN,1,R1,H1
H1,1,M,F

Secondary water
cooling system fails

Lack of
circulatio

Computer fails to
* identify high

temperature in vessel vessel

S1 fails

Sensors fail to detect
high temperature in

S2 fails

System
not
activated

Lack of
coolant

Valve fails
closed

Primary cooling
system fails

Heat
exchanger
leaks

No coolantto
heat
exchanger

No
coolant
flow

No water
supply
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Primary cooling
system fails

Primary cooling Heat No coolant to
system fails exchanger heat
leaks exchanger

Heat No coolantto [ S e
exchanger heat

leaks exchanger File Edit Format View Help DM1
MMs
P1P2 MM

DEPENDEMCY - Motepad

MMs
No $152 MM
coolant -
SHARED
R:SECONDARY , FAN

flow
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Detection

system fails

Computer fails to
identify high
temperature in vessel

Sensors fail to detect
high temperature in
vessel

S1 fails S2 fails

DEPENDEMCY - Motepad

File Edit Format View Help
MMs
P1P2_MM

MMs
5152 MM

SHARED
R:SECONDARY , FAN

v

Step 3: Dependency Modules Identification

Detection
system fails

Computer fails to
identify high

temperature in vessel

Sensors fail to detect
high temperature in
vessel
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DEPENDENCY VIV WIODEL JOINTVALUES
No GROUP

coolant
flow

P1,P2:  1.3362e-04  3.3406e-05
P1,P2, 6.1823e-03  7.8999e-04
P1,P2:  6.1823e-03  7.8999e-04
P1,P2,  9.8749E-01 1.5799e-03

O Oh
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DIVIN D= ENDENC VIIVIBVI(@IDIEIS JOINT VALUES
= GROUP \
P 2 S P1,P2:  1.3362e-04 3.3406e-05
vy P1-P2,  6.1823e-03 7.8999e-04
A \‘\;\ ?}?/.,,/”' - P1,,P2:  6.1823e-03  7.8999e-04
N - P1P2,  9.8749E-01 1.5799e-03

v -
*steady state solution

Q(DM1) = q(P1,P2) = 1.3362¢~ %4

F(DM1) = G(P1) - f(P1) + G(P2) - f(P2) = 3.4792e~%

G(P1) = Q(DM1|P1) — Q(DM1|P1) Birmbaum's
. — Measure of
G(P2) = Q(DM1|P2) — Q(DM1|P2) Importance

I 0 BOD CALLCULLATION
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D)\ Z DEPENDENC
Sensors fail to detect G R{ Q U F)

high temperature in

PINNVI@IDE]S JOINT VALUES

vessel

S1:,52¢ 4.8023e-04 5.1446e-05
S1:S2y 3.3018e-06 1.5221e-06
S1w,S2r  4.4003e-06 1.4459e-06
S1w,S2y,  9.9951e-01 5.4414e-05

S1 fails S2 fails
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JOINT VALUES

Sensors fail to detect
high temperature in

S1:,52¢ 4.8023e-04 5.1446e-05
S1:S2y 3.3018e-06 1.5221e-06
S1w,S2r  4.4003e-06 1.4459¢-06
S1w,S2y,  9.9951e-01 5.4414e-05

Q(DM2) = q(51,52) = 4.8023¢ %4

I 0 BB CALL CULLATION
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Primary cooling Secondary water
system fails cooling system fails
ack o
circulatio o
W activate

Lack of
coolant

Heat
exchanger
leaks

No coolantto

Fan not System not
functioning activated

heat
exchanger

o =m

Q(PRIMARY) = 1.7460e~%4

Detection
system fails

Computer fails to
identify high

temperature in vessel

Q(SECONDARY, FAN) = 9.7586e°"

e NGO
Q(SECONDARY, FAN) = 5.3589¢™%3 /

Q(DETECTION) = 7.1802¢™" Q(SECONDARY, FAN) = 5.3589¢ 03
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PRIMARY DETECTION SECONDARY

FAN
COOLANT SYSTEM COOLANT
W
W
F
W
w
F

q(Fan, Secondary)

= q(Secondary) — q(Fan, Secondary)

q(Secondary)
= 1 — q(Fan, Secondary) — q(Fan, Secondary)

—

fNovoss = [ primary - 4(Detection) - q(Fan,Secondary) = 3.5770e~°°

- NoLoss fpartiatiosst = fprimary - A(Detection) - q(Fan, Secondary) = 4.6184e~%7

. PARTIAL LOSS

. PARTIAL LOSS
- TOTAL LOSS —] ‘

 TOTAL LOSS

f partiatrossz = fprimary - @(Detection) - q(Fan, Secondary) = 1.9643e~°7

" frotatLosst = fprimary - 4(Detection) - q(Fan, Secondary) = 2.2664e~%7

fTotalLossZ = fprimary ’ Q(DeteCtion) — 2-65093_07

—
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REES

TANK 2 Loss of Cooling Frequency [h1]

~HEAT EXCHANGER| (T2) —05
[sz) [‘Jl) None 3’577oe
= N| ‘ . RELAY Partial 6.5614e~°7
- ~ Total 4.9173e~""
— T \\E_/]' ®_@7
— comP
— J/—“\\,I
N FAMN MOTOR
(F) (M)
- — ‘ PRIMARY DETECTION SECONDARY EAN
| | _____ COOLANT SYSTEM COOANT
o : | w . NO LOSS
TANK 1 i | w |
T1 |
L{ i . | F . PARTIAL LOSS
| . PARTIAL LOSS
HEAT EXCHANGER ‘ i I
F 1
(HX1) |_ P1 - TOTALLOSS

PRESSURE VESSEL

]

- TOTALLOSS
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« System safety discipline born to tackle challenges introduced by increasing systems
complexity

« Today’s systems present further challenges, for instance their intrinsic dynamic nature
(automation and control), complex maintenance strategies (e.g. condition monitoring)
and ageing (for older system)

« Traditional system safety techniques have strong limitations in modelling these
complexities

« Assumptions common to traditional approaches (e.g. component independence and
failure rate constancy) may result in the under-estimation of risk or over-conservatism

« Available simulation-based techniques provide the required modelling flexibility but do
not guarantee computational feasibility for large-scale systems
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« The integration of more flexible modelling techniques with traditional system safety
methodologies (such as FT/ET, BDD) can tackle these challenges

* The proposed umbrella methodology aims at maintaining the familiar modelling
language well rooted in the engineering community

+ It allows to model accurately complex features of engineering systems (e.g.
components dependencies, degradation and complex maintenance strategies)
through the use of modelling techniques such as PNs and MMs...

 ...while maintaining a traditional FT/ET approach for the remaining sections of the
system for which traditional assumptions are justified
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