
1

Dynamic and Dependent Tree Theory (D2T2): A Framework for

the Analysis of Fault Trees with Dependent Basic Events

John Andrews and Silvia Tolo

Resilience Engineering Research Group, University of Nottingham

Abstract

Fault tree analysis remains the most commonly employed method, particularly in the safety

critical industries, to predict the probability or frequency of system failures. Whilst it has its

origins back in the 1960s, the assumptions employed in the majority of commercial fault tree

analysis codes have not changed significantly since this time and restrict the ability of the

method to represent features of the design, operation and maintenance of modern industrial

systems. The inability to include general dependencies between the basic events, the

requirement for invariant failure and repair rates, and the inability to account for complex

maintenance strategies are major limitations.

This paper proposes a new fault tree analysis framework which can overcome these

restrictions. Whilst retaining the fault tree structure to express the causality of the system

failure, the internal calculation method is updated by exploiting features of the Binary

Decision Diagram, Stochastic Petri Net and Markov methods. The key elements of the D2T2

algorithm are described in detail and the framework demonstrated through application to a

case study example of a pressure vessel cooling system.

Keywords: Fault Tree Analysis, Binary Decision Diagrams, Dependency models, Petri Nets,

Markov Models.

1.0 Introduction

Fault Tree Analysis has its origins back in the 1960’s and is attributed to Watson from Bell

Telephone Laboratory who used a logic tree structure when analysing the causes of an

inadvertent launch of the Minuteman Intercontinental Ballistic Missile [1]. The time

dependent mathematical framework, known as Kinetic Tree Theory (KTT) was added in

1970 by Vesely [2] from the Idaho National Nuclear Laboratory. Traditional fault tree

analysis is performed in two stages. Stage 1 delivers the minimal cut sets, lists of necessary

and sufficient basic events which cause the top event. The second stage quantifies the system

failure mode, top event, probability or frequency. Calculation of importance measures [3-5]

can also be performed to establish the contribution of each component, or minimal cut set, to

the system failure mode, identifying weaknesses which can be addressed to improve the

system performance.

Technological developments and business practices have made significant advances since the

1970s which are reflected in the design, operation and maintenance of modern engineering

systems. The basic assumptions required by KTT limit the capability of fault tree analysis to

perform accurate assessments of such systems. A significant limitation is that all basic events

are assumed to occur independently and so the failure of one component does not affect the

2

likelihood of another. Dependencies are introduced into the system operation through many

aspects such as standby systems, common cause failures and maintenance strategies. There is

also a limited capability to account for the sequencies in which failures occur. In Addition,

the implementation of KTT, in most commercial fault tree tools, assumes that components

experience constant failure and repair rates. Typical models used to evaluate the failure

probability of components, based on their maintenance, are:

Non-repairable components:

𝑄(𝑡) = 1 − 𝑒−𝜆𝑡 (1)

Reactive Repair (unscheduled maintenance)

𝑄(𝑡) =
𝜆

𝜆+𝜐
(1 − 𝑒−(𝜆+𝜐)𝑡) (2)

Discovered Failures (scheduled maintenance)

 𝑄𝐴𝑣 = 1 −
(1−𝑒−𝜆𝜃)

𝜆𝜃
 (3)

Where: Q, is the component failure probability, 𝑄𝐴𝑣, is the average component failure

probability, 𝜆, is the constant failure rate, 𝜐, is the constant repair rate, 𝜃, the inspection

interval and t is time.

The failure intensity, w, is then given by:

𝑤 = 𝜆(1 − 𝑄) (4)

It is common that failure rates are not constant, many systems are operated over periods

where components experience wear-out, resulting in increasing failure rates. When failure

occurs, repair is not a random process and, as such, it can be questioned if the repair rate is

ever constant. In addition to these limitations imposed by constant transition rates between

the working and failed states, these equations represent a very restricted view of the

maintenance processes which are applied to modern systems.

A more detailed discussion of the situations which commonly occur in engineering systems

and which are inadequately represented with KTT is given in section 5.

Other limitations with KTT include the need to exploit approximations. When the fault tree

structure produces large numbers of minimal cut sets, it may not be possible to evaluate them

all and, culling methods are used to identify those which have the most significant impact on

the system performance, with cut-offs applied to either the minimal cut sets order or

likelihood [6,7]. Approximations are also used to evaluate the top event probability and

frequency [3].

Since the 1970s, fault tree analysis has been the subject of considerable research aimed to

address these approximations and limitations. Binary Decision Diagrams (BDD) have been

used to recode the Boolean equation represented by the fault tree into a disjoint form which

enables exact quantification of the system performance without the need for approximations

[8-11]. Included in this research has been approaches to establish efficient orderings for the

basic events which will result in concise BDD representations [12,13]. BDDs are now used

extensively in system failure modelling [14-16].

3

2.0 Modelling System Dynamics and Dependencies

Due to the occurrences of dependent failure events in systems reliability modelling, there has

been a motivation, right from the development of the initial fault tree analysis methods, to

overcome their limitation in this regard. Approaches to this vary. Some use a totally

different method to fault tree analysis, such as: Petri nets [17-20], Monte Carlo Simulation

[21] and Markov models [3, 22] to model the whole system. Alternatives have tried to retain

the fault tree structure to represent the system failure causality and adapt the analysis

methodology appropriately. These approaches are discussed separately below.

Using Petri nets, Monte Carlo Simulation and Markov models enable event sequences and

dependencies to be represented. Whilst Markov approaches require the movement between

system states to be governed by constant transition rates, the first two of these methods will

allow any distribution of failure and repair times. However, there can be difficulties in

analysing the whole system in this way. System failure events are generally rare and, as a

result, simulation-based solution routines, including Petri nets, suffer from issues with the

processing requirements to reach convergence to statistically significant results. Markov

models can experience a state space explosion for even moderately sized systems. These

methods are also limited in their ability to document the failure logic development in

comparison to a fault tree, and limits their attractiveness where regulators need to review the

assessments.

Of those approaches which retain the fault tree as the basis of the method, Dynamic Fault

Trees [23-26] are the most well developed. They incorporate dependency types and

dynamics into the fault tree framework. In this case the dependency types incorporated use

specialist gate types such as SPARE (for dependencies due to spares or standby components)

or SEQ (for sequences of events). These features can be applied when the dependent events

appear below one gate type which can be solved in isolation, using a relatively small Markov

model, and the results are then substituted back as a super-event which replaces the gate

output event and remains independent of the rest of the fault tree structure. This is illustrated

in Figure 1.

Figure 1 Warm Spare dependency and associated Markov model

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

109

22 23

TOPG2120 21

G25 G26

TOPG22

2116 1017 10

G24

20

G23

TOPG17

G18

13 14

15

16

WARM SPARE

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

2ν

ν

ν

1

2

3

4

4

Dependency types, occurring for example from maintenance, can affect events topologically

distant from each other in the fault tree structure. Consider the example shown in Figure 2

where there is a dependency between basic events 27 and 29. It is possible to identify the

highest gate in the fault tree (G22) under which all the dependencies occur. This section can

again be analysed separately (using Markov or Petri nets as appropriate) and the result

substituted back since it will remain independent. However, this dependency model also

includes the basic events 26, 28 and 30, which are independent, and this makes the

dependency model inefficient. In the extreme, when the dependent events are located at

opposite sides of the fault tree, the highest gate containing the dependencies will be the top

event which renders the approach inapplicable. Any approach which exploits Petri nets or

Markov models to analyse the dependencies must be restricted to just include the dependent

events alone.

Figure 2 Geographically distant dependencies

There are a vast number of papers over the years which address the issues of dependency and

pose a solution for a specific dependency type. However, there has been a problem in

generalising these methods into a framework which can be incorporated with other such

models and developed into a generic coverage of dependency types. As such these solutions

have not found their way into the commercial codes utilised by industry.

3.0 Requirements of D2T2, Dynamic and Dependent Tree Theory

Dynamic and Dependent Tree Theory (D2T2) is developed and presented in this paper with

the objective of overcoming some of the limitations of the traditional KTT. Specifically, the

objectives were to:

- enable component failure and repair times to be represented by any probability

distribution.

- incorporate the ability for dependencies of any type (due to system structure,

operation or maintenance) to be accommodated between components or sub-systems

- facilitate the representation of complex maintenance processes to represent the

sophisticated asset management strategies employed on modern systems.

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

30

5

- permit dynamics in the forms of event sequences to contribute to the system failure

logic.

These objectives were formulated following discussions with industrial partners:

Aeronautical Industry: Rolls-Royce Aero Engines.

Nuclear Industry: Rolls-Royce Submarines, Small Modular Reactors Group.

Railway Industry: Rail Safety and Standards Board (RSSB), Network Rail, HS1, Network

Rail High Speed.

As a result, the D2T2 framework requirements were formulated as:

 Retain the fault tree structure to represent the causality of the system failure in terms

of the failure of its components, human errors, software failures etc. This

representation is familiar to engineers, lends itself to the visualisation of the system

failure causes and facilitates transparency, peer review and assessment by regulators.

It also would enable fault tree models, evolved over many years to be upwardly

compatible with D2T2. The new methodology should allow the analysis to be

completed with as little manual involvement as possible and would be a direct

replacement for the conventional KTT in the engine of the code.

 Where the system features complexities such as components with non-constant failure

or repair rates, dependencies between component failure events, complex

maintenance processes or event sequences which contribute to the system failure,

these shall be analysed with the smallest possible Petri net or Markov model. This is

required to maintain efficiency and the practicality of the approach for large systems

analysis. So, no matter how far apart in the fault tree structure the dependent events

were located, the dependency model should only feature those components. For the

commonly encountered situations modelled the code would contain an appropriate

Petri net or Markov template which would be parameterised from the input data. To

ensure the generality and that one-off situations specific to one system can also be

incorporated it was also possible to enter a particular Petri net or Markov model.

 It is necessary to develop a method which integrates the Petri net and Markov model

solutions back into the fault tree structure for analysis. In the interests of efficiency

and accuracy the fault tree section of the model which features independent

component failure events will be analysed by converting the fault tree logic function

to a Binary Decision Diagram (BDD). Since BDDs can feature a large number of

paths, which represent disjoint component conditions which result in a system failure,

it is necessary to keep these to a minimum to enable a practical means of integrating

the dependency model results. This can be achieved by identifying the minimal sized

sub-trees solved by a BDD. Current modularisation techniques account for

dependencies due to repeated basic events in the tree structure. A modularisation

approach which also accounted for dependencies between different events would need

development.

This paper describes the D2T2 methodology developed to calculate the system (Top event)

failure probability and failure intensity. Since the method retains the fault tree structure, the

methods to deliver the minimal cut sets for qualitative fault tree evaluation remain

6

unchanged. With the ability to calculate the system failure probability and intensity, is

unlocked by the means to evaluate component and min cut set importance measures. It is not

possible to address these in a single paper and will be considered in a follow up publication.

This paper describes a summary of the fundamental building blocks used in the methodology

and then goes on to describe the D2T2 code structure, how the independent sub-models are

identified and the means by which the dependency results are integrated into the fault tree

The methodology is then demonstrated through the use of a pressure vessel cooling system.

4.0 Traditional Fault Tree Methodology

A coherent fault tree expresses the causality of a system failure mode in terms of AND and

OR combinations of component failure modes, human errors, etc., as illustrated by the simple

example shown in Figure 3. KTT performs fault tree analysis in two stages. The qualitative

stage forms the Boolean equation which represents the causes of the top event, TOP, in terms

of the basic events. It then manipulates it into disjunctive normal form (minimal sum of

produces form):

 (5)

from which the minimal cut sets, 𝐶𝑖 , i=1,…, 𝑁𝑐 (the necessary and sufficient combinations

of component failures which cause the system failure) can be extracted [6]. The Ci terms are

conjunctions of the basic event variables:

𝐶𝑖 = 𝑋1. 𝑋2. 𝑋3 … . . 𝑋𝑛𝐶𝑖
 (6)

 ‘+’ represents the disjunction (OR) and ‘.’ represents the conjunction (AND) in the logic

equations.

From the minimal cut sets and the component’s failure probability and frequency it is

possible to calculate the Top Event probability, 𝑄𝑆𝑌𝑆 and failure intensity, 𝑤𝑆𝑌𝑆.

4.1 Top Event Probability

Assuming independence of the basic events the Top Event probability is given by:

 (7)

For even moderate sized problems, it is impractical to evaluate equation 7 and,

approximations such as the Minimal Cut Set Upper Bound are employed:

 (8)

)()1(

)()()(

21
1

1

1

1

23

1

121

C

C

CCC

N
N

kji

j

k

i

j

N

i

i

j

ji

N

i

N

i

iSYS

CCCP

CCCPCCPCPQ

𝑄𝑆𝑌𝑆 ≤ 1 − ∏(1 − 𝑃(𝐶𝑖))

𝑁𝑐

𝑖=1

𝑇𝑂𝑃 = 𝐶1 + 𝐶2 + ⋯ . + 𝐶𝑁𝑐

7

Figure 3 Simple Example Fault Tree

4.2 Top Event Failure Intensity

To calculate the top event failure intensity, a distinction can be made between initiator and

enabler events [5]:

Initiating events: perturb system variables and place a demand on control / protection

systems to respond.

Enabling events: are inactive control / protection systems which permit an initiating event

to cause the top event.

The top event occurs when all component failures in a minimal cut set occur. For this to

happen, all events in the minimal cut set will exist except one and then that last event occurs.

The last event must be an initiator which puts a demand on the enablers to respond and since

they have failed this does not occur, resulting in the top event. This introduces the concept of

a Critical System State for an initiator.

A critical system state, for initiating event i, is a state of the other components in the system

such that the failure of component i causes the system to pass from the functioning to the

failed state.

It can be shown that the probability of being in a critical system state for initiator i, the

criticality function, 𝐺𝑖, (Birnbaum’s measure of importance) [5] is given by:

 (9)

Since 𝑄𝑆𝑌𝑆 is linear in each 𝑞𝑖 this can be expressed as:

 (10)

where:

C

A B A B D E

TOP

𝐺𝑖(𝒒) =
𝜕𝑄𝑆𝑌𝑆

𝜕𝑞𝑖

𝑄𝑆𝑌𝑆(0𝑖 , 𝒒)

is probability that the system fails with component i failed

is probability that the system fails with component i working

𝑄𝑆𝑌𝑆(1𝑖 , 𝒒)

𝐺𝑖(𝒒) =
𝜕𝑄𝑆𝑌𝑆

𝜕𝑞𝑖

= 𝑄𝑆𝑌𝑆(1𝑖 , 𝒒) − 𝑄𝑆𝑌𝑆(0𝑖 , 𝒒)

8

By calculating the criticality function, 𝐺𝑖, for each initiator gives the system failure intensity,

𝑤𝑆𝑌𝑆:

Where, 𝑤𝑖 is the failure intensity of initiator event i.

5.0 Complexities and Dependencies in Engineering Systems

Dependencies can occur between component failure events in many ways. It can be due to the

way that the system is designed, for example employing standby dependency, it can be due to

limitations on the maintenance resources where components are queued for repair, or it can be

due to operational practices which make advantage of opportunistic maintenance.

Some commonly encountered sources of dependencies which occur across multiple industries

are listed in table 1.

When dependencies exist in a system, conventional fault tree analysis is not an appropriate

means to predict its failure characteristics.

Type Description Example

Standby Hot Standby (independent events)
Both primary and standby components are

operational but only the primary component is

providing a function to the system. On its failure

the standby component takes over its role.

Warm Standby (dependent events)
The standby is not operational. It becomes

operational when the primary system fails. The

backup unit can fail in standby but with a lower rate

than when operational.

Cold Standby (dependent events)
The standby is not operational. It becomes

operational when the primary system fails. It

cannot fail in standby.

The primary power source fails

and the backup, a diesel

generator, is started to provide an

alternative power source.

Secondary

failure

When one component fails it increases the load on a

second component which then experiences an

increased failure rate.

Two pumps both operational and

sharing the load. Each pump has

the capability to satisfy the full

demand should the other pump

fail.

Opportunistic

Maintenance

A component fails which causes a system shutdown

or requires specialist equipment for the repair.

This opportunity is taken to do work on a second

component which has not failed but is in a degraded

state.

Components on a circuit board.

When one fails the whole board is

returned to the factory and all

components are refurbished.

The same applies to components

in a sub-sea production module.

𝑤𝑆𝑌𝑆(𝑡) = ∑ 𝐺𝑖(𝒒). 𝑤𝑖

𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

(𝑡) (11)

9

Common

Cause /

Common

Influence

When one characteristic (eg materials,

manufacturing, location, operation, installation,

maintenance) causes the degraded performance or

failure in several components.

Incorrect maintenance done on

several identical sensors

An impact breaks the circuit on

cables routed in the same way to

different redundant channels.

Queueing Failed components all needing the same

maintenance resource are queued. Then repaired in

priority order.

Limited number of maintenance

teams, equipment or spares.

Table 1 Some common sources of dependency in engineering systems

6.0 Enabling Methodologies

In this section, the characteristics of the Binary Decision Diagrams, Petri Nets and Markov

models are summarised. It is these methods which provide the enabling techniques to expand

the capabilities of fault tree analysis to form D2T2.

6.1 Binary Decision Diagrams

Binary Decision Diagrams (BDD) encode Shannon’s form of the Boolean Equation. This

disjoint form has considerable advantages when quantify the top event, system performance

parameters and can be derived directly from the fault tree [9]. It requires the basic event

variables to be placed in an order which has a major impact of the efficiency of the

representation achieved [12,13]. A BDD equivalent to the logic function represented in the

fault tree in Figure 3 is shown in Figure 4 for a basic event ordering: A < B < C < D < E.

Figure 4 BDD structure for the Faut Tree in Figure 3

The root node appears at the top of the diagram, variable ‘A’ for the BDD in Figure 4. Each

node in the BDD represents a Boolean variable for a basic event, in the fault tree. Should the

variable be true (the component failure event occurs), the node is exited on the 1- branch

(coloured red in the figure). If the variable is not true, then it exits the node of the 0-branch

A

B

C

E

B

C

1 D

1 0

0

1 0

C

1 0

0

1 0 1

0

0

10

(coloured green in the figure). Paths through the nodes in the BDD end at a terminal-1 or

terminal-0 node. These represent the top event occurrence and non-occurrence respectively.

Tracing all paths through the BDD to a terminal-1 gives a set of disjoint combinations of

events which produce system failure. For the BDD in Figure 4 there are 4 such paths:

𝐴. 𝐵. 𝐶 𝐴. 𝐵. 𝐶̅. 𝐷. 𝐸 𝐴. �̅�. 𝐶 and �̅�. 𝐵. 𝐶

Since each path through the BDD are mutually disjoint:

𝑄𝑆𝑌𝑆 = ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗)

𝑁𝑝𝑎𝑡ℎ

𝑗=1

 (12)

Therefore:

𝑄𝑆𝑌𝑆 = 𝑃(𝐴. 𝐵. 𝐶 + 𝐴. 𝐵. 𝐶̅. 𝐷. 𝐸 + 𝐴. �̅�. 𝐶 + �̅�. 𝐵. 𝐶)

 = 𝑃(𝐴. 𝐵. 𝐶) + 𝑃(𝐴. 𝐵. 𝐶̅. 𝐷. 𝐸) + 𝑃(𝐴. �̅�. 𝐶) + 𝑃(�̅�. 𝐵. 𝐶)

With the expression for the Top Event probability it is now possible to employ equations 10

and 11 to deliver the failure intensity [9, 10].

6.2 Stochastic Petri Nets

The Stochastic Petri net (SPN) method provides the flexibility in the analysis methodology.

It has the ability to solve reliability problems featuring dependencies and complex

maintenance processes. Times at which the system changes state can be represented by any

distribution. The foundations of the approach were published in the thesis of Carl Adam Petri

[17] in 1966. The method has developed significantly since then [18-20].

The Petri net is a bi-partite graphical modelling tool with nodes representing both places and

transitions. An example Petri net is shown in Figure 5. A place (shown as a circle)

represents a particular state of the system or component, a transition (shown as a square)

represents an event, such as a failure or a repair, which causes the system to move from one

state to another, thus, incorporating the dynamic behaviour. Tokens are located in the places

to indicate the state of the system at any time. The arrows or edges link the places to the

transition (for input places) and the transition to the places (for output places). Some edges

have an associated number, or multiplicity. Where no multiplicity is indicated then the

default value is one.

To model the dynamics of the system, there are rules which govern the transition:

i. First a transition has to be enabled. This occurs when the transitions input conditions are

satisfied and the input places contain at least their multiplicity of tokens.

ii. The enabled transition then ‘fires’ after a time period ‘t’ following its enabling. For

stochastic transitions the time is derived from a random sample taken from the appropriate

distribution. Other transitions can be of fixed time length and in the case of deterministic

11

transitions an immediate firing occurs. On firing, the multiplicity of tokens are removed from

each input place and a multiplicity of tokens are added to the output places.

A series of transition structures have also been developed, including the reset transition, the

inspection transition and the place conditional dependent transition, specifically to account

for features commonly encountered in system reliability studies [27, 28]. These transitions

enable a more concise representation of the system and enable greater computational

efficiency.

Figure 5 An Example Petri Net

The system performance is achieved through a Monte-Carlo simulation of the Petri net.

During the simulations the time duration that the system spends in the different states is

logged and this enables the likelihood of these events to be predicted. The number of times

the system enters specified states is also logged which delivers the event frequencies.

The Petri net shown in Figure 5 features two components, Hx1 and Hx2, where both

components are replaced as soon as either fails. The simulation of the net gives the likelihood

that the system is in every possible state for these two components. It also produces the

frequency with which each of these states occurs.

6.3 Markov Models

The Markov property requires the system failure and repair processes to be homogeneous and

memoryless which gives rise to invariant transition rates and that the immediate future state

of the system depends only on its current state. Continuous Time Markov Process models

provide the ability to analyse systems with dependencies, where failure and repair states are

constant. An example Markov model is illustrated in figure 6.

Hx1 Working Hx1 FailedW(β,η)

Hx2 Working

Hx2 Failed
unrevealed

W(β,η)

Hx2 Failed
revealed

No
inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when
Hx2 unrevealed

0.0

12

Figure 6 Simple Markov Model

The Markov model has two elements: states (nodes) and transitions (directed edges). The

nodes represent the states of the system in terms of the status of the components. The edges

represent the transitions which can occur between states and have an associated parameter

which is the rate of transition. The model enables the state equations to be formed:

�̇�(𝑡) = 𝑸(𝑡)[𝐴] (13)

Where Q is the vector of state probabilities and A is the state transition matrix.

A solution of the model [3], commonly obtained by numerical methods, delivers the

probability of being in each of the states and the rates of transition to the states. A Petri net

could be used to form these models, employing transitions with exponential state residence

times. The Markov method has been retained in the framework in the interests of efficiency

since, for situations where it is applicable, it can offer faster solution times than simulation.

Markov does offer a more restrictive ability to represent maintenance processes than the SPN.

Where maintenance strategies are governed by rules defining what to do when a certain state

is achieved, SPNs build the model around a token residing this state. Markov models are

unable to replicate this as it is only the probability of being in the state that is known, not the

definite occurrence of this condition.

7.0 Dynamic and Dependent Tree Theory (D2T2)

Dynamic and Dependent Tree Theory (D2T2) extends the capabilities of Kinetic Tree Theory

by exploiting the capabilities of the Binary Decision Diagrams, Petri Nets and Markov

methods in order to solve Fault Trees which feature dependencies or sequences between the

basic events and complexities in the degradation and maintenance processes. It retains the

fault tree logic representation to define the system failure causality.

When the complexities are of the form of non-constant failure and repair rates then the Petri

net method can be used to deliver the probability or frequency of failure. For components

which experience complex asset management strategies, Petri net or Markov models are

employed depending on the details of the strategy. Since these situations do not necessarily

introduce dependencies between components, it would be possible to substitute the derived

probabilities back into the Kinetic Tree Theory.

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

0.5ν

ν

ν

1

2

3

4

13

When parts of the system experience a form of dependency between the component failure

events or sequences of events, then equations 7, 8 and 11 are no longer appropriate. To

calculate the probability of system failure would require the dependencies between events

within each minimal cut set to be calculated and also account for then the calculation of

dependencies between the many combinations of minimal cut sets. The computational

demands make this method intractable. The cornerstone of D2T2 relies on restructuring the

fault tree logic into a disjoint form through the Binary Decisions Diagram. Since each path

through the BDD is disjoint it removes the need to consider the dependencies between the

paths, except in a very limited way for the failure frequency calculations. We then only need

to consider the dependencies between the events in any path through the BDD.

Since BDDs, for large scale problems, can feature a large number of paths through the BDD,

the size of the BDDs constructed must be minimised. This is achieved by:

- effective variable ordering.

- determining the smallest fault tree to convert to a BDD by an effective modularisation

process which is described in the flowing sections.

7.1 D2T2 Algorithm

The overall algorithm is represented in Figure 7. The input data, shown on the left of the

figure, is supplied in three files. The fault tree structure file, the component failure and repair

model file and the dependency file. The first two of these files would be those required to

perform a traditional fault tree analysis. For the D2T2 approach the component failure model

file is extended to enable data specifying non-constant failure and repair processes to be

defined. The dependency file specifies the types of dependency (or sequence) experienced,

the components in this dependency group and the parameters governing the dependency

processes. For some commonly occurring dependency classes this raw data will be used to

generate the appropriate SPN or Markov model. For less common structures, and to facilitate

generality, the SPN or Markov model can be explicitly entered in this file.

Figure 7 The D2T2 Solution Process

Split into an
integrated suite of
PN and BDD codes

Petri net Analysis

code

Petri Net

files

Fault Tree

file

Component

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an

embedded sequence of

independent modules

consisting of: PNs,

Markov Models and BDDs

PN Modules
Generate Petri Nets for

component and

dependency models

Extract the results from the

complexity / dependency

models ready to insert into the

BDD analysis

Create BDDs
Convert the independent

FT modules to BDDs
BDD files BDD Analysis

code

Markov Modules
Generate Markov

Diagrams for component

and dependency models

Markov files
Markov Analysis

codeCausality information

Complexity
information

Component failure and

repair information

Dependency Models

14

The algorithm executes D2T2 in the following steps to solve dependent and complex system

models:

i. Identify the Initiators and Enablers.

ii. Create Dependency Groups:

 Identify all components which feature in dependency groups such as the group

that is independent of all other groups and components.

iii. Quantify Traditional Component Failure Models:

Quantify probabilities and intensities of components whose failure characteristics

fit with the traditional component failure models (equations 1-4).

iv. Modularisation:

Identify independent modules of the fault tree. Where dependencies exist between

basic events they are contained within the same independent fault tree module.

v. Model Generation and Solution for the Complex and Dependent Groups:

 Petri net model creation and analysis.

 Markov model analysis.

vi. BDD Construction:

Construct the BDD for the simplified fault tree structures

vii. Results Integration:

The final top event probability and intensity predictions are calculated by

integrating the results of the PN and Markov models into the BDD.

An in-house code in C++ has been written to execute the analysis of steps iii-vii. The key

parts of the algorithm are the modularisation in stage iii and the results integration in stage

vii. These are described in detail in the following sections. A case study is then used to

demonstrate how each stage of the algorithm is executed.

7.2 Modularisation of the Fault Tree

Modularisation is performed to redefine the original fault tree structure to a series of small

independent modules, each of which can be efficiently solved, and the results reassembled to

produce the solution of the original problem. Two very effective techniques exist for fault

tree modularisation where gate dependencies are created through repeated basic events. The

first is an approach developed at Riso and used in their Faunet code [29, 30]. The second is

the linear-time algorithm to identify independent gates in the fault tree structure developed by

Dutuit and Rauzy [31]. Whilst both of these are effective in identifying small independent

modules, they do not necessarily produce the smallest independent modules. Since they

utilise differing approaches, applying the two sequentially can produce smaller modules than

applying either on its own. Both algorithms require modifications to account for the

dependencies between basic events permitted within D2T2. These modifications are

explained below.

Factor Modularisation Method

The Faunet reduction method reduces the fault tree to its fundamental structure by defining a

series of very simple, two element, factors or modules. This method has been re-formulated

15

to improve efficiency and enable dependent events to be accommodated. The factors are able

to contain any number of elements to improve efficiency. Rules defining which types of

events can be included within the same factor definition are also provided to ensure the

factors defined are all mutually independent. The factor modularisation method executes the

repeated application of three stages: contraction, factorisation and extraction.

Contraction:

Subsequent gates of the same type are contracted into a single gate. This makes the fault tree

an alternating sequence of AND and OR gates.

Factorisation:

Extracts factors expressed as groups of events that always occur together as inputs to the

same gate type. The factors can be any number of events if they satisfy the following:

 All events in the group are independent initiators.

 All events in the group are independent enablers.

 All events in the group feature a dependency and contain all events in the same

dependency group.

Extraction:

Structures of the two forms illustrated in Figure 8, where a repeated event is an input to all

gates of the same type on one level, are restructured as shown. This is performed to enable

further simplification of the fault tree structure.

Figure 8 ‘Extracted’ Fault Tree Structures

For the complex factors created the probability, 𝑄𝐶𝑓𝑖 , and failure intensity, 𝑤𝐶𝑓𝑖, can be

calculated. For complex factors of OR and AND combinations these are given by:

For factors formed from combinations of independent events

OR combinations, 𝐶𝑓𝑖 = 𝑥1 + 𝑥2 + ⋯ 𝑥𝑛

𝑄𝐶𝑓𝑖 = 1 − ∏ (1 − 𝑞𝑥𝑗
)

𝑛

𝑗=1

 (14)

X XA B

X XA B

X

A B

X

A B

16

If the factor contains only initiating events:

𝑤𝐶𝑓𝑖 = ∑ (𝑤𝑗 ∏(1 − 𝑞𝑥𝑘
)

𝑛

𝑘=1
𝑘≠𝑗

)

𝑛

𝑗=1

 (15)

AND combinations, 𝐶𝑓𝑖 = 𝑥1. 𝑥2. … . 𝑥𝑛

𝑄𝐶𝑓𝑖 = ∏ 𝑞𝑥𝑗

𝑛

𝑗=1

 (16)

𝑤𝐶𝑓𝑖 = ∑ (𝑤𝑗 ∏ 𝑞𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

𝑛

𝑗=1
𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

) (17)

For factors formed from combinations of events from a dependency group

The factor probabilities and intensities are extracted directly from the SPN or Markov

dependency model used.

Linear-time Algorithm

Following the application of the factor modularisation process there will be a list of complex

factors, created in the factorisation stages, and a core fault tree whose basic events include the

factors, which cannot be reduced further. The linear-time algorithm may be able to identify

independent gates within this core structure and so it is applied to this reduced fault tree. In

its original form the modularisation algorithm was targeted at conventional fault trees whose

events are independent. To identify independent sub-trees where some of the basic events are

dependent can be accomplished by allocating all basic events in the same dependency group

with the same label.

7.3 Integration of the Dynamic, Dependent or Complex Sub-model Results into the

 Core Fault Tree Analysis

As shown in the calculation procedure in Figure 7, the independent fault tree modules

identified following the application of the factor and linear-time modularisation algorithms

are converted to BDDs. Concise BDD structures are developed exploiting effective variable

ordering schemes.

Models for each dynamic, dependent or complex aspect of the problem, representing non-

exponential failure or repair times, complex maintenance strategies or specific dependencies

are expressed in an appropriate form such as a Petri net or Markov model, which are solved

as outlined in sections 6.2 and 6.3.

17

The results from the Petri net and Markov models are now integrated into the fault tree

quantification. This is achieved by considering each path through the BDDs individually,

and it is for this reason that the modularisation has been performed to keep the number of

BDD paths as small as possible. On each path the components are grouped according to their

dependency status. For example, consider the BDD in Figure 4 where there are two

dependency groups: D1={b, c} and D2={d, e}.

There are four disjoint paths through the BDD to a terminal-1 as reproduced in column 2 of

Table 2 where the event subscripts relate to the 1 and 0 branches from variables. The next

three columns separate the events in each path into those which are independent and those

which are members of the two dependency groups. The probability of the dependency group

events in each path can be extracted from the dependency models.

Table 2 Component Dependency Groupings

The final stage of the methodology utilises the path calculations to delivers the system,

original top event, failure probability and failure intensity.

7.3.1 Top Event Probability

The top event probability is calculated by adapting equation 12, grouping components which

are independent or in the same dependency groups along each path to give:

𝑄𝑆𝑌𝑆 = ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗) ∏ 𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)

𝑛𝑑𝑒𝑝

𝑘=1
]

𝑛𝑝𝑎𝑡ℎ

𝑗=1

 (18)

where;

npath – number of paths through the BDD to a terminal-1.

ndep – number of dependency groups.

𝐼𝑝𝑎𝑡ℎ𝑗 - is the independent component states in the jth path.

j pathj Ipathj

1 a1, b1, c1 a1 b1, c1

2 a1, b1, c0,

d1, e1

a1 b1, c0 d1, e1

3 a1, b0, c1 a1 b0, c1

4 a0, b1, c1 a0 b1, c1

18

𝐷𝑝𝑎𝑡ℎ𝑗
𝑘 – is the component events in dependency group k on path j.

The probability values for dependency terms are obtained from the appropriate SPN or

Markov model. Where the components in a dependency group on a path are not the

complete set of components on the group then the probability of the subgroup can be

calculated from:

𝑃(𝑥1, … . . , 𝑥𝑚) = ∑ … … . . ∑ 𝑃(𝑥1, … . . , 𝑥𝑛)

1

𝑥𝑛=0

1

𝑥𝑚+1=0

 (19)

where:

the dependency group membership is: (x1,….., xm, xm+1, ….. , xn) and the sub-group of

components in the path is: (x1,….., xm)

7.3.2 Top Event Failure Intensity

Evaluating the system failure intensity, like the system failure probability, uses paths through

the BDD structure and the grouping of components into dependency groups to calculate

equation 11. This requires the prediction of the criticality function for each of the initiators

by evaluating the two probability terms in equation 10.

Consider the two situations where it is required to calculate the criticality function for

initiator xi where the variable is a member of a dependency group, d, or a member of the class

of independent variables.

xi is a member of dependency group d

Consider in the general BDD structure shown in figure 9 where there are paths through the xi

node to a terminal-1 and paths which do not encounter this node.

Figure 9 General BDD structure

For the first term in equation 10, the probability of the top event when xi is failed (xi=1), this

sets the paths that pass through the variable xi on the 1-branch to do so with certainty and the

X
i

1

1

0

0

1

1

0

0

0

0 1 0

1

1

0

0

1

1

1

19

𝑄𝑆𝑌𝑆 (1𝑖 , 𝑞) = ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)] . 𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑑

𝑛𝑑𝑒𝑝

𝑘=1
𝑘≠𝑑

− 𝑥𝑖1
|𝑥𝑖 = 1)]

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

+ ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)] . 𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑑

𝑛𝑑𝑒𝑝

𝑘=1
𝑘≠𝑑

|𝑥𝑖 = 1)]

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑄𝑆𝑌𝑆 (0𝑖 , 𝑞) = ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)] . 𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑑

𝑛𝑑𝑒𝑝

𝑘=1
𝑘≠𝑑

− 𝑥𝑖0
|𝑥𝑖 = 0)]

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

+ ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)] . 𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑑

𝑛𝑑𝑒𝑝

𝑘=1
𝑘≠𝑑

|𝑥𝑖 = 0)]

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

paths which pass xi on the 0-branch do not need to be considered. So the summation of the

paths to a terminal-1 will include all paths which pass through variable xi on the 1-branch

removing the variable xi. It will also include all the paths to a terminal-1 which do not pass

through the variable xi. In these paths it is however possible that other variables in the path

could be in the same dependency group as xi and so must be conditional on xi=1 as shown in

equation 20.

 (20)

Expressing the path probabilities accounting for the independent/dependency groups gives:

 (21)

Considering the second term in equation where xi=0 and the paths through the xi node pass on

the 0-branch gives:

(22)

and

 (23)

Subtracting the two terms in equations 21 and 23, for each initiator, gives the criticality function

which can be substituted into equation 11.

xi is not a member of a dependency group

When xi is one of the independent variables the second terms in equations 20 and 22 are no

longer dependent upon xi giving:

𝑄𝑆𝑌𝑆 (1𝑖 , 𝑞) = ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1
) + ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 1)

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

𝑄𝑆𝑌𝑆 (0𝑖 , 𝑞) = ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0
) + ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 0)

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝐺𝑖(𝒒) = ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1
) + ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗)

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

20

 (24)

The two terms which provide the probability of passing to a terminal-1 on paths which do not

contain xi now cancel. Expressing the equation in terms of the independent and dependency

group probabilities gives:

 (25)

8.0 Pressure Vessel Cooling System Case Study

The case study system is illustrated in Figure 10. The system is a pressure vessel used for an

exothermic chemical reaction which requires cooling. Cooling is performed by the primary

cooling system which features a water supply from tank, T1, which is driven to the heat

exchanger (Hx1) by two pumps (P1 and P2). The pumps are powered by a common supply,

PoW.

Failure of the primary cooling system causes an increase in vessel temperature which is

detected by the thermocouples, S1 and S2. In the event that either thermocouple registers an

increasing vessel temperature, the computer will de-energise the relays R1 and R2 and

activate two alternative cooling systems. The first of these auxiliary cooling systems is

similar to the primary system with water supply, T2, heat exchanger, Hx2 and a single pump,

P3. When relay R2 is de-energised its contacts close, powering pump P3 and opening the

motorised valve V1. The second cooling action comes from fan, F, powered by a motor, M.

Activation of this system occurs when relay R1 contacts close on the relay de-energisation.

Fan, Motor, P3 and V1 also take their power from supply PoW.

In the event that the primary cooling system fails, both auxiliary systems need to activate and

operate, without failure, for a further 30 days whilst the process is shut-down.

− ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0
) − ∑ 𝑃(𝑝𝑎𝑡ℎ𝑗)

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝐺𝑖(𝒒) = ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1
). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑘)]

𝑛𝑑𝑒𝑝

𝑘=1

]

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

− ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0
). ∏ [𝑃(𝐷𝑝𝑎𝑡ℎ𝑗

𝑘)]

𝑛𝑑𝑒𝑝

𝑘=1

]

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

21

Figure 10 Pressure Vessel Cooling System Case Study

The fault tree for the top event, ‘Pressure Vessel cooling fails’ is developed in Figure 11,

basic event codes are defined in Table 3, which also contains the component failure, repair

and inspection data. The objective of the analysis is to calculate the probability and

frequency of the top event.

Figure 11 Pressure Vessel Cooling System Fails Fault Tree

Event

Code

Description I / E D-

Group

Failure

rate

(/hour)

Mean

time to

repair

(hours)

Inspect

interval

(hours)

q w

P1,

P2

Pumps fail

when running

I D1 Failure rate 𝜆1 = 2 × 10−5 /h under normal load

 𝜆2 = 5 × 10−3/h under full load

Repair rate ν= 0.041667 (MTTF = 24hrs)

T1 Water Supply

failure

I 1x10-5 24 2.4x10-5 9.99976

x10-6

M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

Auxiliary Cooling
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1

22

Hx1 Heat

Exchanger

fails

I D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

PoW Power supply

failure

I 1x10-4 10 1x10-3 9.99

x10-5

S1,

S2

Sensor fails

to detect a

high

temperature

E 5x10-4 5 730 0.185

Comp Computer

fails to

process

sensor signals

E 5x10-5 5 2190 0.055

R1 /

R2

Relay

contacts fail

to close

E 1x10-5 24 2190 0.0112

Fan Fan fails E 2x10-6 8 2190 2.206

x10-3

Motor Fan motor

fails

E C1 Failure time = W(β=1.5, η=12,000h)

Repair time = LogN(μ=24hrs, σ=4.8h)

P3S Pump fails to

activate

E D3 0.05

P3R Pump fails

when running

E D3 1x10-4

T2 Water Supply

failure

E 1x10-5 24 2190 0.0112

Hx2 Heat

Exchanger

fails

E D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

V1 Valve fails to

open

E 5x10-5 30 2190 0.05625

Table 3 Basic Event Definitions

The pressure vessel cooling system will be used to demonstrate the application of D2T2

algorithm. There are four elements of the pressure vessel cooling system that introduce

complexities or dependencies into the analysis which are analysed using Petri net, Markov

and alternative approaches:

 The motor for the fan experiences failures times governed by a Weibull distribution and

repair times which are lognormal. This introduces a complexity in calculating the

likelihood that the motor will not last for the 30 days required. A Petri net will be used

to assess the failure characteristics of the motor.

 The pumps, P1 and P2, in the primary cooling system, contain a dependency. In normal

operation both pumps operate. When one pump fails the other takes the full load with a

corresponding increase in its failure rate. Since the pumps experience constant failure

and repair rates a Markov model can be used.

23

 A maintenance dependency exists between the two heat exchangers, Hx1 and Hx2. They

operate in similar environments and when one reaches a point where replacement is

needed, the other will also be close to that condition. Since they have to shut down the

process and employ specialist equipment to perform the maintenance, the opportunity is

taken to replace both at the same time. A Petri net will be used to model this more

complex maintenance process.

 There is another complexity for pump, P3, where the two events relating to this

component appear in Table 2, the pump failing to start, P3S, and failing during the 30

day operating period, P3R, which both combine to give the probability of P3 not

working for the required duration.

9.0 Case Study Analysis

The D2T2 algorithm, presented in section 7.1, is now applied to the case study system in order

to predict its failure probability and intensity. The qualitative analysis to deliver the minimal

cut sets is not changed in comparison to the traditional approach and, as such, is not

considered in this paper. The execution of each step in the algorithm is described in detail.

Step i: Identify the Initiators and Enablers

All events which cause the primary cooling system failure put a demand on control and

protection systems to prevent a vessel cooling failure and, as such, are initiating events.

Failure of the safety features: the detection system or the two auxiliary cooling systems are

enablers. These categorisations are included in Table 3, column 3.

Step ii: Create the Dependency Groups

This step explicitly identifies the complexities and dependencies, along with the components

whose failures appear in each. These will be the parts of the analysis which deviate from the

traditional KTT quantification. From the description of the problem given above it can be

seen that the motor for the fan, Motor, does not have constant failure and repair rates and its

probability and failure intensity will be obtained by a Petri net model. This is complexity

group C1 and contains only the one component since its failure parameters remain

independent from the state of the other components.

 C1={Motor}

Pumps P1 and P2 exhibit dependent failures and so are included together in the first

dependency group:

 D1={P1, P2}

Heat Exchangers Hx1 and Hx2 experience an opportunistic maintenance dependency and are

allocated to dependency group 2.

 D2={Hx1, Hx2}

The events in the fault tree which relate to the third pump, P3 representing its failure to start

and failure once running, P3S and P3R are also dependent and the failure parameters for this

component will form another dependency group.

 D3={P3S, P3R}

24

Step iii: Quantify Traditional Component Failure Models

All basic events which do not appear in any complexity or dependency group are independent

events with constant failure and repair rates whose probability of failure and failure intensity

can be calculated as per conventional approaches using equations 1-4. The failure

probability, q, of the initiators and enablers, along with failure intensity, w, of the initiators

are thus calculated and shown in the last two columns of Table 3.

Step iv: Modularisation

This step employs the two stage process described in section 7.2. First applying the three

processes of the Factor approach, and then the linear time algorithm of Dutuit and Rauzy.

Contraction 1

Applying the first contraction phase to the fault tree in Figure 11 produces the fault tree

shown in Figure 12A.

Figure 12 Applying the Factor Modularisation Reduction

Factorisation 1

Creates the following factors:

𝐶𝑓1 = 𝑃1. 𝑃2 (dependency group D1 – initiators)

𝐶𝑓2 = 𝑆1. 𝑆2 (independent enablers)

𝐶𝑓3 = 𝐶𝑜𝑚𝑝 + 𝑅1 + 𝐹𝑎𝑛 + 𝑀𝑜𝑡𝑜𝑟 + 𝑅2 + 𝑇2 + 𝑉1 (independent enablers)

𝐶𝑓4 = 𝑃3𝑆 + 𝑃3𝑅 (dependency group D3 – enablers)

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Pressure Vessel
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Pressure Vessel
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Pressure Vessel
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

A: after Contraction 1 B: after Factorisation 1

C: after Extraction 1 D: after Contraction 2

25

Replacing the events by their complex factors in the fault tree in Figure 12A delivers the fault

tree in Figure 12 B.

Extraction 1

A restructuring of the fault tree logic is enabled by the first application of the extraction

process around the event PoW. The resulting fault tree is illustrated in Figure 12C.

Contraction 2

No changes to the fault tree occur as it is already an alternating sequence of AND and OR

gates.

Factorisation 2

Although Cf1 and Cf4 relate to dependency groups they are independent all other events in the

fault tree and can therefore be used to form new factors.

𝐶𝑓5 = 𝐶𝑓1 + 𝑇1 (initiator)

𝐶𝑓6 = 𝐶𝑓2 + 𝐶𝑓3 + 𝐶𝑓4 (enabler)

Since Hx1 and Hx2 are in a dependency group together they cannot be defined as a factor

with any other events and so no additional factors are possible and the final Factor

modularisation simplified fault tree is given in Figure 12D.

Applying the linear time algorithm of Dutuit and Rauzy, modified to account for dependent

events, the Top gate and the AND gate (labelled G1) will be identified as modules which can

be analysed separately. This effectively defines another factor:

𝐶𝑓7 = 𝑃𝑜𝑊 + 𝐺1

Step v: Model Generation and Solution for the Complex and Dependent Groups

Complexity Group C1={Motor}

This complexity module creates a simple PN structure, as shown in Figure 13 where the

motor failure time distribution is W(β=1.5, η=12,000h) and the repair time distribution is

LogN(μ=24h, σ=4.8h), taken from Table 3. Simulating gives the probability of the enabling

event, 𝑞𝑀𝑜𝑡𝑜𝑟, failing to operate for 30 hours as 0.005839.

Figure 13 Simple Petri Net Model the Motor Complexity

Dependency Group, D1={P1, P2}

R1 Working R1 Failed

W(β,η)

LN(μ,σ)

26

The dependency in module D1 occurs because a failure of one pump allocates the full work-

load to the second. The constant rate with which pumps fail under normal operation is 𝜆1 =

2 × 10−5 /hour. When one pump fails and the full load is taken by the other pump its failure

rate rises to 𝜆2 = 5 × 10−3 /hour. Repair is undertaken, on average, in 24 hours, giving a

repair rate of ν= 0.041667 /hour. The Markov model for the failure/repair process for the

two pumps is shown in Figure 6. An analysis of this model, assuming steady state

conditions, gives the results shown in Table 4.

State

Number

State State

Probability

Intensity Expression State Intensity

(per hour)

1 𝑃1𝑊𝑃2𝑊 0.99743518 𝑤1 = (𝑄2 + 𝑄3). 𝜈 +
𝑄4. (0.5)𝜈

7.12456 × 10−5

2 𝑃1𝐹𝑃2𝑊 0.00042747 𝑤2 = 𝑄1. 𝜆1 1.99487 × 10−5

3 𝑃1𝑊𝑃2𝐹 0.00042747 𝑤3 = 𝑄1. 𝜆1 1.99487 × 10−5

4 𝑃1𝐹𝑃2𝐹 0.00170988 𝑤4 = (𝑄2 + 𝑄3). 𝜆2 4.2747 × 10−6

Table 4 State Probability and intensity results for dependency group D1

Additional results needed from this model in the later calculations are:

Dependency Group, D2={Hx1, Hx2}

Module D2 contains the basic events for the failure of the identical heat exchangers, Hx1 and

Hx2. Each heat exchanger has failure times which follow a Weibull distribution with β=2.5

and characteristic life, η, 35,000 hours. When one of the heat exchangers reaches the point

that it needs replacing, the system is shut down and both are replaced at the same time. Since

Hx2 is an enabler, its failure is discovered through an inspection process. Failures of

initiator, Hx1, are revealed. The PN, generated to represent this situation, is illustrated in

Figure 5. Solving the model using Monte Carlo simulation and tracking the critical states

gives the following results.

State Probabilities:

P(Hx1W, Hx2W)=0.98646987828725829

P(Hx1W, Hx2F)=0.0135301

P(Hx1F, Hx2F)=0.0 (28)

P(Hx1F)=0.0

P(Hx2F| Hx1F)=0.0

P(Hx2F| Hx1W)= 0.0135301

State Failure Intensities

w(Hx1F, Hx2_unrevealed)=3.1709792 x 10-07 /hour

w(Hx1F, Hx2W)=1.8161063 x 10-05 /hour (29)

w(Hx1F)=1.8478161 x 10-05 /hour

𝑃1F|𝑃2F=
𝑃1𝐹∩𝑃2𝐹

𝑃2𝐹
=

0.00170988

0.00170998+0.00042747
=0.8 (26)

𝑤𝑃1𝐹
= 𝑄1. 𝜆1 + 𝑄3. 𝜆2= 2.208605 × 10−5 /hour (27)

27

Dependency Module, D4={P3S, P3R}

Dependency module D4 is different from the others in that the two failure modes it contains

relate to the same component, pump P3, which is an enabler and so a prediction of its failure

probability, qP3, is given by:

𝑞𝑃3 = 𝑞𝑃3𝑆 + (1.0 − 𝑞𝑃3𝑆)𝜆𝑃3𝑅. 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 (30)

 = 0.05 + 0.95 × 10−4 × 30 = 0.05285

Step vi: BDD Construction

The sub-tree for G1 in Figure 12D has to be analysed separately and account for the

dependency between events Hx1 and Hx2. For this, the fault tree is converted to a BDD.

The ordering of the variables chosen is: Cf5<Hx1<Cf6<Hx2 which gives the BDD shown in

Figure 14.

Figure 14 BDD of the Fault Tree below Gate G1

Step vii: Results Integration

Top Event Probability

The final step in the algorithm is to integrate the results from each part of the BDD, Petri net

and Markov model quantification. First the calculations are performed for the independent

complex factors extracted in the Factor Modularisation algorithm. These results are shown in

Table 5. The probabilities of Cf1 and Cf4 obtained directly from dependency models D1 and

D3 respectively. Cf2 is calculated as an AND combination of basic event, S1 and S2, whose

likelihoods were determined in step iii. Cf3, Cf5 and Cf6 are all OR combinations whose

probability is quantified using equation 14. In the case of Cf3 the probability of the motor

failing comes from the analysis of complexity model C1.

Event

Code

Description I / E D-

Group

q

Cf1 P1. P2 I D1 0.00170988

Cf2 S1. S2 E 0.00034225

Cf5

Cf6

Hx2

1 0

Hx1

28

Cf3 Comp +

R1 + Fan +

Motor +

R2 + T2 +

V1

E 0.6035094

Cf4 P3S + P3R E 0.05285

Cf5 Cf1 + T1 E 0.0017338

Cf6 Cf2 + Cf3

+ Cf4

E 0.6246519

G1 BDD I

0.001091749

Cf7 PoW + G1 D2 0.0020906577

Table 5 Calculations to determine the Top Event probability

The next part of the calculation process is the evaluation of the probability of Gate G1, whose

logic is represented by the BDD shown in Figure 14. There are 4 paths through this BDD to

a terminal-1 and two of the events, Hx1 and Hx2, belong to dependency group D3. The paths

and the classification of the events featuring in each path are shown in Table 6.

Path

j

pathj elements Ipathj 𝐃𝐩𝐚𝐭𝐡𝐣
𝟏

1 Cf51 , Cf61 Cf51 , Cf61

2 Cf51 , Cf60 , Hx21 Cf51 , Cf60 Hx21

3 Cf50 , Hx11 , Cf61 Cf50 ,Cf61 Hx11

4 Cf50 , Hx11 , Cf60 , Hx21 Cf50 , Cf60 Hx11 , Hx21

Table 6 Event Classifications for the paths through the BDD for G1

The probability of G1 is then obtained by evaluating equation 18. The probability

expressions for each of the 4 paths in this calculation are:

The probabilities P(Hx2), P(Hx1) and P(Hx1, Hx2) are obtained from the Markov model

evaluation of Dependency group D2. All others can be obtained from Table 5. Summing

these 4 terms gives a probability for gate G1 = 0.00109175.

𝑄𝑝𝑎𝑡ℎ1 = 𝑃(𝐶𝑓51). 𝑃(𝐶𝑓61) = 0.0010830 (31)

𝑄𝑝𝑎𝑡ℎ2 = 𝑃(𝐶𝑓51). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥21) = 8.8052957x 10-6 (32)

𝑄𝑝𝑎𝑡ℎ3 = (1 − 𝑃(𝐶𝑓51)). 𝑃(𝐶𝑓61). 𝑃(𝐻𝑥11) = 0.0 (33)

𝑄𝑝𝑎𝑡ℎ4 = (1 − 𝑃(𝐶𝑓51)). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥11, 𝐻𝑥21) = 0.0 (34)

29

Finally, the top event failure probability is then derived by putting the result for G1 into Cf7,

giving, 𝑄𝑆𝑌𝑆 = 0.0020906577.

Top Event Failure Intensity

To calculate the system failure intensity requires the evaluation of equation 11, where the

summation is made over the five initiating events, T1, Hx1, P1, P2 and PoW. For all

initiating events other than Hx1, calculating their criticality function, Gi, is simply a matter of

performing the two top event calculations shown in equation 10, once assuming the

component is failed and the second with the component working. Hx1 is more complex due

to its residence in dependency group D2. This requires the processing of equations 22 and 23

which apply to the BDD representing G1. The BDD paths classification for the latter are

summarised in Table 6.

Considering path 1, its contribution to the criticality function is 0 since all events in the path

are independent of initiator Hx1.

The contributions for Paths 2-4 are:

The terms in red are obtained from the D2 dependency Petri net model. The results entered

into the equation 11 are shown in Table 7.

Variable Q(var=F) Q(var=W) Gi(var) Gi (var) w

Hx1

1.152147238 x 10-5

T1 0.6300421 0.0020756 0.6279665 6.2795143 x 10-6

P1 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

P2 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

PoW 1.0 0.0010918 0.9989082 9.979093 x 10-5

Table 7 Failure intensity calculations for the initiating events.

This gives a system failure intensity of:

10. Discussion

 𝐺𝑃𝑎𝑡ℎ_2 = 𝑃(𝐶𝑓51). (1 − 𝑃(𝐶𝑓61)). [𝑃(𝐻𝑥21|𝐻𝑥11)-𝑃(𝐻𝑥21|𝐻𝑥10)] (35)

𝐺𝑃𝑎𝑡ℎ_3 = (1 − 𝑃(𝐶𝑓51)). 𝑃(𝐶𝑓61) (36)

𝐺𝑝𝑎𝑡ℎ_4 = (1 − 𝑃(𝐶𝑓51)). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥21|𝐻𝑥11) (37)

𝑤𝑆𝑌𝑆(𝑡) =1.342632 x 10
-4

 / hour (38)

30

10.1 D2T2 Methodology

The foundation of the D2T2 method is the BDD. When analysing a conventional fault tree

with independent basic events, the method employed to evaluate the BDD would progress

bottom-up evaluating each node in the BDD in terms of the probabilities of the events that are

connected on its 1-branch and 0-branch. Although the BDD structure has not changed in the

methodology presented, to account for the dependencies requires the BDD evaluation to

progress one path at a time. This will add to the computational effort and is why it is

essential to minimise the size of the BDD and the number of path calculations performed.

In basing the method on the BDD it exploits all the advantages that the BDD offers, it also

suffers from the limitations. There are times when solving the fault tree using BDDs that a

good ordering of the variables cannot be established. This can add to another source of

computational inefficiency and in extreme cases it may not be possible to formulate the BDD.

In this circumstance an approximation provides the means for analysis. The fault tree

minimal cut sets are obtained, truncated, to yield those providing the main contributions to

the top event. Dependent basic events are not permitted to be culled in this process. This

reduced set of failure combinations are then used to construct an approximate BDD to be

utilised in the methodology.

The methods used to calculate the complexities and dependencies, SPN and Markov, can be

expanded and it is easy to incorporate alternative techniques such as Bayesian Networks [32]

and Dynamic Uncertainty Causality Graphs [33] into the framework.

As is to be expected, in relaxing the restrictions, more computational resource will be

required. Research will now focus on improving the efficiency of the algorithm, just as

occurred with KTT. Future advances in computer technology will also add to the speed of

the calculations.

10.2 Uncertainty and Transparency

As discussed in Apostalakis [34], uncertainty and errors occur in system assessment methods

in several ways. One is the way that the failure model represents the engineering.

Uncertainty can come through lack of knowledge of the underlying physics or the inability to

represent the failure event combinations in the logic representation, in this case the fault tree.

An example of this is provided when considering the causes of a derailment for a train. A

combination of train speed and poor track geometry can lead to this hazard. Each of these

quantities are continuous and the physics which relates the train speed necessary for

derailment to occur, given the vertical track geometry condition (as measured by the standard

deviation of the tracks vertical alignment over a defined length such as 35m or 70m), is not

fully understood. Expressing these continuous variables in the discrete form of the fault tree

basic events is also a limitation in representing this failure combination, and a pessimistic

discretisation of these events are necessary.

A common discussion point is the existence of data of sufficient quality or quantity to

populate: the failure time and repair time distributions associated with each component

failure, the likelihood of human errors or of software failures in a particular failure mode.

This issue is even more evident when attempting to fully understand dependencies that exist

between elements of a system.

31

The method chosen for the analysis is also a factor to consider. The traditional fault tree

approach requires approximations to be made in the calculations which combine the minimal

cut set probabilities and intensities to produce the system performance. It can also be

necessary to apply cut-offs to restrict the minimal cut sets considered to those which provide

the most significant contributions [7]. This has been shown to have the potential for

significant errors and is a major justification for the employment of the Binary Decision

Diagram method.

The method presented in this paper tries to address some of these areas, specifically:

- component failure and repair times represented by any probability distribution.

- incorporate dependent events transparently into the assessment and force this

consideration from the outset.

- allow the maintenance to be considered in a realistic representation of the processes

executed for real systems

- permit event sequences to be considered.

The method aligns to the objectives of risk-informed decision making [34], ensuring that

these features are considered within the initial model and that the assumption of

independence does not inject optimism into the performance produced [33].

The retention of the fault tree to represent the causes of system failure provides an important

contribution to the insight in the causes of system failure. The sub-models which calculate

the performance of the dependencies and complexities contained within the model also offer

insights into the realistic performance characteristics of that particular sub-system. This

insight can be used when considering if some of the imposed safety requirements need to be

enhanced due to their poor predicted performance, or, to ensure that resources are not wasted.

The D2T2 methodology is intended to support rational decision making and effective peer

review.

11.0 Summary and Conclusions

 The Dynamic and Dependent Tree Theory, D2T2, has been presented in this paper. It

enables the evaluation of fault trees which are not limited by the restrictions which

apply to conventional fault trees solved by Kinetic Tree Theory.

 The algorithm achieves the new capabilities by the utilisation of BDDs, Petri Nets and

Markov Models to change the internal calculation processes of the fault tree analysis

and retain the familiar and popular fault tree structure to represent the system failure

causality.

 The Petri net and Markov models dedicated to solve the complexity and dependency

models are minimal in size. This improves the efficiency of the method since large

models can be expensive in computational effort to solve.

 Modularisation of the fault tree reduces the size of the BDD utilised in the system

evaluation calculation. This is necessary to reduce the number of, and size of, the

paths through the BDD in order to ensure the algorithm is as efficient as possible.

Acknowledgement

32

This work was supported by the Lloyd’s Register Foundation, a charitable foundation in the

U.K. helping to protect life and property by supporting engineering-related education, public

engagement, and the application of research.

References

1. Watson H.A., Launch Control Safety Study, Bell Telephone Laboratories, Murray

Hill, N.J. USA, 1961.

2. Vesely W.E., (1970), A Time Dependent Methodology for Fault Tree Evaluation,

Nuclear Engineering and Design, Vol 13, pp337-360.

3. Andrews, J.D. and Moss, T.R., (2002), Reliability and Risk Assessment (2nd edition),

Professional Engineering Publishing, 540 pp, ISBN 1-86058-290-7.

4. Zhang Q. and Qizhi, M., Element Importance and System failure frequency of a 2-

State System, IEEE Transactions on Reliability, Vol R-34, No 4, 1985.

5. Dunglinson, C. and Lambert, L., Interval Reliability for Initiating and Enabling

Events, IEEE Transaction on Reliability, 32(2), 1983, 150-163.

6. Rauzy, A., (2003), Toward an Efficient Implementation of the MOCUS Algorithm,

IEEE Transactions of Reliability, 52(2), pp175-180.

7. Čepin M. Analysis of truncation limit in probabilistic safety assessment. Reliability

Engineering and System Safety 2005; 87(3):395–403.

8. Rauzy A., (1993), New algorithms for Fault Trees Analysis. Reliability Engineering

and System Safety, 59(5), pp203–211.

9. Sinnamon, R.M. and Andrews, J.D., (1996), Quantitative Fault Tree Analysis Using

Binary Decision Diagrams, European Journal of Automation, 30(8), pp 1051-1071,

ISSN 0296-1598.

10. Sinnamon, R.M. and Andrews, J.D., (1997), Improved Accuracy in Quantitative Fault

Tree Analysis, Quality and Reliability Engineering International, 13, pp 285-292.

11. Sinnamon, R.M. and Andrews, J.D., (1997), Improved Efficiency in Qualitative Fault

Tree Analysis, Quality and Reliability Engineering International, 13, pp 293-298.

12. Bouissou, M., Bruyere, F., Rauzy, A. BDD Based Fault Tree Processing: A

Comparison of Variable Ordering Heuristics. In Proceedings of European Safety and

Reliability Association Conference, ESREL'97, Lisbon, Portugal, 17–20 June 1997,

Vol. 3, pp. 2045–2052.

13. Bartlett, L. M., Andrews, J. D. Choosing a Heuristic for the Fault Tree to Binary

Decision Diagram Conversion, using Neural Networks. IEEE Trans. Reliability, 2002,

51(3), 344–349.

14. Mo,Y., Xing, L. and Amari, S.V., A Multiple-Valued Decision Diagram Based

Method for Efficient Reliability Analysis of Non-Repairable Phased-Mission

Systems, IEEE Transactions on Reliability, vol. 63, no. 1, pp. 320-330, March 2014,

doi: 10.1109/TR.2014.2299497.

15. Reed, S., An Efficient Algorithm for Exact Computation of System and Survival

Signatures using Binary Decision Diagrams, Reliability Engineering and System

Safety 2017; 165, 257-267.

16. Xing, L. and Amari, S.V., Binary Decision Diagrams and Extensions for System

Reliability Analysis, Wiley, 2015, (ISBN 978-1-118-54937-7).

17. Petri, C.A., Kommunication mit Automaten., Technischen Hoschule

Darmstadt (1962), Ph.D. thesis

18. Jensen, K. and Rozenberg, G., High-level Petri Nets: Theory and Application,

Springer Science & Business Media, 2012.

33

19. Chiachío, M., Saleh, A., Naybour, S., Chiachío, J. and Andrews, J., Reduction of Petri

Net Maintenance Modeling Complexity via Approximate Bayesian Computation,

Reliability Engineering and System Safety, Vol 222, June 2022.

20. Zhou, J. and Reniers, G., Petri-Net Based Cooperation Modelling and Time

Analysis of Emergency Response in Context of Domino Effect Prevention in Process

Industries, Reliability Engineering and System Safety, Vol 223, July 2022.

21. Ramirez-Marquez, J.E. and Coit, D., A Monte-Carlo Simulation Approach for

Approximating Multi-state Two-terminal Reliability, Reliability Engineering and

System Safety, Vol 87, No 2, 2005, pp253-264.

22. Yin, J., Cui, L. and Balakrishnan, N., Reliability of Consecutive – (k,1)-out-of-n: F

Systems with Shared Components under Non-Homogeneous Markov Dependence,

Reliability Engineering and System Safety, Vol 224, 2022.

23. Meshkat, L., Dugan, J.B. and Andrews, J.D., (2001), Maintenance Modelling for

Computer Based Systems, IMechE Proceeding Part E, Journal of Process Mechanical

Engineering, 215(E3), pp 221-233, ISSN 0954-4089.

24. Meshkat, L., Dugan, J.B. and Andrews, J.D., (2002), Dependability Analysis of

Systems with On-demand and Active Failure Modes, Using Dynamic Fault Trees,

IEEE Transactions on Reliability, 51(2), 240-251, ISSN 0018-9529

25. Zhou, S., Ye, L., Xiong, S. and Xiang, J., Reliability Analysis of Dynamic Fault Trees

with Priority-AND Gates Based on Irrelevance Coverage Model, Reliability

Engineering and System Safety, Vol 224, 2022.

26. Chiacchio, F., Iacono, A., Compagno, L. and D’Urso, D., A General Framework for

Dependability Modelling Coupling Discrete -Event and Time-dependent Simulation,

Reliability Engineering and System Safety, Vol 199, 2020.

27. Audley, M. and Andrews, J.D., (2013), The Effects of Tamping on Railway Track

Geometry Degradation, Proceedings of the Institution of Mechanical Engineers, Part

F: Journal of Rail and Rapid Transit, 227)(4), pp 376 – 391.

28. Andrews, J, Prescott, D. and De Rozieres, F., 2014, A Stochastic Model for Railway

Track Asset Management, Reliability Engineering and System Safety, Vol 130, pp76-

84.

29. Platz, O. and Olsen J. V. “FAUNET: A Program Package for Evaluation of Fault

Trees and Networks”, Research Establishment Riso, Report No 348, DK-4000

Roskilde, Denmark, Sept. 1976.

30. Reay, K. and Andrews, J.D., (2002), A Fault Tree Analysis Strategy Using Binary

Decision Diagrams, Reliability Engineering and System Safety, 78, pp 45-56.

31. Dutuit, Y. and Rauzy, A. A Linear-Time Algorithm to find Modules of Fault Trees,

IEEE Trans. Reliability, 45, No. 3, 1996.

32. Fenton, N. and Neil, M., (2012) , Risk Assessment and Decision Analysis with

Bayesian Networks, CRC Press, pp524.

33. Zhou, Z. and Zhang, Q., Model Event/Fault Trees with Dynamic Uncertain Causality

Graph for better Probabilistic Safety Assessment, IEEE Transactions on reliability,

Vol 66, No 1, March 2017.

34. Apostolakis, G., How Useful is Quantitative Risk Assessment?, Risk Analysis, Vol

24, No 3, 2004.

