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The foundations of risk assessment tools such as fault tree analysis and event tree analysis were established in the 1970s.  
Since then, research has made considerable advances in the capabilities of analytical techniques applicable to safety critical 
systems.  Technology has also advanced and system designs, their operation conditions and maintenance strategies are now 
significantly different to those of the 1970s. 

This paper presents an overview of a new methodology developed, retaining the traditional ways of expressing system 
failure causality, which aims to develop the next generation of risk assessment methodologies.  These evolved techniques, 
appropriate to meet the demands of modern industrial systems, aim to overcome some of the limitations of the current 
approaches.  These new tools and techniques will seek to retain as much of the current methodology features as possible to 
reduce the learning curve for practitioners and increase the chances of acceptance.  
     The new approach aims to increase the scope of event tree/fault tree analysis through the incorporation of Petri net, 
Markov model, and binary decision diagram-based methodologies.  Use of these techniques incorporates features such as: 
non-constant failure rates, dependencies between component failure events, and complex maintenance strategies to boost the 
capabilities of the methods. 

In addition, it considers dedicated routines to analyse the accident risk of transport systems formulated as phased mission 
models.  This type of modelling is demonstrated through the application to an aeronautical system, where the system is 
modelled as a mission consisting of a series of phases.  Mission success requires the successful completion of each of the 
phases.  This approach allows the requirements for success (and therefore failure) to differ from one phase to another.  It is 
also possible to model scenarios whereby a system fault that occurs in one phase of a mission may not affect the system until 
a later phase of the mission. 
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1. Introduction 

Risk assessment methodologies are being applied 
to increasingly complex safety critical engineering 
systems. The complexity of these systems is 
advancing not just in terms of technology and 
system design, but also their operational conditions 
and maintenance strategies. Commonly adopted 
methodologies for risk assessment of such systems 
currently include Fault trees (FTs) and Event trees 
(ETs).   These methodologies were developed in 
the 1970s and have limitations when attempting to 
accurately model certain features often found in 
modern systems such as non-constant failure rates, 
dependencies between component failure events, 
and complex maintenance strategies. Since the FT 
and ET methodologies were initially developed, 
considerable advances have been made in the 
development of analytical techniques which 
address some of the shortcomings of these 
methodologies when applied to modern 
engineering systems. These techniques often utilise 
Petri nets (PNs) (Chew et al. (2008), Andrews et al. 
(2014), Bryant et al. (2017)) or Markov models 
(MMs) (Bouissou & Bon (2003), Bäckstrom et al. 

(2016)). However, many of these techniques are 
often overlooked or under-utilised by risk 
assessment practitioners who favour more familiar 
FT & ET-based techniques. 

This paper presents an overview of a new risk 
assessment methodology which aims to overcome 
some of the limitations imposed by FT & ET-based 
approaches and meet the demands of modern 
industrial systems. This new methodology seeks to 
incorporate and extend some of the enhanced 
techniques that have been developed to model and 
assess risk within complex systems; whilst 
retaining as much of the FT & ET methodology 
features as possible to reduce the learning curve for 
practitioners and increase the chances of 
acceptance. 

2. Background 

Fault tree analysis is a widely used technique to 
assess the probability and frequency of system 
failure in many industries. By providing 
information which enables the probability of basic 
events to be calculated, the fault tree can then be 
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quantified to yield reliability parameters for the 
system. Such parameters typically sought by risk 
assessment practitioners include top event 
probability, top event unconditional failure 
intensity, top event failure rate, expected number of 
top event occurrences in a specified time period, 
and total system downtime in a specified time 
period. Importance measures, indicating the 
contribution that each component makes to the 
system failure can also be obtained through fault 
tree analysis. 

Phased missions are a common scenario in 
engineering, particularly within transport-based 
systems, whereby a system operates through 
several sequential and distinct periods of time 
(phases), during which the modes and 
consequences of failure can differ. For the mission 
to be a success the system must operate throughout 
all the phases. Component failures may occur at 
any point during the mission, yet not affect the 
system performance until the phase in which their 
condition is critical. Fault tree analysis can be 
adapted for, and is commonly applied to, phased 
mission analysis. Typically, individual fault trees 
are constructed each representing one phase of the 
mission. This approach normally necessitates the 
use of non-coherent fault trees (NOT gates 
included), as fault trees representing phases 
occurring after the first phase must model the 
successful completion of any earlier phases.  

A key objective of the new methodology is that its 
relevance to practitioners is maximised through its 
ability to produce all the metrics obtainable through 
traditional FT analysis, whilst being applicable to 
more complex scenarios/systems and potentially 
offering increased accuracy and/or efficiency of 
calculation. 

3. Base Model 

3.1 Base Model Inputs 

The first step towards the generation of models for 
the proposed risk analysis methodology is the input 
of:  

 component failure/repair information; 

 subsystem fault tree structures; 

 a system event tree structure; 

 component/subsystem dependency 
information. 

Note that, with the exception of the last entry in the 
list, these inputs are of the same form as those that 
would be required for a traditional FT/ET risk 
modelling approach. 

 

3.2 Base Methodology 

Two of the most significant limitations of 
traditional FT/ET analysis techniques are: the 
assumption that failure/repair rates are constant, 
and the assumption of stochastic independence 
amongst a system’s components. The techniques 
employed by the new methodology presented in 
this paper to overcome these limitations will be 
described within this section. 

The inputs described in the previous section are 
first analysed to identify the presence of any 
features that cannot be fully captured by traditional 
FT/ET-based techniques. Such features include 
component failure dependencies, time-dependent 
failure modes, or complex maintenance strategies. 
If any such features are present, the relevant 
components/systems are encapsulated within 
independent sub-models, referred to as complex 
events. The required reliability data for these 
complex events is then obtained through the 
application of appropriate simulation strategies, for 
example via the use of PNs or MMs. When a 
complex event incorporates dependencies between 
two or more elements, outputs are recorded in 
terms of joint probability values covering all 
possible combinations of component states. 

The reliability information obtained from complex 
event models is then integrated into the analysis of 
the individual sub-system models described by the 
FT structures input by the user. The model converts 
these FT structures to Binary Decision Diagrams 
(BDDs) for the computation of sub-system failure 
probability or frequency.  

The results obtained from the numerical analysis of 
the sub-system BDDs are combined according to 
the event tree structure input by the user to enable 
the calculation of the overall system reliability.  

3.3 Base Methodology Case Study 

Figure 1- Case study model of a power plant cooling 
system for demonstration of concepts 
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The methodology briefly outlined in the previous 
section is now demonstrated in more detail through 
its application to the case study system shown in 
Fig. 1.  

The case study models a simplified power plant 
cooling system consisting of four sub-systems: a 
primary cooling system, a secondary cooling 
system, a detection system, and a fan system.  

Any combination of subsystem failures has the 
potential to affect the performance and operation of 
the overall system, as shown by the event tree in 
Fig. 2. For instance, the failure of the primary 
cooling system can result in total loss of cooling 
only if in combination with the failure of the 
detection system (preventing the activation of 
secondary mitigation measures) or with the 
simultaneous unavailability of the secondary and 
fan cooling. Conversely, if one of the latter two 
subsystems operates correctly but not the other, 
only partial loss of cooling will occur. Finally, if all 
but the primary cooling subsystem are available, no 
cooling loss is registered.  

 

Figure 2- Event tree for the cooling system in Figure 1 

The examples presented in this paper will focus on 
the primary cooling system only.  The primary 
cooling system consists of a heat exchanger (HX1) 
which is fed cooling water from a storage tank 
(T1). Circulation of cooling water is ensured by the 
operation of one of two pumps (P1 & P2), with P2 
operating as a warm standby for P1. The failure of 
either HX1 or T1 prevents the correct functioning 
of the primary cooling system. Similarly, the 
simultaneous unavailability of the circulation 
pumps P1 and P2 leads to the overall failure of the 
subsystem. Conversely, the failure of only one of 
the two pumps still results in the correct operation 
of the primary cooling system. A fault tree 
summarising the possible failure modes of the 
primary cooling system is shown in Fig. 3.  

The first step of the proposed approach consists of 
converting individual independent subsystem FTs 
into BDDs. A BDD is a directed acyclic graph 
consisting of terminal and non-terminal vertices 
connected by edges (also referred to as branches). 
Each non-terminal vertex is associated with a basic 
event (e.g., the failure of an individual component) 
and is the origin of two branches: a 0-branch 

representing the non-occurrence of the basic event 
(e.g., the working state of the component) and a 1-
branch representing the occurrence of the basic 
event (e.g., component failure). Terminal vertices, 
in which all paths through the BDD terminate, 
assume either a 0 value, associated with the 
working state of the system, or 1, indicating the 
failure of the system. For instance, considering a 
system consisting of a single component X and 
adopting the if-then-else logic structure, this can be 
expressed as ite(X,1,0): if X fails then the entire 
system fails (terminal vertex equal to 1); on the 
contrary, if X works the entire system works 
(terminal vertex equal to 0). One of the advantages 
associated with BDDs is the ease with which a tree 
can be converted to represent its complementary 
top event. 

 
Figure 3- Fault tree for the primary cooling subsystem 

The conversion from FT to BDD is carried out 
following the method developed by Rauzy (1993). 
The complexity of the BDD produced by applying 
this procedure, strongly depends on the variable 
ordering selected. Various variable ordering 
heuristics are available and can be implemented 
within the prosed methodology. In the current 
study, the special ordering suggested by Sinnamon 
& Andrews (1997) has been adopted: FT gate 
events are considered in a top-down ordering, with 
the exception that at each gate the input basic 
events are listed with the repeated events first (if 
the gate has more than one repeated event as an 
input then the most repeated event is placed first).  

This results in the ordering HX1<T1<P1<P2 for 
the primary cooling FT. Implementing the BDD 
construction rules, the resulting model for the 
primary cooling system is computed as follows: 

 
(1) 

 
(2) 

 

 

 

(3) 

TOP1 - Primary Cooling System Fails

HX1 T1

G1 - Lack of Water G2 - Loss of Pumping

P1 P2
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Fig. 4 shows the structure of the BDD for the 
primary cooling system. Once the structure of the 
BDDs has been generated, their numerical analysis 
can be carried out based on the component 
reliability information. Traditional FT/ET-based 
approaches would dictate that only constant (or 
assumed constant) component failure/repair rates 
can be used for this type of analysis. Although 
largely accepted in engineering practice, the use of 
constant failure/repair rates is not always justified 
and may not adequately depict the behaviour of 
some components (e.g., subject to ageing). In these 
cases, the adoption of non-constant failure/repair 
rates may represent a more attractive option and 
enhance the accuracy of the analysis.  

 
Figure 4– BDD (left) and DBDD (right) for the primary 

cooling sub-system 

For this case study, PNs will be used to allow 
failure and repair times to be modelled by 
distributions representing non-constant rates. These 
are adopted to compute the reliability and failure 
frequency of components simulating the stochastic 
alternation of failure events and repairs. For 
instance, with regards to the primary cooling 
system, let component HX1 be characterised by 
non-constant failure and repair rates. Additionally, 
let us assume that the warm standby operation of 
P2 results in it failing at a lower rate when P1 is 
active. The remaining failure/repair rates are 
assumed to be constant. 

 
Figure 5- PN models of components HX1 (top), P1 and 

P2 (bottom) failure-repair cycles 

The basic PN models portraying the failure mode 
of components HX1, P1 and P2 are shown in Fig. 
5. For each component there are two PN places: 
one associated with the correct operation of the 

component ( ,  and  in Fig. 5), the other 
( ,  and ) indicating their failure state. The 
presence of a token in one or the other place 
denotes the current state of the component. The 
firing of the stochastic failure transitions (fHX1, fP1, 
and fP2 or fP2 (where fP2 represents the reduced rate 
of failure when P2 is in standby mode)) causes the 
movement of the token from the working to the 
failure state, while the repair transitions (rHX1, rP1 
and rP2) simulate the completion of corrective 
maintenance and hence the restoration of the 
correct component functionalities. The reliability of 
the individual elements can then be calculated as 
the ratio of down time over the system simulated 
time. Similarly, the failure frequency is computed 
as the number of failures recorded per unit time. 

The unconditional system failure intensity  

 (4) 

can be calculated directly from the BDD structure 
and component availability data, avoiding the use 
of approximation.  is the failure intensity of 
component i. The criticality function , is the 
probability that the system is in a critical state for 
component i such that failure of component i 
causes system failure. 

For a component i, 

 
 

 
(5) 

where  is the probability that the system 
fails with component i failed, and  is the 
probability that the system fails with component i 
working. 

All paths  to a terminal 1, representing system 
failure, are obtained from the BDD. For each path, 
the contribution that each initiating event makes to 

 (i.e., paths that go through the 
component i BDD node 1 branch) and  
(i.e., paths that go through the component i BDD 
node 0 branch) is calculated. (and summed for all 
paths) The contributions are then summed  

 (6) 

and 

 (7) 

where  and   are the 
contribution that an initiating event on path  

0 1

HX1

T1

P1

P2

1 0

HX1

T1

P1

P2
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f
makes to   and  respectively, 
and  is the total number of BDD paths to a 
terminal 1. 

The advantage of this method is that it does not 
require the use of conditional probabilities to 
account for the location of dependent components 
within the BDD. All dependent events can be 
grouped together (e.g., ) and the 
appropriate probability extracted from the PN/MM 
used to model the dependent components. The 
paths obtained using this method remain disjoint, 
therefore the calculations are exact. 

Once the availability of each subsystem and the 
frequency of the trigger event are known, the 
analysis can proceed towards the computation of 
the event tree (Fig. 2). Since the case under 
consideration assumes independence between 
subsystems, the results are calculated as follows: 

 
 

 
(8) 

 

(9) 

, 
(10) 

where  indicates the failure frequency associated 
with the primary cooling,  the availability of the 
detection system,  the availability of the fan 
system, and  the probability associated with 
the working state of the secondary system. 
 
The proposed approach, based on the computation 
of individual component reliability using PNs and 
the subsequent integration of the obtained output in 
the quantitative analysis of subsystem BDD, can be 
applied in a similar form for modelling components 
characterised by complex maintenance strategies. 

The methodology may also be adapted to model 
systems with ‘hard’ dependencies, where common 
components are shared between sub-systems; and 
‘soft dependencies, triggered by secondary 
procedures or processes, which may be not strictly 
connected with the hardware function (e.g., 
maintenance, surrounding conditions, load changes 
etc.). 

4. Phased mission methodology 

A phased mission consists of a sequential series of 
varying time intervals referred to as phases. The 
success of a mission requires the successful 
completion of each of the phases. Conversely, the 

failure of a mission is expressed as the loss of the 
function of the system during at least one of the 
phases. The probability of this is the mission 
unreliability. 
 
Phase and mission failures can be expressed in 
terms of the various system, sub-system, or 
component-level (basic event) failures that can 
cause them. The requirements for success (and 
therefore failure) differs from one phase to another 
and will have different failure logic models. Failure 
can occur during a phase or at the phase change. 
 
Phased mission modelling is typically well suited 
to transport systems. Most applications are non-
repairable during the mission (e.g., aircraft, trains) 
but for some applications some maintenance is 
possible (e.g., ships). 

4.1 Base Model Inputs 

For application of the proposed methodology to 
phased mission analysis the following user-inputs 
are required: 

 component failure/repair information; 

 mission phase fault tree structures; 

 mission phase duration and failure mode 
information; 

 component/subsystem dependency 
information. 

Note that, except for the last entry in the list, these 
inputs are of the same form as those that would be 
required for a traditional FT/ET-based phased 
mission modelling approach. 

4.2 Phased mission case study 

Various aspects of the phased mission methodology 
will be demonstrated through their application to 
the case study system shown in Fig. 6. 

 
Figure 6 – Case study model of an autonomous drone 

system for demonstration of phased mission methodology 

The case study system models an autonomous 
drone whose mission is to fly to and land at another 
location. Details of the mission phases and failure 
scenarios are provided in Table 1. All components 
are assumed to be non-repairable during a mission. 

S2S1

S3

R3

R1

R2
Comp Control

system

Drone System Components:

Camera sensors that send overlapping 
images to computer. Full 360 degrees 
covered by any 2 cameras.

Computer processes information sent by 
sensors.

Rotors that provide the lift to keep the 
drone airborne. Fly drone to locations.
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The user inputs to the model are first analysed to 
identify the presence of any features that cannot be 
fully captured by traditional FT/ET-based 
techniques. If any such features are present, the 
relevant components/systems are encapsulated as 
complex events. The required reliability data for 
these complex events can then be obtained through 
the application of appropriate modelling strategies, 
such as PNs or MMs. 

Table 1– Autonomous drone system mission phase details 

Mission Phases Mission Failure causes 
1.Take off  - Fail to activate rotors (C1)  

- 2 out of 3 rotors fail (R1-R3) 
2. Identify 
destination - Fail to identify destination (C2) 

- 2 out of 3 sensors fail (S1-S3) 
3. Fly to 
destination - Fail to navigate to location (C3) 

- 2 out of 3 sensors fail (S1-S3) 
4. Land - Fail to turn off rotors (C4) 

 
The drone’s rotor system consists of inter-
dependent components whereby the failure rate of 
the remaining operational components increases 
following a single component failure.  The rotor 
system components in the drone mission phase 1 
( ) FT are substituted with a complex event (Fig. 
7) and for this case study the model generates a PN 
(Fig. 8) representing the rotor system. PN 
simulations are run to determine the mean time to 
failure (MTTF)  for the complex event. The 
MTTF is used to generate a failure rate, 

 (11) 

for the complex event representing the rotor 
system. The reliability information obtained from 
complex event models is then integrated into the 
analysis of the mission phase FT structures.  

 
Figure 7 – Substitution of dependent components (R1, 

…,R3) with a complex event (C2000) in mission phase 1 
FT 

The reliability of the phased mission cannot simply 
be calculated by multiplying the reliabilities of 
each of the individual phases as this involves the 
false assumptions that the phases are independent, 

and all components are in the working state at the 
beginning of each phase. Use of this methodology 
would result in an appreciable over-prediction of 
system reliability.  

 

Figure 8 – PN for modelling drone rotor system 
component failures 

The individual phase fault trees are combined using 
a technique that enables the probability of failure in 
each phase to be determined in addition to the 
whole mission unreliability. For any phase, the 
method combines the causes of success of previous 
phases with the causes of failure for the phase 
being considered to allow both qualitative and 
quantitative analysis of both phase failure and 
mission failure.  

 
Figure 9 – FT structure for drone mission failure during 

phase 2. The logic structure representing NOT failure 
during mission phase 1 ( ) is combined with the logic 
structure representing failure during mission phase 2 
( ). Events spanning multiple phases (e.g.,  = 

failure of sensor 1 between 0 (mission start) and end of 
mission phase 2) are split into single phase failure events 

(e.g.,  becomes  and ). 

The event of component failure in phase i is 
represented as the event that the component could 
have failed during any phase up to and including 
phase i. System failure  in phase i is represented 
as the success (i.e. NOT failure, ) of phases 1..i-1 
AND the failure during phase i. This method 

3 4 5

Phase 1 - Take off failure

2

Dependencies between rotor components

Complex event 
encapsulating 

dependent 
components

1

Phase 1 - Take off failure

2

Transitions 
representing 
each potential 
component 
failure rate 

Component 
up & down 
places tR1

2

tR3 tR3tR2

0

0 00

tR1 tR2

Complex component ‘Initial condition’ place

Complex component 
down place

Weighted 
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= OR gate 
K value

Instantaneous 
transitions

S30,1S20,1S10,1

C20,1

Mission fails during phase 2

C10,1

2C21,2

C20000,1

S31,2S21,2S11,2
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f
allows for the evaluation of individual phase 
failures, and accounts for the condition where 
components are known to have functioned to 
enable the system to function in previous phases. 
For any phases after the first phase, the 
incorporation of the success of previous phases 
means that the fault trees will be non-coherent and 
not simply consist of AND and OR gates, as NOT 
logic is required to represent this success. 

The individual phase FT structures are expanded 
using NOT logic to model non-failure (i.e., 
success) of the system in earlier phases. Events that 
could occur across multiple phases are split into 
multiple events each representing occurrence of the 
event in a single phase (Fig. 9).  

 
Figure 10 – BDD (left) and DBDD (right) for drone 

mission phase 1, where C4<C2000 

Each of the mission phase fault trees are converted 
into BDD format and each variable in the BDD is 
associated with the time interval over which the 
variable can contribute to phase failure.  

DBDDs are used to evaluate the successful 
completion of a previous phase when considering 
failure in phase i > 1 of a phased mission (Fig. 10). 

 

Figure 11 – Union of phase 1  DBDD and phase 2 
 BDD to form mission to end of phase 2  BDD. 

The variable ordering heuristic of Sinnamon & Andrews 
(1997) used in section 3.1 has been applied 

The phase BDDs and DBDDs can then be 
connected according to 

, (12) 

where  is the BDD representing mission failure 
during phase  (Fig. 11). 

The BDDs are used for the computation of phase 
failure probabilities or frequencies and overall 
mission unreliability. Complex events are 
represented as single vertices within these BDDs; 
which are assigned the reliability data calculated 
via the complex event models/simulations. Various 
variable ordering heuristics can be implemented 
within the methodology during BDD construction. 

Quantifying the phase and mission BDDs involves 
either tracing along all paths from the root vertex to 
terminal 1 vertices and calculating the failure 
probability for each; or tracing along all paths from 
the root vertex to terminal 0 vertices and 
calculating the success probability for each. Since 
the paths are disjoint the failure/success 
probabilities are added to give the total probability 
of failure/success. Generally, the expression for 
success up to the end of a phase is simpler than the 
expression for its failure. This can be exploited to 
give a more efficient way of finding the exact 
conditional phase failure probability using 

 
(13) 

Paths through the BDDs to ‘0’ terminal nodes (i.e., 
paths to success) are obtained by applying a 
modified version of the BDD solutions algorithm 
developed by Rauzy (1993) (Fig. 12). 

 
Figure 12 – Modified BDD solutions algorithm for 

obtaining BDD paths including success events 

The modification allows success event information 
to be retained in the output paths produced by the 
algorithm. Once all paths through the BDDs have 
been obtained the following Boolean phase algebra 
rules (La Band & Andrews, 2003) are applied to 
remove any impossible paths (i.e., combinations of 
events that could never occur together), 
redundancies and repetition of events, 

1 0
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C20000,1
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C20000,1

0 1

C40,1
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Redundant terms  

(repetition of events)  
 (14) 

Cannot fail in more  

than one phase  
 (15) 

Redundant terms   (16) 

Cannot be failed and  

working at the same time  
 (17) 

Success in phase i rules  

out failure in that phase   
(18) 

Combination of success events 

across successive phases   
(19) 

Combination of failure events 

across successive phases   
(20) 

The probability of occurrence, , or non-
occurrence, , is then calculated by summing the 
probabilities of the disjoint paths through the BDD. 
The evaluation of the failure or success 
probabilities of each basic event can be determined 
using 

 (21) 

 

, 
(22) 

where  is the is the probability of success of 
basic event  in all phases from  to ,  is the 
probability of failure of basic event  in any phase 
from  to ,  the time of initiation of phase , 

 the probability density function of failure of 
component  with respect to ,  the 
cumulative probability function of failure of 
component  with respect to . 

Once mission phase failure probabilities have been 
calculated for each phase, they can then be added to 
give the total failure probability for the entire 
mission,  

 (23) 

where  is the total number of phases that make up 
the mission. 

When calculating mission phase failure/success 
probabilities, phase criticality functions can also be 
calculated by setting    0 and   1 for 
individual components instead of using Eq. (21). 
Eq. (4) is then used to determine the system 
unconditional failure intensity. 

5. Conclusions 

An overview of a new methodology for risk 
assessment has been presented with a selection of 
features illustrated through its application to classic 
FT/ET and phased mission-based case studies. By 
incorporating Petri net and/or Markov model-based 
techniques the methodology offers enhanced risk 
modelling capabilities compared to classic FT/ET 
based approaches. Such enhancements include 
failure rate dependencies, non-constant failure 
rates, common cause failures, and quantification of 
the effects of complex degradation and 
maintenance processes. The new methodology 
utilises BDD techniques for efficient analysis of 
user inputs in the form of traditional FT/ET 
structures. 
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