#### **An Introduction to Fault Tree Analysis**



John Andrews

Sally Lunt

#### Content

- Fault Tree Analysis Overview
- Symbols
- Fault Tree Construction
- Fault Tree Analysis I
  - Qualitative Analysis
    - Minimal Cut Sets
- Fault Tree Analysis II
  - Top Event Probability

#### Content

- Fault Tree Analysis III
  - Importance Measures
  - Component Measures
    - Birnbaum's measure
    - Fussell-Vesely measure
  - Minimal Cut Set Measures
  - Top Event Intensity
- Case Study
- Fault Tree Features Summary

#### Fault Tree Analysis Overview

#### Fault Tree Structure



#### Fault Tree Analysis

#### Qualitative

 Minimal Cut Sets:- minimal (necessary and sufficient) combinations of component failure events which cause the system failure mode.

#### Quantitative

- Unavailability (Q<sub>sys</sub>(t)):- the probability that the system failure mode exists at time t.
- Unreliability  $(F_{sys}(t))$ :- the probability that the system failure mode occurs at least once from 0 to time t.
- Failure rate:- the rate at which the system failure mode occurs
- Component contributions to the system failure

#### Typical Top Events

- Total Loss of Production.
- Safety System fails to respond.
- Standby System fails to start.
- Explosion.
- Loss of space mission.
- Release of radiation.



#### **Typical Basic Events**

- Pump fails to start.
- Valve fails closed.
- Flow sensor fails to indicate high flow.
- Operator fails to respond.



Events Gates

#### Fault Tree Symbols - Gates

| Symbol | Name | Causal Relation                                                      |
|--------|------|----------------------------------------------------------------------|
|        | OR   | Output event occurs if at<br>least one of the input events<br>occur. |
|        | AND  | Output event occurs if all input events occur.                       |
| m      | Vote | Output event occurs if at least <i>m</i> of the input events occur.  |

#### Fault Tree Symbols - Gates

| Symbol | Name            | Causal Relation                                                                                |
|--------|-----------------|------------------------------------------------------------------------------------------------|
|        | Priority<br>AND | Output event occurs if all<br>input events occur in<br>sequential order from<br>left to right. |
|        | Not             | Output event occurs if the input event does not occur.                                         |

#### Fault Tree Symbols - Events

| Symbol | Name         | Meaning                                                                                                   |
|--------|--------------|-----------------------------------------------------------------------------------------------------------|
|        | Intermediate | System or component event description.                                                                    |
|        | Basic        | Basic event for which failure and<br>repair data is available. Usually<br>represents a component failure. |
|        | House        | Represents definitely occurring or definitely not occurring events.                                       |

#### Gate Examples: Vote Gate

Example: System has 3 sensors to detect hazard 2 sensors required to detect hazard to cause trip 2-out-of-3:W

Fault Trees represent system failure causes (2-out-of-3:F)



Minimal Cut Sets

1. S1.S2

3. S3.S1

#### Gate Examples: Vote Gate

Example: System has 4 sensors to detect hazard

2 sensors required to detect hazard to cause trip

2-out-of-4:W  $\Rightarrow$  3-out-of-4:F



# Event Examples: House Event (System Operating Modes)

Safety system has two independent sub-systems (A and B) to detect a hazard and trip system.

Operates under two conditions.

- 1. No maintenance.
- 2. One sub-system (say A) out for maintenance.



House events = TRUE (T) or FALSE (F)

## Event Example: House Events (System Design Options)

Example: a valve of type A or B can be fitted.



#### Fault Tree Construction

#### Guidelines for Fault Tree Construction

No set of rules can be given to guarantee construction of the correct fault tree. Guidelines can be given.

No Miracles:

If the normal functioning of a component propagates a fault sequence then it is assumed that the component functions normally.



Valve Source

Fire if gas passes to ignition source (V fails open). But what about failures of Pipe (P) - Blocked So failure mode is  $V.\overline{P}$  – miracle! (introduces not logic)

#### Guidelines for Fault Tree Construction

#### Complete-the-gate:

Define all inputs to a gate before the further development of any one is undertaken.

# No gate-to-gate: Gate inputs should be properly defined and gates should not be directly connected to other gates. K L M O C D Image: C Image: C

#### Gas Leak Detection System

#### Gas Leak Detection System



#### Gas Leak Detection System - Component Failure Modes

| Component failure mode                        | code |
|-----------------------------------------------|------|
| Isolation valve 1 fails to close              | V1   |
| Isolation valve 2 fails to close              | V2   |
| Blowdown valve 3 fails to open                | V3   |
| Operator unavailable                          | OP   |
| Computer fails to process trip condition      | COMP |
| Alarm fails to sound                          | AL   |
| Relay contacts stuck closed                   | CONT |
| Concentration detector fails to register leak | CD1  |
| Sonic detector fails to register leak         | SD1  |
| Push Button contacts stuck closed             | PB   |

#### Gas Leak Detection System

- Given a gas leak the system should perform three tasks:
  - □ close isolation valve V1
  - □ close isolation valve V2
  - open blowdown valve V3
- Fault tree Top Event 'leak detection system fails'

#### Gas Leak Detection System



Gas Leak Detection System



#### Gas Leak Detection System - Solution



#### Fault Tree Analysis I

Qualitative Analysis Minimal Cut Sets

#### Minimal Cut Sets

#### Cut Set

 A list of component failed states which cause the system failure mode.

#### Minimal Cut Set

 A minimal (necessary and sufficient) list of component failed states which cause the system failure mode.

Fault Tree Structures



Fault Tree Structures



Fault tree representation is not unique

### Boolean Algebra

#### <u>Variables</u>

## Let $A = \begin{cases} TRUE(1) & Component A fails \\ FALSE(0) & Component A works \end{cases}$ TOP = $\begin{cases} TRUE(1) & System failure mode exists \\ FALSE(0) & System works \end{cases}$

+ - OR . - AND

Laws

Distributive Idempotent

Absorption

A.(B+C) = A.B+A.CA+A = AA.A = AA+A.B = A

#### Minimal Cut Sets



TOP=B.GATE1.GATE2 =B.(A+GATE3). (D+GATE4)=B.(A.D+A.GATE4+GATE3.D+GATE3.GATE4) =B.[A.D+A.A.C+(B+C).D+(B+C).A.C]=B.[A.D+A.A.C+B.D++C.D+B.A.C+C.A.C]

#### Minimal Cut Sets

 $TOP = B.(A.D + \underline{A.A.C} + B.D + C.D + \underline{B.A.C} + \underline{C.A.C})$ 

#### **Reduction Laws:**

**Idempotent:** X = X X = X

Absorption:



TOP = B.(A.D + A.C + B.D + C.D) $TOP = \underline{B.A.D} + B.A.C + \underline{B.B.D} + \underline{B.C.D}$ TOP = B.A.C + B.D

#### Fault Tree Analysis II

#### **Top Event Probability**

#### Component Failure Probability ↓ Minimal Cut Set Failure Probability ↓ System Failure Probability

#### **Component Failure Probabilities**

- Unavailability of components is calculated differently depending on maintenance policy used.
- Three Maintenance Policies:
  - No Repair.
  - Repair when failure is revealed. (Unscheduled Maintenance)
     Repair when failure is discovered. (Scheduled Maintenance)

#### Maintenance Policy - No Repair

Typical of remotely controlled systems

$$Q(t) = F(t) = 1 - e^{-\lambda t}$$

1

0

Q – unavailability

- F-unreliability
- $\lambda$  failure rate



Time





- $\lambda$  failure rate  $=\frac{1}{\mu}$   $\mu$  – mean time to  $\mu$ failure
- $\upsilon \text{repair rate} = \frac{1}{\tau}$  $\tau - \text{mean time to}$

### Maintenance Policy – Unscheduled Maintenance

Average Cycle

μ

W

F



 $\tau$  – mean time to repair



$$Q_{\infty} = \frac{\tau}{\mu + \tau} \approx \frac{\tau}{\mu} \quad \approx \lambda \tau$$

 $\dot{\cdot} \mu + \tau \approx \mu$ 

τ

i.e. (failure rate) x (mean time to repair/restore)

## Maintenance Policies - Scheduled Maintenance

• If:  $\theta$  - time between inspections



- Time to restore = detection time + repair time
- $R_{AV}$  average restoration time.

$$\begin{split} R_{AV} &= \frac{\theta}{2} + \tau \qquad \qquad Q_{AV} = \lambda R_{AV} \qquad \qquad \theta >> \tau \qquad Q_{AV} \approx \frac{\lambda \theta}{2} \\ &= \lambda \left(\frac{\theta}{2} + \tau\right) \qquad \qquad \theta >> \tau \qquad Q_{AV} \approx \frac{\lambda \theta}{2} \end{split}$$

### Maintenance Policies - Scheduled Maintenance

■ More accurately: Q(t)

$$Q_{AV} = \frac{1}{\theta} \int_{0}^{\theta} (1 - e^{-\lambda t}) dt$$
$$= \frac{1}{\theta} \left[ t + \frac{e^{-\lambda t}}{\lambda} \right]_{0}^{\theta}$$
$$= 1 - \frac{\left(1 - e^{-\lambda \theta}\right)}{\lambda \theta}$$



### Minimal Cut Set Failure Probabilities

If 
$$C_i = X_1.X_2...X_n$$
  
then  $P(C_i) = P(X_1).P(X_2)....P(X_n)$   
assuming all  $X_i$  independent.

i.e. 
$$P(C_i) = \prod_{j=1}^n P(X_j)$$

Example If  $C_i = A.B.C$  P(A) = 0.1, P(B) = 0.05, P(C) = 0.001 $P(C_1) = 0.1 \times 0.05 \times 0.001 = 5 \times 10^{-5}$ 

### Inclusion- Exclusion Principle

 From Minimal Cut Sets: TOP = C<sub>1</sub> + C<sub>2</sub> + ··· + C<sub>N<sub>c</sub></sub> Q<sub>SYS</sub> = P(TOP) = P(C<sub>1</sub> + C<sub>2</sub> + ··· + C<sub>N<sub>c</sub></sub>) C<sub>i</sub> - ith Minimal Cut Set N<sub>C</sub> - Number of Minimal Cut Sets
 Top Event Probability

$$Q_{SYS} = \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j) + \sum_{i=3}^{N_C} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} P(C_i \cap C_j \cap C_k) - \dots + (-1)^{N_C + 1} P(C_1 \cap C_2 \dots \cap C_{N_C})$$

### **Inclusion- Exclusion Principle**



P(A+B) = P(A) + P(B) - P(A.B)

### **Inclusion- Exclusion Principle**



P(A+B+C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(CA) + P(ABC)

### Example

If  $C_1 = A$   $C_2 = B.C$   $C_3 = B.D$   $C_4 = D.E.F$ assume all failure probabilities = 0.1

$$\begin{split} P[TOP] &= [P(C_1) + P(C_2) + P(C_3) + P(C_4)] - [P(C_1.C_2) + P(C_1.C_3) + P(C_1.C_4) + \\ P(C_2.C_3) + P(C_2.C_4) + P(C_3.C_4)] + [P(C_1.C_2.C_3) + P(C_1.C_2.C_4) + \\ P(C_1.C_3.C_4) + P(C_2.C_3.C_4)] - [P(C_1.C_2.C_3.C_4)] \\ &= [P(A) + P(B.C) + P(B.D) + P(D.E.F)] - [P(A.B.C) + P(A.B.D) + \\ P(A.D.E.F) + P(B.C.D) + P(B.C.D.E.F) + P(B.D.E.F)] + [P(A.B.C.D) + \\ P(A.B.C.D.E.F) + P(A.B.D.E.F) + P(B.C.D.E.F)] - [P(A.B.C.D.E.F)] \\ &= [0.1 + 0.01 + 0.01 + 0.001] - [0.001 + 0.001 + 0.0001 + 0.0001 + 0.00001] \\ &+ 0.0001] + [0.0001 + 0.000001 + 0.00001 + 0.00001] - [0.000001] \\ &= [0.121] - [0.00321] + [0.000112] - [0.000001] \\ &= 0.117901 \end{split}$$

| 0.121    | (U)                 |
|----------|---------------------|
| 0.11779  | (L)                 |
| 0.117902 | (U)                 |
| 0.117901 | (Exact)             |
|          | 0.11779<br>0.117902 |

### Top Event Probability

$$Q_{SYS} = \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j) + \sum_{i=3}^{N_C} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} P(C_i \cap C_j \cap C_k) - \dots + (-1)^{N_C+1} P(C_1 \cap C_2 \dots \cap C_{N_C})$$

- If large number of minimal cut sets eg. 100,000 (10<sup>5</sup>)
  - Number of terms in full expansion :  $10^5$ 
    - No. of elements in first term  $= 10^5$
    - No. of elements in second term  $\approx 5 \times 10^9$
    - No. of elements in third term  $\approx 1.7 \times 10^{14}$
    - etc.....
- Even for fast modern digital computers this calculation can be too CPU intensive!

### Approximations

$$Q_{SYS} = \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j) + \sum_{i=3}^{N_C} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} P(C_i \cap C_j \cap C_k) - \dots + (-1)^{N_C+1} P(C_1 \cap C_2 \dots \cap C_{N_C})$$

### **Inclusion-exclusion principle**



### Approximations

Rare Event

$$Q_{SYS} \leq \sum_{i=1}^{N_C} P(C_i)$$

Lower Bound

$$Q_{SYS} \geq \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j)$$

Minimal Cut Set Upper Bound

$$Q_{SYS} \leq 1 - \prod_{i=1}^{N_C} (1 - P(C_i))$$

### Example

If  $C_1 = A$   $C_2 = B.C$   $C_3 = B.D$   $C_4 = D.E.F$  assume all failure probabilities = 0.1

$$\begin{split} P[TOP] &= [P(C_1) + P(C_2) + P(C_3) + P(C_4)] - [P(C_1.C_2) + P(C_1.C_3) + P(C_1.C_4) + \\ P(C_2.C_3) + P(C_2.C_4) + P(C_3.C_4)] + [P(C_1.C_2.C_3) + P(C_1.C_2.C_4) + \\ P(C_1.C_3.C_4) + P(C_2.C_3.C_4)] - [P(C_1.C_2.C_3.C_4)] \\ &= [0.121] - [0.00321] + [0.000112] - [0.000001] \\ &= 0.117901 \end{split}$$

Rare Event: 
$$Q_{SYS} \le \sum_{i=1}^{N_C} P(C_i) = 0.121$$
  
Lower Bound:  $Q_{SYS} \ge \sum_{i=1}^{N_C} P(C_i) - \sum_{i=2}^{N_C} \sum_{j=1}^{i-1} P(C_i \cap C_j) = 0.121 - 0.00321 = 0.11779$ 

### Approximation – Example

Minimal Cut Set Upper Bound

$$Q_{SYS} \leq 1 - \prod_{i=1}^{N_C} (1 - P(C_i))$$

If  $C_1 = A$   $C_2 = B.C$   $C_3 = B.D$   $C_4 = D.E.F$ all failure probabilities = 0.1  $= 1 - (1 - 0.1)(1 - (0.1)^2)^2(1 - (0.1)^3)$ = 0.118792

$$\begin{aligned} Q_{LOWER} &\leq Q_{SYS} \leq Q_{MCSU} \leq Q_{RE} \\ 0.11779 &\leq 0.117901 \leq 0.118792 \leq 0.121 \end{aligned}$$

Fault Tree Analysis III

**Importance Measures** 

### **Importance Measures**

- Indicate, in some sense, the contribution each component of the system makes to the system failure event.
- Contribution is dependent upon:
  - □ Susceptibility of system to fail when component fails.
    - Vulnerability:- redundancy, diversity
    - Chance of a component being in a failed state.
      - □ frequency of a component failure.
      - □ time to repair component.

**Types of Importance Measures** 

Two distinct types:

Deterministic \_\_\_\_\_

Consider only the structure of the system

Probabilistic

Availability

Reliability

### **Critical System States**

A critical system state for component i is a state for the remaining n-1 components such that failure of component i causes the system to go from a working to a failed state.



### **Deterministic Importance Measures**

### Structural Importance Measure

 $I = \frac{\text{number of critical states for component i}}{\text{total number of states for the (n - 1) remaining components}}$ 

### **Example Structural Importance Measure**



• For A:

|   | States |   |   |          |
|---|--------|---|---|----------|
|   | В      | С | D | Critical |
|   |        |   |   | for A?   |
| 1 | W      | W | W | Y        |
| 2 | W      | W | F | Y        |
| 3 | W      | F | W | Y        |
| 4 | W      | F | F | Y        |
| 5 | F      | W | W | Y        |
| 6 | F      | W | F | N        |
| 7 | F      | F | W | N        |
| 8 | F      | F | F | N        |

$$I_A = 5/8$$

### Example Structural Measure of Importance



•  $I_A = 5/8$ •  $I_B = 3/8$ •  $I_C = I_D = 1/8$  Probabilistic Component Importance Measures (Availability)

- Birnbaum's measure of importance or Criticality Function.
- Fussell Vesely measure of importance.

# Birnbaum's Measure of Importance or Criticality Function

The Criticality Function for a component i,  $G_i(q)$  is the probability that the system is in a critical state for component i.

### Example – Birnbaum's Importance Measure $q_A = q_C = 0.1$ $q_B = q_D = 0.2$

D

С



|   | States |   |   |          |
|---|--------|---|---|----------|
|   | В      | С | D | Critical |
|   |        |   |   | for A?   |
| 1 | W      | W | W | Y        |
| 2 | W      | W | F | Y        |
| 3 | W      | F | W | Y        |
| 4 | W      | F | F | Y        |
| 5 | F      | W | W | Y        |
| 6 | F      | W | F | N        |
| 7 | F      | F | W | N        |
| 8 | F      | F | F | N        |

 $G_A = 0.944$ 

### Birnbaum's Measure - Criticality Function

- Not a function of the components own availability.
- Many other Importance measures are based on this measure.
- Tabular approaches are not a practical means to produce this measure. For an 11 component system there would be 11 tables of 2<sup>10</sup> = 1024 entries.

# Alternative Expressions for Birnbaum's Measure

 $G_i(\mathbf{q})$  is the probability that the system fails only if component i fails.

i.e.  $G_i(\mathbf{q})$  is the probability the system fails with component i failed minus the probability the system fails with component i working.

i.e. 
$$G_i(q) = Q_{SYS}(1_i, q) - Q_{SYS}(0_i, q)$$
  
 $Q_{SYS}(1_i, q) = Q_{SYS}(q_1, q_2, ..., q_{i-1}, 1, q_{i+1}, ..., q_n)$   
 $Q_{SYS}(0_i, q) = Q_{SYS}(q_1, q_2, ..., q_{i-1}, 0, q_{i+1}, ..., q_n)$   
or  $G_i(q) = \frac{\partial Q_{SYS}}{\partial q_i}$ 

### Fussell - Vesely Measure of Importance

 Probability of the union of all minimal cut sets containing i given that the system has failed.

$$I_{FV_i} = \frac{P\left(\bigcup_{i \in C_j} C_j\right)}{Q_{SYS}}$$

# Example Fussell-Vesely Measure of Importance



### Importance Measures Summary

| Component | Structural | Birnbaum | Fussell-<br>Vesely |
|-----------|------------|----------|--------------------|
| Α         | 0.625      | 0.944    | 0.6649             |
| В         | 0.375      | 0.252    | 0.3723             |
| С         | 0.125      | 0.144    | 0.1330             |
| D         | 0.125      | 0.162    | 0.2660             |

### System Failure Intensity

- $w_{SYS}(t)$  is the system failure intensity at time t.
- This can be determined from:

$$w_{SYS}(t) = \sum_{i=1}^{n} G_i(\underline{q}).w_i(t)$$

where w<sub>i</sub> is the component failure intensity and
 G<sub>i</sub>(q) is the Criticality Function



### Tank Level Control System



#### System Failure Mode: Tanks Overfills

# Tank Level Control System Component Failure Modes

| Component      | Failure Mode     | Code    | Failure Rate          | Mean Time to          |
|----------------|------------------|---------|-----------------------|-----------------------|
|                |                  |         | (per hour)            | <b>Repair (hours)</b> |
| Push Button    | Stuck closed     | PB      | 5. x $10^{-5}$        | 2.                    |
| Relay Contacts | Stuck closed     | R1/R2   | 6. x 10 <sup>-5</sup> | 10.                   |
| Switch         | Stuck closed     | SW1/SW2 | 5. x $10^{-5}$        | 10.                   |
| Level Sensors  | Fail to indicate | L1/L2   | 2. x 10 <sup>-6</sup> | 5.                    |
|                | high level       |         |                       |                       |

Unrevealed failures R1/PB/SW2/L2 -

inspection interval = 4380 hours

### Tank Level Control System – FT(1)



### Tank Level Control System – FT(2)



### Tank Level Control System – FT(2)



### Tank Level Control System - MCS



### Minimal Cut Sets

| 1 | R2  |            |
|---|-----|------------|
| 2 | SW1 | PB         |
| 3 | SW1 | <b>R</b> 1 |
| 4 | SW1 | SW2        |
| 5 | SW1 | L2         |
| 6 | L1  | PB         |
| 7 | L1  | <b>R</b> 1 |
| 8 | L1  | SW2        |
| 9 | L1  | R1         |

### Tank Level Control System

### Top Event Probability = 7.5 x 10<sup>-4</sup> Top Event Frequency = 7.72 x 10<sup>-5</sup> per hour

| Rank | Component | Fussell Vesely |
|------|-----------|----------------|
| 1    | R2        | 0.781          |
| 2    | SW1       | 0.215          |
| 3    | R1        | 0.080          |
| 4    | SW2       | 0.068          |
| 5    | PB        | 0.067          |
| 6    | L1        | 0.004          |
| 7    | L2        | 0.003          |

# Summary – Fault Tree Analysis Features

### Fault Tree Analysis

- Provides a well structured development of the system failure logic.
- Forms a documented record of analysis which can be used to communicate fault development with regulators etc.
- Directly developed from the engineering system structure.
- Easily interpreted from the engineering viewpoint.
- Analysis gives all minimal cut sets.
- Quantification gives the top system failure mode probability or frequency.
- Vulnerability to system failure can be identified using importance measures.

# The End

# Any Questions?

#### Professor John Andrews

Faculty of Engineering University of Nottingham Nottingham, NG7 2RD England

Email: john.andrews@nottingham.ac.uk

Dr Sally Lunt Faculty of Engineering University of Nottingham Nottingham, NG7 2RD England

Email: sally.lunt@nottingham.ac.uk